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Abstract. In Wireless LANs, users may adapt their transmission raggeading on the observed radio
conditions on their links to maximize their throughput. Betty, there has been a significant research effort
in developing distributed rate adaptation schemes offdoetter performance than that of the current ARF
(Automatic Rate Fallback). Unlike previous works, this papharacterizes the optimal reaction of a rate
adaptation protocol to the contention information receéivem the MAC. We formulate this problem
analytically. We study both competitive and cooperativerusehaviors: In the case of competition, users
selfishly adapt their rates so as to maximize their own thnpugj whereas in the case of cooperation they
aim at adapting their rates to maximize the overall systewuihput. We show that the Nash Equilibrium
realized in the case of competition can be inefficient (tlee, price of anarchy is high, up to 50% of the
social optimum), and provide insightful properties of tloxially optimal rate adaptation schemes. We
also show that RTS/CTS does not make the competitive seenare efficient. We then apply the same
analysis to recently proposed collision-aware rate adiaptalgorithms and observe similar conclusions.
Finally, we propose a novel collision-aware rate adaptasilgorithm that significantly reduces the price
of anarchy in many scenarios of interest.

I. INTRODUCTION

Radio sharing policy and rate adaptation are two key partthef[EEE 802.11 MAC. Users share
the radio resources in a distributed manner using the manda&bntention-resolution scheme DCF
(Distributed Coordination Function). This scheme spesifiew users should adapt their channel access
probability when they experience transmission failurebeWthe network is perceived as congested, under
the DCF, usergooperativelydecrease their access probability, which in turn shouldk lie number of
collisions and keep the overall network efficiency at a $atg level. DCF design is time-critical and it
is implemented in hardware. Users cannot modify it.

Transmission failures are not due to collisions only, buymlao be caused by a noisy channel. In IEEE
802.11 systems, users may adapt their modulation and coali@go identify the optimal trade-off between
the transmission rate and the packet losses due to chanoes.&n objective of a rate adaptation algorithm
is to estimate the channel’s quality and to find the optinedéroff. A rate adaptation algorithm is typically
implemented in software and it can easily be modified. TheHBB2.11 standard does not specify any
rate adaptation algorithm. Today, the great majority of owrcial devices implement a common simple
rate adaptation algorithm, ARF (Automatic Rate Fallbadkany rate adaptation algorithms have been
recently proposed and evaluated in the literature to rephRF, see Section II.

Rate adaptation can be done in a cooperative or competitaye im the former scenario, the rate
adaptation scheme is designed so as to maximize the totalghput of the network while guaranteeing
a certain degree of fairness among users, thus achievingial sptimum of the network. In the latter
scenario, each user designs its own rate adaptation stnatfgthe aim of maximizing its own throughput
and without accounting for its impact on the performancetbepusers. If there is a single greedy user,
selfishly trying to adapt its rate, this user could potehtigdceive a higher throughput than that obtained in
the social optimal. However, if all users compete, the systeay evolve to an inefficient Nash Equilibrium
where all users would receive a lower throughput than thahénsocial optimum. The performance gap
between the social optimum and Nash Equilibria is calledphee of anarchy

An important challenge in designing the rate adaptatioreses comes from the fact that transmitters
may not be able to distinguish between the causes of trasgmifailures. Transmission failures are caused



by collisions and/or channel errors. Without thiss differentiationcapability, both scheduling DCF and
rate adaptation schemes may make wrong decisions. Chamnet ean lead to an unnecessary access
probability decrease when the network is lightly loaded.eWlthe network is congested, collisions may
be interpreted as channel errors and lead users to dechesisgansmission rates, which in turn increases
the packet transmission durations and further exacerliheesetwork congestion. Several schemes for
loss differentiation have already been proposed; see dBeliti

In this paper, we are interested in the interaction of DCF thedrate adaptation protocols. We assume
that all users implement the standard DCF (with or withowsldlifferentiation), but can modify their
rate adaptation protocols. We aim at characterizing howsusigould optimally select a transmission rate
depending on their state in the DCF schemes (i.e., the bficitage) representing the level of congestion
in the network. Indeed, selecting rates based on the bddtagfe is one of the novel features that separates
our work from the previous work.

To make the problem analytically tractable, we assume tmatchannel state does not change with
time. The transmitters know the channel quality on theikdinand need not estimate it. The assumption
is made as our primary interest is in understanding theantem between the DCF and the rate adaptation
schemes, and not in the channel estimation part. The aseumigptlso partly supported by typically large
channel coherence times (much larger than the time reqtorea packet transmission). We also assume
that the network is symmetric, in the sense that all the liekgerience the same radio conditions, and
they all interfere with each other. We leave both heterogesescenarios and SNR estimation for the
future work.

Since SNR is known at the transmitter, one may expect thasttraightforward to determine the optimal
transmission rate, and this rate should be used in all thie-bficstages. We, however, prove that this is
not the case. In the cooperative scenario, the optimal reteases as back-off stage increases (which
was previously observed only in scenarios with hidden teats), whereas in the competitive scenario
the optimal rate decreases. Thus, price of anarchy is sgnifi This illustrates counter-intuitive complex
behavior of inter-action between DCF and rate adaptati@nem a simple scenario in which SNR is
known. We quantify these interactions and show what are ftenal rate adaptation strategies in both
cooperative and competitive scenarios. In the competgoanario, we are also interested in identifying
slight modifications of the DCF scheme that could elimindte price of anarchy, and push the Nash
Equilibria of the rate adaptation game toward a sociallyceffit system, if such modification is possible.

The main contributions of this paper are as follows:

e We formulate the problem of designing optimal rate adaptatilgorithms analytically. We develop a
generic framework that enables us to consider both coaperabhd competitive user behaviors, but also
to account for the use of RTS/CTS and the capability or théilitya of users to distinguish collisions
from channel errors.

e In the cooperative scenario, we characterize the optingairdhms and provide a distributed implemen-
tation of these algorithms. We prove that even in absencedaleh terminals a node should increase its
transmission rate as the contention increases. We also #taivcollision-awareness or RTS/CTS offer
little performance improvements.

¢ In the competitive scenario, we analyze the resulting rdeptation game. We show the existence of
pure symmetric Nash Equilibria, and give methods to idgritiem. We also compute the price of anarchy



in these games and show that it is not negligible in general.

¢ We propose ROCE, a novel way of reacting to channel errorssenghow that it consistently has smaller
price of the anarchy than the other proposed schemes (glhibdoes not eliminate it completely), while
it achieves the same social optimum.

The paper is organized as follows. Section Il discussesdia¢ed work. Section 11l defines the models.
Stationary analysis for a given rate adaptation is givendatiSn IV. Competitive scenarios are discussed
in Section V and cooperative scenarios in Section VI. Nuoa¢niesults are presented in Section VIl and
conclusions in VIII. The proofs are in the appendix.

Il. RELATED WORK

Many rate adaptation algorithms have been recently prapasd evaluated in the literature to replace
ARF, see e.g. [1], [2], [3], [4]. To solve the problems raideyl the interaction of the DCF and the
rate adaptation algorithm, researchers have proposed @fagdferentiating the causes of transmission
failures, and then collision-aware rate adaptation algors, see e.g. [5], [6], [7], [8], [9], [10]. Note
that most often, the proposed rate adaptation algorithedased on heuristic arguments and numerical
experiments.

The authors of [11], [12] provide analytical models for tiéeraction of DCF and the rate adaptation
scheme, but they do not propose improved adaptation dhgasit Note also that the possible non-
cooperative behavior of users in adapting their rate idyarensidered (in [13], [14], the authors provide
preliminary analysis of rate adaptation games in WLANSs wheginsmission failures due to channel errors
are not modeled). DCF design in a game setting is discussgkbjn

From Nash’s original paper [16], we know that there alwayistexa mixed strategy Nash Equilibrium
(NE) when the number of pure strategies are finite and mordbeee always exists a symmetric mixed
strategy NE when the game is symmetric. Though existencebofsNyuaranteed, it is well known that
obtaining a NE is computationally expensive.Schmeidlemsdd the existence of pure strategy NE in non-
atomic games, when a player’s payoff depends only on hiteglyaand average behavior of others [17].
The question of the existence of symmetric pure strategy N& symmetric game and a quasi-concave
payoff is addressed in [18]. However, it is difficult to verif the payoff in our case is quasi-concave.

[1l. M ODELS

We consider a network ol links. All links interfere each other, and always have paske send in
their buffer. All transmitters implement the same disttdmirandom back-off scheduling mechanism to
access the channel, e.g. DCF. This mechanism is modeleti@ssSoThere ard + 1 back-off stages: stage
i €{0,...,I} indicates that consecutive collisions have been experienced. In stagrode transmits a
packet with a fixed probability; such thatp; > p;,, for every: < I (in DCF p; = 27'p,). We optimize
the rate adaptation algorithm for a fixed scheduling meamani

The radio conditions for a link are characterized by the aligo-noise (SNR) ratio at the receiver. We
consider symmetric networks where all links have the sam®&,3hhown at the transmitters. To send
a packet, each transmitter can select a rate from aRsétat can be either finite (as in the case of
IEEE802.11g which has 8 rates) or infinite.

Definition 1 (Rate Adaptation Strategy} rate adaptation strategy is a map from{0,...,/} to R.

A strategyp is said to beconstantif p(i) = p(i + 1) for all i < I.



Note thatp(i) indicates the transmission rate under stratedy i*" back-off stage.

Packet transmission can fail either due to a collision (sEveansmitters access the channel simulta-
neously) or due to a channel error. The probability that ekelasent at rateR is lost due to a channel
error is a functiore(R, SNR) of the rate and of the SNR. A widely used model consists in defin by
e(R,SNR) = 1 —ve *R, and we use this model unless specified otherwise. SinceNReiSassumed to
be fixed and known at a transmitter, we denetg= e¢(R, SNR).

All packets have a fixed size, and thus the time to transmit a packet at rAtes 7 = o/R. Systems
with or without RTS/CTS mechanisms are analyzeddfs denotes the duration of the RTS/CTS signaling
procedure, then with RTS/CTS, the effective transmissioa packet at rate? lastsTr + Trrs, and the
duration of collisions reduce tdrrs.

In the analysis, we consider both competitive and cooperattenarios, and the cases where collisions
and channel errors can or cannot be distinguished.

A. Without loss differentiation (WoLD)

When collisions and channel errors can not be distinguighkel in all of the 802.11 standards), a
transmitter chooses a transmission raté) as a function of the number of consecutive transmission
failures, denoted by. Note that afteri successive failures, the transmitter isiih back-off stage.

B. With loss differentiation (WLD)

We also consider the case where collisions and channelsecan be differentiated. This model is
inspired by several proposals for collision-aware rateptateon (e.g. [5], [6], [7], [8], [9], [10]). A
transmitter chooses a transmission rat@ as a function of the number of successive collisiondere,
we do not keep track of the number of previous successivenehamrors as these errors are assumed to
be independent over various transmissions.

We consider two families of collision-aware rate adaptatitrategies: The first family, called/LDS
(WLD Standard), includes the strategies proposed in tleealitire, e.g. in [5], [6], [7], [8], [9], [10]. If a
transmission fails due to a collision, then the back-offystés incremented. If it fails due to a channel
error, then the back-off stage remains the same.

We propose a second new family of rate adaptation strateggéessred to as ROCE (Return to 0 On
Channel Error). Here, unlike WLDS, if a transmission faileedo a channel error, the back-off stage is
reset to the minimum value & 0). The intuition behind this is that since the loss was notseduby
collision, there is not reason to remain in a high-contentCF state. If a transmission fails due to a
collision, the back-off stage is increased, as in all otlutreses.

C. Competition vs. Cooperation

Competition.Since all links are assumed to be equivalent in the systemsidered, the competitive
behavior of transmitters is modeled as a pure strategic stnurate adaptation game. This means that
each transmitter adopts a deterministic strategWe emphasize on symmetric strategy for fairness, and
on pure strategy for it is easy to implement. When all tratigrs use the same strategyand when one
of the transmitter updates its strategy, the latter becoBigs, the best response to the others’ strategy



p. A symmetric Nash Equilibrium is reached when all transengtuse the same strategysuch that
p=Bp).

Cooperation.In the cooperation scenario, all transmitters use the sarategyp, hence all links achieve
the same throughput. We want to find the social optimum, thdb icharacterize) that maximizes the
total system throughput (or equivalently the throughpueach link since all the links are the same).

V. STATIONARY ANALYSIS

We start the analysis by studying the steady state behakgystems where all transmitters use a given
rate adaptation strategy In such systems, we denote by the stationary probability that a transmitter
is in the back-off stage, by p = >~ m;p; the average transmission probability, anddoy 1 — (1 — p)V~!
the collision probability.

A. Average slot duration

We consider virtuaklots as defined in [19]: a slot may correspond to a slot where tla@rodl is idle
(no transmission occurs), to a successful transmissiotn ar collision. Denote bys™ (p) the expected
slot duration whenN transmitters use the same rate adaptation strategdlso denote byS¥ (p) the
expected slot duration in a system with+ 1 transmitters using strategy and given that one transmitter
sends a packet at rafe, which is (in case when RTS/CTS is not used):

S (p Z Pr(min TX rate of N users isr) max(7,, Tg).
reR

When RTS/CTS is used, the expressions$6i(p), S5 (p) simplify to:
SN(p) = (1 - p)N + N(l - p)N_l Z ijij(j)
j

+ (1= (1 =p)") Trrs,
SE(p) =1 =p)"(Tr+ Trrs) + (1 — (1 = p)) Trrs.
When RTS/CTS is not used, the expressions are more complexgiaen in the following proposition.

Proposition 1: Let t(X) = 1 — >, mp; be the probability that a node is not transmitting in any of
the back-off stages iX' C {0,...,7}. Then in the cases without RTS/CTS we have

() = (1 =)
+ 3 (10 o) < DY = {5 2 0l) < THY) T,

Sp(p) = (L =p)" +t({j: p(4j) < R}")Tr
+ > (¢ p() < DY —t{j p(G) < HM) T

r<R

The proof is in [20].

B. Link Throughput

From the average slot duration, we can compute the statidhawughput of a link using the similar
analysis as that in [19]. The throughput is

_ il —epm)(1—¢)
o(p) = S¥() : 1)




C. Stationary distributions

To compute the link throughputs, we need to evaluate théostatly distributionm and the collision
probability c. We compute these, first for WoLD systems, and then for WLD& ROCE systems.

1) Without loss differentiationGiven that a transmitter is in stageit can either successfully transmit
and move to state 0 with probability(1—c)(1—e;), or experience of transmission failure with probability
pi(1 — (1 —¢)(1 —eyu)) or remain idle with probabilityl — p;. Then we classically deduce that:

T = Po Z_:lo(l — (1=l - ep(k)))wo, for 0 <1< 1,
Di
Il == =)
pr(1=c)(1 —eyn)

2) With loss differentiation, WLDsGiven that a transmitter is in stageit can either move to stage

1+ 1 if it encounters a collision with probability;c, or it can remain silent with probability — p;, or it

can return to stage O with probability(1 — ¢) (regardless of channel errors). We then have

Wi:poczﬂo, for 0 <1 < I ﬂ[:poidwo.
bi p[(l — C)
3) With loss differentiation, ROCEGiven that a transmitter is in stageit can either move to stage
1+ 1 if it encounters a collision with probability;c, or it can remain in stagewith probability 1 — p; +
pi(1 — c)eyy (either it remains silent or it encounters a channel errar)it can return to stage 0 with

probability p;(1 — ¢)(1 — e,;)). We have:

)

_ PoC
Pi [Ty (1 = (1 = c)ep))
pOCI
pr(1=¢)(1 —epn) i;i(l — (1= c)epw))
In each of the cases, we use the above expressions to elftainhe system ofV users. The collision
probability is obtained as a fixed point of the following twxpeessions: Firsty = ZLO m;p;, and second
c=1-(1-p)N~1 Asin [19], it can be shown that the fixed point is unique.

e o, for 0 < i < I,

T = 70-

V. COMPETITION

Here, we study the system performance when users are compeiti each other and our aim here
is to determine whether a symmetric pure strategy Nash iBguiin (NE) exists, and if it exists, then
how to compute it. We also want to determine properties ofNlash Equilibrium so as to curtail the
computational efforts required to compute it.

A. Analytical Results

First, we present the existence result of a symmetric purddx@ll the variations we have considered,
viz., with or without RTS/CTS, and with or without loss diféatiation, and their combinations. Existence
of pure strategy NE is primarily studied when the number aypts is large so that choice of one
player’s strategy does not affect the payoffs of the oth&€hese games are referred to as non-atomic
games. For precise mathematical definition, see [17]. Ia $eiction, we only consider a system with



RTS/CTS mechanism. We believe that all the results also Wwhleh RTS/CTS is not used. For notational
brevity, we assume thatz; = 1 — e *%, i.e. v = 1, but all the results hold for every > 0.

Proposition 2: If each user can select rate at every back-off stage fromsedlmterval0, R,,..|, then
in the non-atomic settings, a symmetric pure NE exists fbthal variations of the system considered in
this paper.

The proof is given in the appendix and it follows along theikmlines as that of the original proof
by Nash (using Kakutani’s fixed point theorem).

Though the existence is known, computing a symmetric puras\tdmputationally expensive. Hence,
we show certain properties a NE should satisfy in variouggaand wherever possible give an explicit
procedure to compute the NE.

1) Properties of NE for WoLD and WLDs4zirst, we explain how the best response correspondence is
obtained in these cases. Fix a useland let other users use rate adaptagioihen the best response for
n is computed using Markov decision process formulation,ciwhallowsn to determine rate adaptation
strategy that minimizes the expected time to transmit a gtasliccessfully given that other users use
p. Let J(i) denote the minimum expected time to transmit a packet ssftdgsgiven that it is inih
back-off stage. Then Bellman’s equations for WoLD are akw:

J0) = TPy

7

+min {3 (p) + (1= (1)) + 1)},

ﬂsN—l SN—l
J([) _ m}%n{ b1 (1 fpc))(:__nlf (p) } .

where %SN—l(p) is the average time the link is idle before transmitting foe first time,Sﬁ&;l(p) IS
the average time the link transmits (regardless of the sscogthe transmission) and if the transmission
is unsuccessful (with probabilityl — (1 — c)e~*F) the average time to transmit the packet/is + 1, p)
as the link moves to + 1. Note that the best response can be computed easily by tztirty as/(7)
can be computed in a single step onkfg + 1) is known. Thus,J(I) is computed first, the/(/ — 1) and
SO on.

Now, in the case of WLDs, the best response is given as follows

{ Lni gN=1(p) 4 eJ (i + 1) + SN (p) }

J(i) = min

R 1—(1=0¢)(1—e*E)

1opi gN-1 gN-1
) = mz%n{ - 1 _<pc)):—m (p)}-

Again the best response can be calculated easily by backitica

Note that these relations provide the best response rafdaditda for a user only for the non-atomic
game. This is because the choice of rate adaptation for anuaffectsw andc, and thus in turn affects
the average behavior of the system as perceived.bin the above expressions, a key assumption is
that the average system behavior does not change wharanges its rate adaptation. Using the above
relations, we show the following result.

Proposition 3: Consider non-atomic setting. Lgtbe a strategy used by any usein any symmetric
NE. Then,p(i) > p(i + 1) for everyi.




The proof is in the appendix. Intuitively, the expected tisgent in stage waiting for the first
opportunity to transmit%SN‘l(p)) iS monotone increasing in Thus, the best response rate adaptation
is discouraged to enter the higher stages. For the WoLD daseiser moves into a higher back-off stage
w.p. 1 — (1 — c)e £, In this, rate adaptation can affect only the second ternusTFor a higher, rate
adaptation decreases rate) to decrease the probability of moving te+ 1. Similarly, for WLDS, the
user stays in the same back-off stage in case of a channel €has, here as well, for a larger rate
adaptation chooses smaller rate so as to increase its chahsaccessful transmission given that nobody
else is simultaneously transmitting.

B. Computing Symmetric Pure Strategy NE for ROCE

The best response correspondence in this case when othierusgerate adaptation strategys given
as follows. In this section, we do not need to assume non atgame.

J(i) = %SN*(/))HJ(Z'H)
+m§n{51]¥ Hp)+ (1 =) (1 —e ™) J(0)},
1—pi v

J(I) pi(l—C)S (p)

Contrary to the previous section, these relations provigebiest response rate adaptation for usewen
when the number of users is finite (we do not need non-atoyhicihis is because here and ¢ do not
depend on rate adaptation strategies of the users. Th&s) givr, ¢), the average behavior of the system
as perceived by, does not change even when it changes its rate adaptatidegstralext, we can show
the following property of the best response correspondence

Proposition 4: Let 5 be a rate adaptation strategy used by all the users in thensysind letp be a
rate adaptation strategy obtained from the best responsespondence. Them, is constant 4; = p;41
for everyi.)

The proposition immediately follows by observing that thumdtion that is optimized oveR is the
same for every, hence assuming all users ys@and usem usesp, the throughput of the system is

o(p, p) =
p(l—c)(1—ep)
(1 =p)(1 =) +p(1 = )T, + (1 = p)cT}; + pcmax{T,, Tp}"
and the best response for useis simply B(p) = argmax g ¢(p, p).

Note that since we also allow for finite humber users, Prdmosl does not guarantee the existence
of symmetric pure NE. But, in this case, we are able to showdiametric pure NE exists and we also
propose the following procedure to compute it. The main @ggion we make is that all the users update
their rate adaptation strategies synchronously basedealibve best response correspondence. We start
with an initial state, where each user has rate adaptatidn Since the system is symmetric, the best
response obtained by each user is the same. Thus, all of §rechrenously change their rate adaptation
from p® to p("), and the procedure continues in the same fashion. For #rigtiite procedure, we make
the following claim.




Proposition 5: Let p© = R,..1. Then,lim,, .., p™ = p* such thatp* is a symmetric pure NE.

The proof is in the appendix. In the key step in the proof ofv@a@sult, we show that™ is a monotone
decreasing sequence. Intuitive explanation for this ptrammn is as follows. Clearly) < p(®. When
the rate decreases, time required to transmit the packetases, which in turn results in increase in
J(¢) for all i. As J(i) increases, best response chooses a rate adaptation ttfagdarmination state
(successful packet transmission) with a higher probgbilihis can be achieved only by reducing the
rates ast andc are independent of the rate adaptation strategy. Theiswill be smaller thanp!), and
this continues.

VI. COOPERATION

Here, we derive key properties of the socially optimal rate@ation strategy, and present its distributed
implementation.

A. Optimal rate adaptation for ROCE

We first show that the optimal rate adaptation has to be noredsing.

Proposition 6: Let p be the socially optimal rate adaptation strategy. Then,bseace of RTS/CTS,
for everyi < I, p(i) < p(i + 1); and with RTS/CTSp(i) = p(i + 1).

The proof of the above proposition is presented in appentie intuition behind this result is as
follows: the reward for successful transmission in state proportional tor;p;. The probability that a
slot will last 7,,(; is proportional to different collision probabilities andncreases faster withthanm;p;.

Using this result, we can derive a gradient-descent algorito enable transmitters to identify the
optimal rate adaptation strategy in a distributed mannethe sense that all variables can be measured
locally). Here we assume for simplicity that the set of ragesontinuous. The algorithm is described in
the following proposition where the update of the rate aalig strategy from step: to stepm + 1 is
described through the duration of a packet transmissionyrgaven stage (these durations uniquely define
the rate adaptation strategy). The algorithm classicadlgsuat stepn a step size,,, wheree,, — 0 as
m — oo and) . e=oo. For convenience, we denote the error functicas follows:e(7,;)) = €,)-

Proposition 7: Assume that at step: + 1, all transmitters update their rate adaptation strateggnfr
Pm 10 ppy1 AS:

Tpm+1(i) = Tp'm(i) - Emﬂ-'lpl(]' - C)e/(TP'nL(l)) (2)

—en(t({k:k <i— 11" —t({k: k < i})")d(pm)-
wheret({k: k <i})=1-3,_,mpr ande'(T) = 2. Then, whenm grows large,p,, converges to a
socially optimal rate adaptation strategy.
The proof is in the appendix. Notice thafp; is the fraction of time a transmitter transmits in back-off
stagei, c is the collision probability for a packet a¢{k : k <i—1})N —t({k : k < i})" is the fraction
of slots that lastl,;. All of these can easily be measured locally hence (2) canvhkiaed locally at
a transmitter. Similarly, we can deduce an update algoriibmthe case with RTS/CTS.
Proposition 8: Assume that at step: + 1, all transmitters update their rate adaptation strateggnfr
Pm 0 ppyq AS:
T

Pm+1(i)

= Tp'm(i) - Emﬂ-'lpl(]‘ - C)el(Tp'nL(l)) (3)
— enN(1 =)V 1ipid(pm)-
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Then, whenmn grows large,p,, converges to the socially optimal rate adaptation strategy

The proof of this proposition is similar to that of the prewsoproposition, so we omit it. Notice that here
as well all the quantities involved in the update can be dated locally. In particulatV (1 — p) ~Lm;p;
is the fraction of slots with transmissions without cobiss.

B. Optimal rate adaptation for WoLD

The major difficulty for systems without loss differentwtiis that the stationary probability depends
on p. The problem becomes hard, if not intractable. We do not lexydicit solution in a general case.
However, if only constant strategies are allowed, then winlthe socially optimal strategy. In Section
VII, we evaluate a socially optimal strategy for the generase using numerical computations. Let us
denote bye = ¢,. We have:

Proposition 9: The optimal constant rate adaptation stratgegy absence of RTS/CTS satisfies:

o, _ 0
S oSV (p) + N(L=p)¥ (1 = T) 5 mao (4)
orT
—(1-Q —p)N)%Wopo =0,
where
oo 2(1—c)?(1—e)
e @ol-o+(N-D = ()
op 1
e (1—c)(1—e)p—|(j(N—1)1Ii—Op e (6)

The proof of the proposition is in the appendix. Uniquendsbh®solution for (4) is difficult to establish.
Numerical computations, however, point toward unique tsahu Similarly, for systems with RTS/CTS
we have:

Proposition 10: The optimal constant rate adaptatiprwith RTS/CTS satisfies:

0= T0p,5¥(p) ~ Np(1 — ) Tomypy + N9 x @
x (L=p)" (1 = p)(1 = Trrs) + (1 — 2p + Np)T)mopo.
The proof is similar to that of Proposition 9, and is omitted.

C. Optimal rate adaptation for WLDS

Like WoLD systems, these systems are also difficult to amali#ence, here as well we only consider
constant rate adaptation strategies. We obtain the sambsres in Propositions 9 and 10, but need to
substitute the following derivatives:

om0 _ _ 2c 1

= P 1 o
Oe (I—c)(1—e)+(N-1) 1£)p 1—e’ (8)
[/ - poc 1

de (l—c)(l—e)-‘,-(N—l)1‘:—0p 1—e”
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VII. NUMERICAL RESULTS

In this section we present a numerical analysis of the rasgtation algorithms previously discussed.
In order to obtain realistic results, we take the error pbiliig function e(R, SN R) from the results of
802.11a measurements presented in [21, Figure 2]. We fix uh@bar of back-off stages to & = 7)
and we take the standard RTS/CTS signaling parameters dolatdTrrs. We use brute-force approach
and explore the full state space to find the social optimumhefdooperative approach where it cannot
be found otherwise. We iterate over the best response to tlimdNash equilibria of competitive cases.
Note that we observe numerically that this process alwayserges, even in the cases where we cannot
prove it analytically. Thus we are able to obtain the nunariesults for all the cases analyzed in the
paper. Also note that for the numerical calculations we donmeed any a priori assumptions on the error
probability e(R, SN R). However, we verify that in most of the cases the measuresrfenrn [21, Figure
2] can be well fitted with a function of the form df— ~e*F.

A. Social optima

We start by analyzing different social optima that can beiewad in different cases discussed in the
paper. They are depicted in Figure 1 for SNR10 dB. As one can see, the differences among the
social optima are very small. We verify that the same comaiubkolds for various SNR values. Hence, it
becomes irrelevant which protocol one chooses, and incpdaiti whether a loss differentiation capability
is available.

This is an apparent paradox with respect to [5], [6], [7],, [, [10] which show that a collision-
aware rate adaptation improves performance. There, thermegson for such improvement stems from
the improved channel estimation. Our results show therdm®st no impact of collision awareness on
scheduling. We see that in the WoLD case, if the probabilita ahannel error is large, this will reduce
the collision probability leading to a similar steady-stétansmission probability to the same level as
in WLDS or ROCE.

We also verify that the use of RTS/CTS almost always decsetse performance of the network, as
expected by a common wisdom, because the RTS/CTS packetemirevith the lowest rate and incur
more overhead than benefits.

st
)
Sel
=3
2 e o
© 41| — WoLD, cooperative oo
8 |- ROCE, cooperative
|9 - - =WLDS, cooperative
2f| " WoLD, competitive
—6— ROCE, competitive
- @ -WLDS, competitive
0 T . . )
0 5 10 15 20

N
Fig. 1. The rates achieved in different cases, without RTS/Gvhen SNR= 10 dB. On the x axis is the number of usefs and on the
y axis is the sum of rates of all users.
Next, we look at the optimal rate adaptation strategis already discussed in Section VI, the optimal
p(7) is not constant in general. We illustrate the shape(ofin Figure 2. Restricting to the set of constant
rate allocations one can loose up to 10% of the rate, as showigure 3.



Type

p(i)

WoLD, cooperative

36, 36, 36, 48, 48, 54, 5

WLDS, cooperative

36, 36, 36, 48, 54, 54, 5

ROCE, cooperative

WOoLD, competitive

24,18, 18, 18, 18, 18, 1

WLDS, competitive

n
1
36, 36, 36, 36, 36, 36, 36
8
8

24, 24, 24, 18, 18, 18, 1

ROCE, competitive

24, 24, 24, 24, 24, 24, 24

12

Fig. 2. The socially optimal rate selections for differeases, for a network wittv’ = 10 users, SNR: 20 dB, without RTS/CTS.
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Fig. 3. The ratio of the constant rate social optimum overdlobal social optimum, in absence of RTS/CTS.

B. Price of anarchy

We next look at the price of anarchy in different scenariose humerical results are depicted in
Figure 4. Already forN > 2 users the price of anarchy is significant, rapidly increggm up to 50%
of the social optimum. Figure 2 gives the optimalWe see that ROCE consistently has smaller price
of anarchy than the other two protocols. Moreover, in margesaof networks with less than 6 nodes it
completely eliminates the price of anarchy. Since the tpreg&cols do not differ much in terms of social
optima, we can conclude that ROCE is the preferred prot&elalso see from Figure 4 that RTS/CTS
does not decrease the price of anarchy. On the contrary,eftwonks of sizeN = 4 to N = 8 it may

lead to a significant price of anarchy in cases where it otlserwwould not exist.
without RTS/CTS: with RTS/CTS:

0.5F SNR =10 dB , 0.5/ SNR =10 dB
/\'
> > !
e N a4
< IS A__—""_‘\/
s 0 @ 0
5050.57 SNR = 15 dB fOEosf SNR = 15 dB
8 8 ,/ ,, ' = -
i i = “.".-_-:‘: _‘/’
20 —wolb} 2 o : —wolLD |
© © R
© 0.5/ SNR =25 dB == ROCE| 4 05 sNR=25dB ROCE
2 ---WLDS| - - -WLDS
J/_/ ---------- ’,’ ‘,‘,‘ ‘/ ’;;
0 — == I i L I ) O _————m ==, I I I )
0 2 4 6 8 10 12 0 2 4 6 8 10 12
N N

Fig. 4. Relative price of anarchy for different types of gamen the y axis is the difference between the cooperativett@madompetitive
optima, divided by the cooperative optimum. On the x axishis number of nodes in the network.
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VIII. CONCLUSIONS

We analyze the optimal rate adaptation strategy given a fb@duling protocol in both competitive
and collaborative scenarios. We consider protocols witth without RTS/CTS and loss differentiation.
We give a generic analytical model for symmetric networkat tethcompasses all variations. We show
that price of anarchy exists and it is significant. We alsowsltiwat our modification of collision-aware
medium-access protocROCEexhibits the smallest price of anarchy among other propeskdmes. We
provide a local algorithm that converges to the social optimand we show that the social optimum does
not depend on loss differentiation capabilities nor on USRTS/CTS. In future we plan to extend this
work to incorporate channel estimation and heterogenecersasios.
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APPENDIX |
PROOFS OF THE RESULTS INSECTION IV

Proof of Proposition 1: We have
5"(p) = (L—=p)"+
Z Pr(at least one TX with? A none TX with[0, R — 1])Tk.

ReR
since we know that a duration of a slot’l$; when there is at least one node transmitting with r&te
and no nodes transmit with rat¢s, ..., R — 1}. Furthermore

Pr(at least one TX with? A none TX with[0, R — 1]) =
= Pr(no node TX with[0, R — 1])
— Pr(no node TX with[0, R])
= (t{7: p(G) <r})" =t({s: p(G) <7}H")
Similarly we have
Si(p) = ((1 = p)¥ + Pr(no node TX with{r : r < R})) Ty
+ ZPr(at least one TX inj Anone TX in[j + 1, 1])7;.

r<R
and the second relation immediately follows. ]

APPENDIX I
PROOFS OF THE RESULTS INSECTION V

Let all users use strategy and letp be the best response of userLet = andc denote the steady state
distribution and the collision probability, respectivetprresponding to the profile. First, for analysis,
let us write the best response MDP in the following way for \QIWLDS and ROCE systems. Let
&(m,c) = %SN—l(p) + Trrs. For WoLD systems:

J(i) = min { 97 1= e+ 1)} L e(mo),

R
J(I) = m}%n {G_TC)U +(1-(1- c)e‘“R)J(I)} +&r(m, ).
Next, for the WLDS systems:

J(i) = min {% + (1 — (1 = c)e ™) J(3)
(1-c)o

|

J(I) = m}%n{ 7 —l—(l—(1—0)6_”R)J(I)}—|—§1(7T,c).
|
|

Finally, for ROCE systems:

(L= (1 — (1= )e=rR)J(0)

J(i) = m}%n{

I = m}%n{(l ;%C)“+(1—(1—c)e—ﬁR)J(0)
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Now, consider the functiotr (R, u) = %jt(l—(l—c)e—“’%)u. Note that ifi < I, then (a) for WLDS
systemsp(i) = argming G(R, J(i + 1)) wheni < I, and p(I) = argming G(R, J(I)), (b) for WoLD
systemsp(i) = arg ming G1(R, J(i)) for everyi, and (c) for ROCE system&i) = arg ming G1(R, J(7))
for everyi. Thus, obtaining insights into the properties of the fumetiz(-, -) is useful for obtaining the
properties of the best response. Thus, first we obtain sooepies of the functiodz(R, ), and then,
using these properties, we prove Theorems in Section V.

A. Supporting Lemmas

Lemma 1:Consider the functiortZ( R, u). We show that
DIf log (-2) > 2 [log (2) — 1], i.e.u < 2=, thenG'(R, u) o 96iltu) — 0 has no solution ir0, o).
Moreover,G(R, ) is strictly decreasing.
2)If log (:2) = 2 [log (2) — 1], i.e.u = =<, thenG’'(R,u) = 0 has a unique solution iff), co). However,
the solution is only a saddle point aié R, «) is monotone decreasing.
3)If log () < 2 [log (2) — 1], i.e.u > 2 thenG’(R,u) = 0 has two solutions, saf, (u) and Ry (u)
with R (u) < Ra(u), in [0,00). Here, Ry (u) (Ra2(u), resp.) is a local minima (maxima, resp.)GfR, u,).
Moreover,[R;(u), Ra(u)] € [R1(u1), Ra(u1)] wheneveru; > w.

Proof: First, we note that

G'(R,u) = (1 — c)uke ™ — (1;720)0
Thus,G'(R,u) = 0 implies that
g
2log(R) — kR = log (%) . 9)

We consider the functiod'(R) o 2log(R) — kR, and note that
2

F'(R) = 7k (20)
, —2
F'(R) = Nk (1)
Relation (11) shows that'(R) is a concave function in the positive half plane, and ther) &i®ws that
Froax ' max F(R)=2 {log (g) — 1} . (12)
Re[0,00) K

We also note that'(0) = F'(c0) = —oo. Thus, (9) and (12) along with concavity &f(R) imply that
1) whenlog (-Z) > Fyax, thenG'(R,u) = 0 does not have any root. Moreove¥,(R, u) < 0 for every
R € [0,00). This proves the first statement of the lemma.
2) whenlog () = Fyax thenG’'(R,u) = 0 has exactly one root, sa§;(u). Moreover,G'(R,u) < 0
for every R € [0, 00) with equality only atR;(u). This proves the second statement of the lemma.
3)whenlog () < Fiax, thenG’'(R,u) = 0 has exactly two roots, sakt; (u) and Ry(u) with Ry < Rs.
Note thatG'(R,u) < 0 for R € [0, Ry(u)) U (R2(u), 00), andG'(R,u) > 0 for R € (Ry(u), Re(u)). Thus,
the last statement of the lemma follows. Moreover, from ewity of F'(R) along with its boundary
conditions and the fact thdbg (-Z) decreases as increases, clearly imply thatR; (u), Ra(u)] C
[Ry(uy), Re(uy)] wheneveru;, > u. This concludes the proof. O
The functionF'(R) is shown in Figure 5. Note that the points where horizontaddiintersect the curve
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The function F(R)

14

13-

12 -
11 -
10 r

R)

P —
0
0

F(
No root for G'(R,u,
One root for G'(R,u
9T Two roots for G'(R,u

)=
)=

0 2000 4000 6000 8000 10000
Rate R

Fig. 5. The functionF'(R) is shown. The horizontal lines correspond to various valole$og (%) Specifically, the top most line
corresponds to the first case in Lemma 1, i.e., we chose%fz. The middle line corresponds to the second case in Lemma.1we
choseu = %fz. Finally, the bottom most line corresponds to the third daseemma 1, i.e., we chose > "’1—62.

Case when G’(R,u)=0 has no root Case when G’(R,u)=0 has one root

6 T T T 75 T T T

15 1 1 1 35 1 1 1
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Rate Ig Rate Ig
(@) u < 25— (b) u= 25

e2

Fig. 6. The functionG(R, u) is monotone decreasing far < "’jl—e2. Foru < 257, from case 2 of Lemma X7(R, ) has a saddle point
as shown in the figure (b).

of the functionF'(R) are the roots of+'(R, u) = 0.
Let R(u) = arg mingeo,g,...] G(R,v). Then, we deduce following results from above lemma.

4
Proof: From the first two statements of Lemma 1, the functiof?, ) is monotone decreasing for
everyw in the given range. Thus, the result follows. ]
Refer to Figure 6 for illustrations.
Corollary 2: For everyu > "*jfz, then R(u) € {Ri(u), Rumax}- Specifically, if Ry.. < Ri(u), then
R(u) = Ryax; OtherwiseR(u) = arg minge(g, (u), e} G (R, 0).

Proof: The proof follows from the third statement of Lemma 1. Notattthe function is monotone
decreasing untiR(u). Thus, if R.« < Ri(u), then the minimum is achieved &,,... Now, we also note
that the function is monotone increasing (iR, (u), R2(u)), and it decreases monotonically aftes(u).
Thus,minRe[O,Rmax] G(R, u) = minRE{Rl (u), Rmax } G(R, u) U]

Corollary 3: For everyu > koe, then R(u) = min{ R (u), Rupax }-

Corollary 1: R.x = R(u). for everyu € [O, ‘””"62}.
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Case when G’(R,u)=0 has two roots Case when G’(R,u)=0 has two roots

G(R,u)
[

G(R,U) -~
U

4.5 L L L 5 L L L L L L L
0 5000 10000 15000 20000 0 2000 4000 6000 8000 10000 12000 14000
Rate R Rate R
(a)%ez<u§mre (b) u>u' > koe

Fig. 7. The functionG(R, ) has a local minima and maxima & (uv) and Ra(u), respectively. Wher%e2 < u < koe (figure (a)),
Ri(u) is not the global minima in the rand®, o). The global minima occurs @ = oco. But, whenu > xoe (figure (b)), Ri(u) is the
global minima. Moreover, as increases7(R, u) increases at everi and R (u) decreases.

Proof: The result follows from the fact that if > roe, thenmingcp ) G(R, u) < u. We prove this
using contradiction. Fix; > xkoe and letmingcp o) G(R, u) > u. Then, for everyR € [0, o0)

u < min){MjL(l—(l—c)e_“R)u}

RE[0,00 R
=>u < g™t
S o
Now, chooseR = % Clearly,% € [0, 00). But, for this value ofR, the above inequality becomes< koe,
which provides the required contradiction. ]

For illustrations, refer to Figure 7.
Lemma 2: R(u) is @ monotone decreasing function «f
Proof: By Corollary 1, it suffices to focus on > %@2 Here,R(u) € {R;(u), Rmax } by Corollary 2.

Now, we show that if for some R(u) = R;(u), then R(u;) = Ry (u,) for everyu; > u. Clearly, since
R(u) = Ry(u), Ri(u) < Rnax- By the third statement of Lemma B;(u) is a monotone decreasing
function of u. Thus, for everyu; > u, Ri(u1) < Rmax (S€e Corollary 2). Thus, to shoR(u;) = Ry (uq),
we need to show that ( Ry, u1) — G(R1(u1),uy) > 0. First, note thaG(R, u;) — G(R,u) = (1 — (1 —
c)e ") [u; —u). Thus,G(R,u;) — G(R, u) is monotone increasing function @, and hence achieves the
maximum atR,,... Now, we claim the following:

G(Ri(u1),u1) — G(R(u),u) < G(R(u),u;) — G(R(u),u).

The above relation holds g%, (u), Rz(u)] C [Ri(u1), R2(uq)] from Lemma 1, and since the function
G(R,uy) is monotone increasing i(R; (uy), Ra(uq)). Now, from the above expression we can conclude
that

G(Ri(u1),u1) — G(R(u),u) < G(Ruyax, 1) — G(Rmax, 1)
= G(Rupax, v) — G(R(u),u) < G(Ruyax, u1) — G(Ry(uy),uq)
= G(Rmax,ul) — G(Rl(ul),ul) 0.
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This concludes the proof. O

Let R(u) = argming G(R, u) and R(u) = argming G1(R, u).

Lemma 3: The functionsG(R(u), u) and G;(R(u), ) are monotone increasing in

Proof: We prove the required fof(-,-). The proof forG, (-, -) follows from the similar arguments.

We note thatG(R,u) < G(R,u;) wheneveru < u, for every R. Thus,G(R(u),u) < G(R(u1),u) <
G(R(uy),uq). This concludes the proof. O

We note that from the practical perspective, we only needottsicler the case with > xoe. This is
because when < koe, then the minimum value of the functiagd( R, «) in the positive half plane i,
and it is achieved aR = oco. Since, with the proper choice af arg ming G(R, u) is the rate chosen by
the best response rate adaptation policy at every backades Thusarg ming G(R,u) = oo at certain
back-off stage: implies that it is suboptimal to waste time in transmittitg tpacket, rather it is optimal
to move to the next stage as soon as possible. Specificalbgdk-off stage:, the user waits for its turn to
transmit, but when the turn comes, it transmitearate. The transmission ab rate is guaranteed to fail
as the probability of transmission error is 1. This proces#iaues until the user moves to the subsequent
stages. Thus, the throughput of the user can be improveditnynating such back-off stages entirely as
it saves the time that user spend in these back-off stagesv&assume that the system operates in the
regime that has: > xoe. Note that in this regimearg min geo g,...] G(R, v) is unique (see Corollary 2).
We need this assumption explicitly for the proof of Theoremeinaining results hold even otherwise.

Lemma 4:Fix any givenp, and let(r, c) denote the steady state probability and the collision fiiba
respectively, when all the users use rate adaptation prafilehen, J(:) < J(i 4 1) for everyi > 0 in
WoLD and WLDS system.

Proof: We focus of WoLD systems. The proof for WLDS systems followsikarly. With some abuse

of notation, let us define

Ji,R) ={(1—c)Tp+(1— (1 —c)e ™) J(i+1)} + &(m,0),
J(I,R) ={(1=)Tr+ (1 — (1 —c)e " J(D)} + & (),

ThUS,J(’i) = minRe[QRmax] J(l, R)
We prove the required by induction. L&; be such that (I, R;) = J(I). Then, we know that

JU,R;)=(1—¢)Tg, + (1 — (1 —c)e™™B1)J(I, Ry) + &1 (m, c).

Now, consider the following:

JU,Ry)—J(I —1,R;) =&(m,¢) — &r-1(m, ¢).
Sincep; < pr_1, &(m,¢) > &-1(m, ¢). Thus, we conclude that(/, R;) > J(I — 1, R;). Now, observe
that J(I) = J(I,R;) > J(I —1,R;) > J(I — 1). By induction hypothesis, lef(: — 1) < J(i) for every
i > j. Moreover, letR; satisfy J(j, R;) = J(j). Now, consider

J(]a RJ) - J(] - 17Rj>

= (1= (1—c)e™)(J(+1,R)) — J(j, R)))
+(€j(ﬂ-> C) - gj—l(ﬂ-a C))
Again note that;(m,c) > &;_1(m, ¢), and alsoJ(j + 1, R;) > J(j, R;) by induction hypothesis. Thus,

it follows that J(j) > J(j — 1). O
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B. Proof of Proposition 2

Since at each stage, the rate is chosen ffonR,,..|, any rate adaptation strategy € A, where
A = [0, Rna]?. We assume that each user uses the same rate adaptatiegysteatery rate adaptation
strategyp corresponds to a unique steady state distributipand the collision probability:,. Note that
the throughput for a user is a function @f, 7,, c,). Now, let us define a correspondenBe A — A as
B(p) = A, C A, whereA, is a set of the rate adaptation strategies that optimizehttoeighput for given
(p,m,,c,) using the MDP formulation. In a non-atomic gansg-:) is the best response correspondence.
This is because if a single user deviates from the profiléhen it does not affect the average system
behavior in the non-atomic game. The average system behavaiill defined by(p, 7,,c,). Thus, to
maximize the throughput assuming all the other users do Image there profile from, a user has to
choose a profile fromd,. Formally, let¢(p,, p1) denote the throughput of a user with profilegiven that
the average system behavior is described by ~,, c,). Here, if po € B(p1), theng(ps, p1) > ¢(p, p1)
for everyp € A. Note that to prove the existence of symmetric pure NE, ificeg to prove that the
correspondencé(-) has a fixed point. We use Kakutani’s fixed point theorem to @rhe required.

First note that by constructio4 is a compact, convex and non-empty subset of the finite diineals
Euclidean space. MoreoveR(p) is non-empty for allp € A, and B(p) is convex. The convexity of
B(p) follows as it contains a single point as shown in CorollaryfBus, to apply Kakutani's Fixed Point
Theorem it suffices to show th&(-) has a closed graph, i.e., (", p") — (p, p) such thatp™ € B(p")
for every n, then p € B(p). We prove the required using contradiction. Let there eaistequence
(p™, p") — (p, p) such thatp™ € B(p™) for everyn, butp & B(p). This implies that there exists a profile
p ande > 0 such that

o(p', p) > d(p, p) + 3e. (13)

We note thatp(p, o) is clearly a continuous function gf. We claim thats(p, o) is also a continuous
function of p’. This can be seen as follows. A small perturbatiorpirresults in a small perturbations
in 7, andc,. Thus, the average system behavior is perturbed by a smallirgimresulting in a small
change inp(p, p’). Now, sincep™ — p, for large enough we can conclude that(y’, p*) > ¢(p', p) — €.
Using this and (13), we conclude thaty’, p") > &(p, p) + 2¢. Again using continuity ofp(-,-), note
for large enoughn, ¢(p", p") < ¢(p,p) + €. Combining the previous two expression we obtain that
o(p',p") > o(p", p") + €, which contradicts the fact that ¢ B(p) for everyn. Thus, correspondence
B(-) has a fixed point. O

C. Proof of Proposition 3

Proof: Fix p and the correspondingr, c). Then, we show thas; > p,., for everyi < I in WoLD and
WLDS systems. Again, we focus on WoLD systems, and the prao¥LDS systems follows similarly.
The result follows immediately from the above lemma and Leninfor alli < [ as here we seek
ming G(R, J(i + 1)). To see the result for stage note that/(/) must satisfy

J(I) = Re[%}}i%ri,ax] {A=e)Tr+(1—(1—c)e™J()}
+& (7, c).
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Thus, here as well the required follows from Lemma 2. Singeryebest response satisfies that the rates
decreases monotonically with the back-off stages, the fEme@ follows. O
Note: From the above discussion, we can conclude that for ewepy_; = p; for WoLD systems.

D. Proof of Proposition 5

Fix any user, say:, and let all the other users use a rate adaptation pelicVhen the user’s best
response te is obtained from the expressions presented in Section V-B

We refer to theJ(i) values obtained fop(m as J(™ (7). For proving the theorem, we prove various
properties of /(™ ( ) and p*1) | given p™ by exploiting the value iteration method used to solve MDP.
Let, for everyi, JZ ( ) denote the value of -function in/*" for stagei. Then,JM( i) is computed using
the following recursion.

TG = o nin }G(R,Jém)(O))+€i(p(m—1))+c[J£(m)(i+1)—Jg(m)(O)] fori<I —(14)
T = min  GRI0) + &™) + el (1) = T 0), (15)

where&;(pt1) is the value of functior¢ when all the other users use rate adaptation strat€y".
From results in MDP theoryim,_.., J\™ (i) = J™ (i) for everyi. Moreover, if we letp™ (¢) to be the
rate adaption policy in thé" iteration, thenlim,_ ., p™ (¢) = p(™.

Lemma 5:In the best responsg(™ (i) = p™ (i+1) for everyi = 0, ..., I—1 andm for any p™=1(3).

Proof: The result follows immediately from (14) and (15). Here,enthat the optimal rate depends
on the same functiowd (R, J/”)(O)) for everyi and ¢. Thus, for every/, pi’”) (0) = p§+1(€) for every
1=0,...,1 —1. Thus, the same property will hold even in the limit/agoes toco. ]

Lemma 6:Let p(© = R, 1. Then,p™ > p(m+) for everym.

Proof: The proof is by induction. Clearlyy® > p(I. By induction hypothesis, we assume that
p0 > pM) > ... > p™ Now, we show thap™ > p(™*+1  To show this, by Lemma 3, it suffices to
show thatJ(™(0) < Jm+1)(0). We show this by showing that™ (i) < J"*V(i) for everyi and ¢
starting from the initial condltlonfO ( ) = J(’”Jrl (7) = 0 for all 7. Clearly, the required holds far= 0.

By induction hypothesis, let the required hold uritil iteration. Now, we consider th@ + 1)*® iteration
and observe that for every< [

JEmD @) — I i)

= | min GRJ™V(0)~ min G(R,Jém)(o))]

RE [O ) Rm ax} RE [O ) Rm ax}
+ [6(p™) = &™) e [+ 1) = I+ 1)

Note that for everyR, G(R, J\"V(0)) > G(R, J\™(0)) as J'™ ™V (0) > J™(0). Thus, the first term
in the above expression is non-negative. The second terdsasnan-negative ag(™ < p(™=1 by the
induction hypothesis om. Finally, the third term is also non-negative by inductigqpbthesis of. Thus,
the required follows for all < I. Also, note that using the similar arguments, it is easy t® tbat the
required also holds foi = 1. O
Proof of Proposition 5:Since p(™ is a monotone decreasing sequence in compact space, thst® ex
p* = lim,,_.. p™. Moreover, it can be easily seen that the best responge ip* itself. Thus,p* is a
NE. O
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APPENDIX |11
PROOFS OF THE RESULTS INSECTION IV

Proof of Proposition 6: Let us assume the contrary, that for soivee havep(i) = Ry > p(i+1) = R

(consequentlyl“l i) < Thav1) = 12) and let us construct two other rate allocations. In the first,
p', we increasel ;) = T,;+1) and keep the remaining rates the saffig { = T,,; for j # i). In the
second onep?, we decreasé:;;1) = T,;) and keep the remaining rates the sarfig{, = 7, for
jF#i+1).

Let us callE, E', E? and D, D!, D? and ¢, ¢!, ¢? the enumerators, the denominators and the average
rate from (1) forp, p*, p? respectively. Since ip? we have decreased the duration of a typical slot by
decreasingl 2 (;.1), we haveD > D? and consequently we ha@‘%ﬁ > ¢ > ¢o. Similarly, in p! we
have increased the slot duration, herge< D' and 5 B E < ¢1 < ¢. Therefore,

E — E? - E'-E
D—-D?" D'—D’

SinceF — E? = m1pic1(1 —¢)(e; — 1) and B — E = mp;(1 — ¢)(e; — e;11), the inequality further
simplifies to

D! D D — D?

TiPi 7Tz+1pz+1

(16)

Case without RTS/ICTS: Observe tha{j : p'(j) < Ri} = {j : p(j) < RiU{i}} and{j : p'(j) < Ry} =
{j : p(j) < Rp U{i}} becausey' (i) = Rp. Similarly, {j : p'(j) < ’1} = {j : p(j) < R\ {i + 1}} and
{7:0'(J) S R} ={j:p(j) < R\ {i+1}} because?(i + 1) = R;. Hence we have

D'— D=
=[t({j: p(j) <Ry U{iH)" —t({7 : p(j) < Ba})"]Th
({7 : p(d) < R} U{i})" —t({j : p(j) < Ro})"| T3,

{7:00) <Bi})" —t({7: p(4) < Baj \{i +1})"] T
{7:00) < Ro})" —t({7 : p(j) < Ro} \{i + 1})"] T
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For brevity let us denoté, = ¢({j : p(j) < R1}) andts =t({j : p(j) < R»}). We then have
D'-D D-D*

T Di Ti+1Pi+1
_ {(tl —mp)" — = (bt 7Ti+1pi+1)n] T
TiPi Ti+1Pi+1
_ [(tz —mp)" —ty = (bt 7Tz'+1pi+1)n] T
TiPi Ti+1Pi+1
n—1

= [t = mp) — 677 (b + migapia)’] T

=1
n—1 ' .

- Z [ty (ta — mipi)! — 15 (s + miapin1)’] T
j=1
n—1 ' j—1

= Z 8 (mipi + Tir1pis) Z(tl —mpi)’ T (1 + misapin)' T
=1

e

=

n—1 . Jj—

- Z ty ?(mipi + Tis1Pit1) Z(tz — mipi)’ (b2 + Tir1pi1) T
=1 =1

< 0.

where the last inequality follows from the fact that< ¢, and7; < T3, hence every term in the first
sum is strictly smaller than the corresponding term in theosd term. This leads to contradiction.
Case with RTS/ICTS: Let us start again from (16). It is easy to see that

D'-D D-D?

=n(l—p)" (T, —Ty).

TiDi B Ti+1Pi+1
which is again a contradiction and we cannot have that > p(i + 1). Similarly we can show that we
cannot havep(i) < p(i + 1) hence in this case we haygi) = p(i + 1). O

Lemma 7:Let us definet; = ¢t({k: k < j}) and

B(p) = 2omipi(1 — ¢)(1 — ey
(1-pN+ ijo(tév—l - tj'v)Tp(j)
The optimal rate allocatiop = argmax,.z: ¢(p) = argmax,r: ¢(p) and the maximum rate i¢* =
o(p*).

Proof: From Proposition 6 we have that the optim#li) is an increasing function in It is easy
to verify using Proposition 1 that(p) = ¢(p) for any monotone. Hence if p* obtained by maximizing
#(p) is increasing, it also maximizes p) over all increasing functions(i), thus it also maximizes(p).
It remains to show thgb* is increasing.

Since p* maximizes¢ we have thatV¢(p*) = 0. By simple derivation it then follows that

ﬁ _ _ (tz]\il - tfv) Qg(p*)
Now t;_, — t; = m;p; hence
tN tN N-1
i—1 i tN=I 4
i—1 Y
TiPi



which is increasing iri. Consequently we have th%\ | is decreasing and hen(%\p 1) < Qe e
Slncee(T) is a strictly convex function we have th%\T is increasing inl" hence we havé . ;) <
), hencep*(i) is increasing ini which concludes the proof. O
Proof of Proposition 7: As lemma 7 shows, we can optimizenstead ofp. Moreover, if our initial rate
allocationp®(i) is non-decreasing, the update (2) guarani&gg) stays non-decreasing inas explained
in lemma 7. Hence for eveny. we havey(p™) = ¢(p™). Update (2) represent a gradient-descent algorithm
for ¢. It is well know that a gradient descent algorithm will coryeto a local maximum for an appropriate
choice of step sizes (choosimg for convergence is a standard technique and we do not digichisee.)
Finally, it remains to be proved that functignhas only a single local maximum. Suppose the contrary,
that p; # p, are two local maxima. Let us choose an arbitrarye (0,1) and choosep; such that
€ps(i) = T€pi (i) + (1 — T)ep, ;). Let us define

oy) = >omipi(1—c)(1 - yepl(z) (A -yerwp)
(L=p)N + 250t =t (YT + (1= y)Tpe()
If is easy to see thag(y) is either increasing or decreasing. Suppose with out losgeagrality that
o(p') < é(p?), henceg(0) < g(z). Now sincee(T) is a convex function, it is easy to verify that by
constructionT),, ;) < 2T, + (1 —x)T,2(;)) and consequently(z) < ¢(p*) for an arbitrary small: > 0.
Thus p! cannot be a local minimum. Since there is a single local mawimthe gradient descent will
always converge to the global maximum, which concludes tbhefp O
Proof of Proposition 9Since the we use the same rate in all stages, the stationaglplities simplify

significantly and we have = %po. We next have

op Do . Jc
g T —ep g“ )+ >0e)
c N—20P
b (- -p2,

and by solving the system we derive (5) and similarly (6).alin we can express = mop,/S™ and by
simple derivation we obtain (4). ]

™



