Department of Electrical Engineering

    Indian Institute of Technology, Bombay

http://www.ee.iitb.ac.in

 

Syllabii of Under Graduate Courses

Code

Course

EE002

Principles of Electrical Engineering

EE003

Principles of Electrical Engineering Lab

EE004

Electronics

EE005

Electronics Lab

EE152

Basic Electric Circuits

EE206

Digital Circuits

EE207

Electronic Devices and Circuits

EE210

Signals and Systems

EE214

Digital Circuits Lab

EE218

Electrical Machines

EE219

Electronics Lab

EE220

Electrical Machines Lab

EE225

Network Theory

EE301

Electromagnetic Waves

EE302

Control Systems

EE304

Electrical Energy Systems

EE308

Communication Systems

EE309

Microprocessors

EE315

Microprocessors Lab

EE317

Electromagnetic Waves Lab

EE318

Electronics Design Lab I

EE319

Analog Circuits Lab

EE321

Power Electronics

EE323

Analog Circuits

EE324

Control Systems Lab

EE326

Power Systems Lab

EE389

Electronic Design Lab II

EE403

Digital Signal Processing

EE405

Communication Electronics

EE415

Electrical Design Lab

EE421

Communication System Theory

EE425

VLSI Technology

EE426

Digital Communication Systems

EE429

Discrete Data and Digital Control

EE432

Special Semiconductor Devices

EE433

Electronic Instrumentation

EE434

Industrial Instrumentation

EE437

Analog Filters

EE438

Control System Design

EE450

Computer Control and Automation of Power Systems

EE452

Microwave and Satellite Communication

EE455

Communication Electronics Lab

 


EE002 Principles of Electrical Engineering                                                                                                             2 1 0 6       ñ

 

Fundamental laws of electrical engineering circuit parameters, elementary network theory forced and transient response, sinusoidal steady state response three-phase circuits, magnetic circuit and transformers.

 

Texts/References

M.A.Pal, Introduction to Electrical Circuits and Machines, Affiliated East-West Press, 1975.

Vincent eltoro, Principles of Electrical Engineering 2nd Ed. Prentice Hall, 1986.


EE003 Principles of Electrical Engineering Laboratory                                                                                0 0 1.5 1.5       ñ

 

The laboratory work will be closely parallel and supplement the theory presented on the course: Principles of Electrical Engg.(EE-002)


EE004 Electronics                                                                                                                                                         2 1 0 6        ñ

                                              

Semiconductor diode characteristics, transistor characteristics. Biasing Circuit small signal low frequency h-parameter model. Low frequency transistors, amplifiers; FET biasing and low frequency amplifier circuits; RC-coupled amplifiers and oscillators.

 

Rectifiers and power supplies, Elements of IC regulated power supply.

 

Op-amps: Parameters and characteristics, inverting and non-inverting mode of its operation, linear applications including the use of op-amps in analog computations and active filters.

 

Introduction to digital circuits, modulation and demodulation.

 

Text/References

Allen Mottershed, “Electronic Devices and Circuits, An Introduction”, EEE Publication, 12th Indian Reprint, 1989.

Y.N. Bapat, “Electronic Devices and Circuits”, Tata McGraw Hill, 9th Reprint, 1989.

A.P. Malvino, “Electronic Principles”, 3rd TMH Edition, Tata McGraw Hill, 12th Printing, 1989.

 


EE005 Electronic Laboratory                                                                                                                             0 0 1.5 1.5      ñ

 

Based on the course EE 004 (Electronics)


EE152 Basic Electric Circuits (DIC)                                                                                                                     2 1 0 6           ñ

 

Kirchhoff's Laws: KCL, KVL and their limitations.

 

Classification of  devices of an electrical  circuit;  Basic devices:  resistors, controlled sources, diodes,  capacitors and inductors, ideal transformers.

 

Basic  circuit  analysis methods: nodal,  mesh  and  modified nodal-analysis.  Transient  analysis  of  RL,  RC  and   RLC circuits.

 

Network Theorems: Tellegen's theorem, superposition  theorem, Thevenin-Norton  theorem, substitution  theorem,  reciprocity  theorem, maxpower-transfer theorem, star-delta- transformation.

 

Steady  state sinusoidal analysis: phasors, phasor  diagrams;  Power  in ac circuits, network analysis methods  and  network theorems  recalled; Polyphase circuits.

 

Circuits with ideal transformers.

 

Texts/References

K.V.V.  Murthy  and M.S.Kamath, Basic Circuit  Analysis,  1st edition (reprinted with corrections) Jaico Publishing, 1998.

W.H.  Hayt and J.E. Kemmerley, Engineering Circuit  Analysis, Int.St.Ed.(4th) McGraw Hill, 1986.

 


EE206  Digital Circuits                                                                                                                                                3 1 0 8       ñ

 

Introduction  to  Boolean Algebra  and  Switching  Functions, Boolean  Minimization,  Finite  State  Machines,  Design   of synchronous FSMs, FSM Minimization, Asynchronous FSMs.

 

Bipolar Logic Families (TTL + ECL), MOS logic families  (NMOS and  CMOS), and their electrical behaviour. Memory  Elements, Timing  circuits,  Elementary  combinational  and  sequential digital  circuits:  adders,  comparators,  shift   registers, counters.  Logic  Implementation using  Programmable  Devices (ROM,PLA,FPGA).

 

Texts/References

H.  Taub  and D. Schilling, Digital  Integrated  Electronics, McGraw Hill, 1977.

D.A. Hodges and H.G. Jackson, Analysis and Design of  Digital Integrated  Circuits,  International  Student   Edition, McGraw Hill 1983.

F.J.  Hill  and  G.L. Peterson, Switching  Theory  and  Logic Design, John Wiley, 1981.

Z.  Kohavi,  Switching  and Finite  Automata  Theory,  McGraw Hill,1970.

 


EE207  Electronic Devices and Circuits                                                                                                                    2 1 0 6       ñ

 

Modeling   devices:  Static  characteristics  of  ideal   two terminal  and three terminal devices; Small signal models  of non-linear devices.

 

Introduction    to   semiconductor  equations   and   carrier statistics:  poisson's and continuity equations,  Fermi-Dirac statistics   and  Boltzmann approximation to the  Fermi-Dirac statistics.

Semiconductor    Diodes:   Barrier   formation   in    metal-semiconductor   junctions,  PN homo- and  hetero-  junctions;  CV characteristics and dopant profiling; IV  characteristics; Small signal models of diodes; Some Applications of diodes.

 

Field  Effect  Devices : JFET/HFET, MIS structures and MOSFET  operation;  JFET characteristics and small signal models; MOS  capacitor  CV and concept  of  accumulation, depletion and  inversion;  MOSFET characteristics and small signal models.

 

Bipolar   transistors   : IV characteristics  and  elers-Moll model;  small   signal models; Charge storage  and  transient response.

 

Discrete  transistor amplifiers : Common emitter  and  common source amplifiers; Emitter and source followers.

 

Texts/References

D.  A. Neamen, Semiconductor Physics and Devices (IRWIN),  Times Mirror High Education Group, Chicago) 1997.

E.S. Yang, Microelectronic Devices, McGraw Hill,  Singapore, 1988.

B.G. Streetman, Solid State Electronic Devices, Prentice  Hall of  India, New Delhi, 1995.

J.  Millman  and A. Grabel,  Microelectronics,  McGraw  Hill, International, 1987.

A.S.   Sedra  and  K.C.  Smith,   Microelectronic   Circuits, Saunder's College Publishing, 1991.

R.T.  Howe and C.G. Sodini, Microelectronics : An  integrated Approach, Prentice Hall International, 1997.

 


EE210 Signals and Systems                                                                                                                                            3 1 0 8    ñ

                  

Prerequisite:  EE-152

 

Elements of signal space theory: Different types of  signals; Linearity,    time  invariance   and   causality;     Impulse   sequence,     impulse   functions   and   other   singularity functions.

 

Convolution:  Convolution sum, convolution integral and their evaluation;   Time-domain  representation  and analysis   of   LTI systems based on convolution and differential equations.

 

Multi input-multi output  discrete  and continuous   systems:  state   model  representation, solution of  state  equations, state transition matrix.

 

Transform  domain considerations:  Laplace transforms and  Z-transforms; Applications   of  transforms  to  discrete  and continuous  systems-analysis; Transfer  function, block diagram representation, DFT.

 

Fourier  Series  and Fourier Transform,  Sampling   theorem, Discrete   Fourier   transform  (DFT),  estimating   Fourier  transform using DFT.

 

Introduction to Wavelets.

  

Texts/References

A. Papoulis, Circuits and Systems, Modern Approach, HRW, 1980

R.F.  Ziemer,  W.H.  Tranter and  D.R.  Fannin,  Signals  and Systems  -  Continuous and  Discrete, 4th  Edn. Prentice Hall, 1998.

A.V.  Oppenheim,  A.S. Willsky and I.T.  Young,  Signals  and Systems, Prentice Hall, 1983.

 


EE214 Digital Circuits Lab                                                                                                                                            0 0 3 3     ñ

 

(To Supplement EE-206)  

 


EE218 Electrical Machines                                                                                                                                             3 1 0 8    ñ

 

Introduction:  Magnetic circuits and  transformers,  rotating magnetic fields and machines.

 

Magnetic   circuit   concept:  DC  and  AC   excitation   of ferromagnetic  structures;  Ideal  and  actual   transformer: Equivalent   circuits  and  analysis  of  transformer;   Auto transformers and three-phase transformers.

 

Electrical  energy  conversion  principles:  Energy  balance, Energy  in  singly  excited and  multiply   excited  magnetic systems.

 

Basic concepts of rotating machines: Generated  voltage;  MMF of  distributed  windings;  Rotating  magnetic   fields;  Torque  in  Non-salient  pole   machines; Commutator action.

 

Important    characteristics    of    DC,   Synchronous   and  Induction  motors and  generators.

  

Texts/References

A. E. Fitzgerald, C. Kingsley Jr. and S. D. Umars, Electrical Machinery, McGraw Hill, 1983.

I.  J.  Nagrath and D. P. Kothari, Electric  Machines,  Tata McGraw Hill, 1985.

 


EE219  Electronics Lab                                                                                                                                                     0 0 3 3   ñ

 

 (To supplement EE-207 and EE 152)

 


EE220 Electrical Machines Lab                                                                                                                                 0 0 1.5 1.5  ñ

 

 (To Supplement EE-218)

 


EE225  Network Theory                                                                                                                                                 3 1 0 8     ñ

 

Prerequisites : EE-152

 

Graphs:  Paths,  connectedness,  circuits,  cutsets,   trees; Matrix  representation of directed graphs: incidence,  cutset and circuit matrices; Methods of analysis of linear networks: nodal-cutset-mesh- and loop-analysis.

 

Time and frequency domain approaches to electrical networks: State  equations for linear networks with no capacitor  loops or  inductor  cutsets, solution of state  equations  for  the distinct eigen value case; Laplace transforms and their adaptation to networks.

2-port  networks:  2-port parameters, interconnection  of  2-ports   and  their  effect  on  the  parameters,   Tellegen's generalized reciprocity theorem.

Multiport  and multiterminal networks: their  representations and interconnections.

Transfer   functions:  poles and zeros;  Elements  of  Filter Theory.

 

Texts/References

N  Balabanian  and  T.A. Bickart,  Linear  Network  Theory  : Analysis,   Properties,  Design  and  Synthesis,  Matrix Publishers, Inc. 1981.

L.O.  Chua,  C.A.  Desoer, E.S.  Kuh,  Linear  and  Nonlinear Circuits, McGraw - Hill International Edition 1987.

 


EE301 Electromagnetic Waves                                                                                                                                  3 1 0 8     ñ

 

Review  of  Maxwell's  equations,  TEM  modes  in  a   linear homogenous  isotropic medium, polarization,  Pointing  vector and  power flow, TEM waves incident on a boundary  -  Snell's  laws,  wave  propagation  inside a conductor  -  skin  depth, weakly dispersive TEM modes - phase and group velocity.

 

Field  analysis  of guided TEM  modes  (transmission  lines), characteristic impedance, voltage and current  relationships, impedance  discontinuities  and  standing  waves,   impedance matching,  Smith  chart, pulse  propagation  in  transmission lines, lossy lines.

 

Field  analysis  of  guided non-TEM  modes  (rectangular  and cylindrical  waveguides), quantization of modes  by  boundary conditions,  mode cut-off frequencies,  dispersion  relation, field   patterns,   power  flow,  orthogonality   of   modes, excitation  of  waveguide modes by  coaxial  cables,  non-TEM modes in coaxial cables.

 

Electromagnetic  radiation  -  inhomogenous  wave   equation, solution  by potentials (Lienard-Wiechert formula),  retarded potentials, radiation from a Hertzian dipole, formulation  of the  antenna problem as an integral equation,  antenna  gain, radiation   resistance,  radiation  pattern,   antenna   feed structures, study of some standard antennas - dipole,  array, aperture, horn, and optical.

 

Texts/References

Ramo, S., Whinnery J.R., and van Duzer, T: Fields and  Waves in  Communication  Electronics, 3rd ed., Wiley  Eastern  (1997).

R.E. Collin, Foundations for Microwave Engineering, 2nd ed., McGraw-Hill, 1993.

Narayana  Rao,  N:  Engineering  Electromagnetics,  3rd  ed., Prentice Hall, 1997.

 


EE302  Control Systems                                                                                                                                             3 1 0 8         ñ

 

Pre-requisite: EE-210 (exposure)

 

Basic concepts: Notion of feed-back; open- and closed-loop systems.

 

Modelling and representations of control systems: Ordinary  differential equations; Transfer functions; Block diagrams; Signal flow graphs; State-space representations.

 

Performance and stability: Time-domain analysis; Second-order systems; Characteristic-  equation and roots; Routh-Hurwitz criteria,  Frequency-domain techniques:  Root-locus  methods; Frequency  responses;  Bode-plots;  Gain-margin  and   phase-margin;  Nyquist plots. Compensator design: Proportional,  PI and PID controllers; Lead-lag compensators.

 

State-space concepts: Controllability, Observability, Minimal representations.

 

Texts/References

J.C.  Doyle,  B.A.  Francis  and  A.R.  Tannenbaum,  Feedback Control Theory, Maxwell Macmilan International Edn., 1992.

C.L. Phillips and R.D. Harbour, Feedback Control Systems, Prentice Hall, 1985

B.C. Kuo, Automatic Control Systems, 4th Edn., Prentice Hall of India, New Delhi, 1985.

G.  Franklin,  J.D.  Powell  and  A.  Emami-Naeini,  Feedback Control of Dynamic Systems, Addison Wesley, 1986.

I.J. Nagrath and M. Gopal, Control System Engineering, 2nd Edn., Wiley Eastern, New Delhi, 1982.

 


EE304  Electrical Energy Systems                                                                                                                               3 1 0 8     ñ

 

Pre-requisite: EE-218 (exposure)

 

Introduction:  Components  of a power system;  Modelling  and representation of transformers, synchronous machines and sub- systems; Per-unit representation.

 

Transmission   Lines:   ABCD   parameters;    Classification; Travelling    wave   equation   for  a  long   line;    Surge  impedance;  Voltage profile along the line; Ferranti  effect;  Steady-state  performance  - efficiency and regulation.

 

Load-flow  studies: Steady-state analysis of  power  network; Gauss-Seidel  and  Newton-Raphson  methods;  Reactive   power compensation; Tap-changing and phase-shifting transformers.

 

Economic  despatch:  Penalty factors including  real  losses; Automatic  generation and control; Steady-state analysis  and dynamic response of a single area system.

 

Fault  analysis:  Symmetrical  3-phase  faults;   Symmetrical components; Unsymmetrical faults.

 

Transient   stability   studies:  Swing  equation Equal area criterion; Step-by-step solution of swing curve.

 

Additional  topics: Introduction to protection;  Introduction to HVDC systems.

 

Texts/References

W.D. Stevenson, Elements of Power Systems Analysis, 4th Edn., McGraw Hill, 1982.

I.J. Nagrath and D.P. Kothari, Modern Power System  Analysis, 2nd Edn., Tata McGraw Hill, New Delhi, 1989.

O.I. Elgerd, Electric Energy Systems Theory: An Introduction, 2nd Edn., Tata McGraw Hill, New Delhi, 1982.

Allen   J.  Wood  and  B.F.  Wollenberg,  Power   Generation, Operation and Control, 2nd Edn., John Wiley, 1996.

 


EE308  Communication Systems                                                                                                                                    2 1 0 6   ñ

 

Prerequisite : EE-210 (exposure)

 

Principles   of   amplitude   modulation:   modulation  and demodulation  of  AM, DSBSC, SSB signals and their  practical applications, FDM systems.

 

Principles   of   angle  modulation,  frequency   and   phase modulation,   narrow  and  wide  band  FM,   generation   and demodulation  of FM signals, phase locked loops,  application of FM.

 

Sampling  and quantization of band limited signals.  Sampling theorem, pulse-amplitude and pulse-time modulation, PCM, DPCM and Delta modulation. TDM systems.

 

Texts/References

S.S.   Haykin,   An  Introduction  to  Analog   and   Digital Communication Systems, Wiley Eastern 1989.

R.B. Carlson, Communication Systems, (3rd Intl. Ed.),  McGraw Hill, 1986.

B.P. Lathi, Communication Systems, John Wiley, 1987.

H.  Taub  and  D.L.  Shilling,  Principles  of  Communication Systems, McGraw Hill Intl. Student Edition,1971.

 


EE309 Microprocessors                                                                                                                                                  2 1 0 6    ñ

 

Basic    concepts   of  Microprocessors;  architecture of 8085A  and  its  instruction  set.  Programmable   peripheral devices. Design of microprocessor based systems.

 

Introduction   to   8086 microprocessor and  its  instruction set.  Assembly level programming. Representation of  floating point numbers. Architecture and instruction set of 8087 processor.

 

Introduction to microcontrollers and embedded systems.

 

Texts/References

R.  S.  Gaonkar, Microprocessor  Architecture:    Programming and Applications with the 8085/8080A, Wiley Eastern, 1990.

I.  Liu, G. A. Gibson, Microcomputer Systems:  The  8086/8088 Family, 2nd Ed., Prentice Hall, 1986.

Douglas Hall, Microprocessors Interfacing, Tata McGraw  Hill, 1991

Kenneth   J.   Ayala,  The   8051   Microcontroller,   Penram International Publishing, 1996.

 


EE315 Micro processor Lab                                                                             0 0 3 3      ñ

 

 ( To supplement EE-309 )

 


EE317  Electromagnetic Waves Lab                                                                                                                     0 0 1.5 1.5      ñ

 

 ( To supplement EE-301 )


 

EE318  Electronics Design Lab I                                                                                                                                 0 0 6 6       ñ

 


EE319  Analog Circuits Lab.                                                                                                                                       0 0 3 3      ñ  

 

 (To Supplement EE-323)


EE321 Power Electronics                                                                                                                                            2 1 0 6        ñ

 

Power  electronic devices: Power diodes,  power  transistors, thyristors,  GTO, their characteristics, ratings,  protection  and cooling;

        

Power  circuit  topologies:  Series   parallel  operation  of  devices;  Firing and  typical control circuits.

Power    electronic converters: Phase   controlled    (AC/DC), 1-phase/3-Phase, semi/full; Analysis   and  performance  with  passive    load, typical   control   circuit; Harmonics   and   power   factor; Voltage controllers(AC/DC),  1-phase/3-phase; Typical  control  circuits    for     integral  control/phase  control   strategies.   DC/AC  inverters:  1-phase/3-phase;

 

VSI, PWM, CSI, frequency and voltage control;  Harmonics  and power  quality,  typical  control  circuits;  High  frequency inverters.

        

Texts/References

C. W. Lander, Power Electronics, McGraw Hill, 1993.

G.  K.  Dubey,  S.  R.  Doradla,  A.  Joshi, R.  M.  K.Sinha, Thyristorised Power Controllers, Wiley Eastern Ltd., 1987.

M.  H.  Rashid,  Power  Electronics:  Circuits,  Devices  and Applications, Prentice Hall of India, 1994.

 


EE323 Analog Circuits                                                                                                                                                  3 1 0 8      ñ

 

Introduction  to  operational  amplifiers:   The   difference amplifier and the ideal operational amplifier models, concept of  negative feedback and virtual short; Analysis  of  simple operational    amplifier  circuits;  Frequency  response   of   amplifiers, Bode plots.

 

Feedback:  Feedback  topologies  and  analysis  for  discrete  transistor amplifiers; stabillity of feedback circuits  using  Barkhausen criteria.

 

Linear    applications of operational amplifiers: Instrumentation  and  Isolation  amplifiers;   Current  and  voltage   sources;  Active filters.

 

Non-linear    applications   of    operational    amplifiers: Comparators, clippers and clampers; Linearization amplifiers;   Precision  rectifiers; Logarithmic amplifiers,  multifunction circuits and true rms convertors.

 

Waveform   Generation:   sinusoidal   feedback   oscillators; Relaxation oscillators, square-triangle oscillators.

 

Real  operational  amplifiers: Current  sources  and  active loads,  difference, intermediate and output stages  including Miller  capacitors  for  frequency  computation;  Operational amplifier  parameters; Effects of real operational  amplifier parameters on circuit performance.

 

Analog  and Digital interface circuits: A/D, D/A  Converters, S/H circuits and multiplexers.

 

Texts/References

J.V.   Wait,  L.P.  Huelsman  and  GA Korn, Introduction  to Operational  Amplifier  theory  and  applications,  2nd  edition, McGraw Hill, New York, 1992.

J. Millman and A. Grabel, Microelectronics, 2nd edition, McGraw Hill, 1988.

P.  Horowitz and W. Hill, The Art of Electronics, 2nd  edition, Cambridge University Press, 1989.

A.S.   Sedra  and  K.C.  Smith,   Microelectronic   Circuits, Saunder's College Publishing, 1991.

 


EE324  Control Systems Lab                                                                                                                                 0 0 1.5 1.5       ñ

 

 (To supplement EE-302 ) 

 


EE326  Power Systems Lab                                                                                                                                     0 0 1.5 1.5     ñ

 

 ( To supplement EE-304 )

 


EE389  Electronic Design Lab II                                                                    0 0 10 10     ñ

 

This  laboratory  would  impart skills  needed  to  integrate systems  with proper user interfaces after  alpha-testing  of  products.

 


EE403  Digital Signal Processing                                                                                                                               2 1 0 6     ñ

 

Discrete  time signals: Sequences; representation of  signals on orthogonal basis; Sampling and reconstruction of  signals;

 

Discrete  systems:  attributes, Z-Transform,  Analysis  of  LSI    systems,  Frequency    analysis,   Inverse    Systems, Discrete     Fourier   Transform   (DFT),   Fast  Fourier Transform algorithm, Implementation of Discrete Time Systems.

 

Design   of  FIR  Digital  filters:  Window   method,   Park-McClellan's method.

 

Design  of IIR Digital Filters: Butterworth,  Chebyshev   and Elliptic Approximations; Lowpass, Bandpass, Bandstop and High pass filters.

 

Effect of finite register length in FIR filter design.

        

Parametric and non-parametric  spectral estimation. Introduction  to  multirate  signal  processing. 

Application of DSP to Speech and Radar signal processing.

 

Texts/References

A.V. Oppenheim and Schafer,  Discrete Time Signal Processing, Prentice Hall, 1989.

John   G.   Proakis  and  D.G.  Manolakis,   Digital   Signal Processing:  Principles,  Algorithms  and  Applications, Prentice Hall, 1997.

L.R.  Rabiner and B. Gold, Theory and Application of  Digital Signal Processing, Prentice Hall, 1992.

J.R.  Johnson,  Introduction to  Digital  Signal  Processing, Prentice Hall, 1992.

D.   J.   DeFatta,   J.  G.  Lucas  and   W.   S.   Hodgkiss, Digital Signal Processing, J Wiley and Sons, Singapore, 1988.

        


EE405 Communication Electronics                                                                                                                            2 1 0 6      ñ

 

Prerequisite EE308

 

Review   of   communication  systems  and   electromagnetism. Overview  of  various  communication links  and  their  block diagrams eg. fiber-optic, satellite, cellular telephony.

 

Properties  of communication media like twisted-pair and  co-axial,  cables optical fibre, and the  atmosphere;  amplitude and phase response, fading and timing jitter.

 

Noise   and  its effects on communication  channels:  thermal  noise,  shot noise, 1/f noise, and burst noise.   Intersymbol and interchannel interference.

 

High-frequency   properties  of  solid-state  devices;   High frequency integrated circuit technology.

 

Small-signal  high-frequency  amplifiers -  gain,  stability, and  noise-figure; multistage amplifiers, impedance matching;

 

Large-signal high frequency amplifiers: amplifier  topologies and design; distortion    and  techniques   to   minimize distortion.

 

Oscillators: gain   stabilization,  phase noise;   VCO's  and   PLL's; frequency control and synthesis.

 

Mixers diode  and active mixers, distortion in mixers,  high-speed sampling gates.

 

Regenerative feedback elements; decision circuits;  frequency dividers.

 

Texts/References

R.  E. Collin, Foundations of Microwave Engg.,  2nd  edition, McGraw Hill 1993.

C.  A. Lee and C. G. Dalman, Microwave devices and their  circuit interaction, Wiley Intl. 1994.

 


EE415  Electrical Design Lab                                                                                                                                0 1 1.5 3.5      ñ

 

Power  Electronic  Design: Base   drive   circuits;   Snubber  circuits;   High   frequency magnetics; Selection of  various components;  Converter  design; Switch  Mode  Power  Supplies (SMPS).

 

Basic  Design  Concepts  in  Power  Apparatus:  Transformers, electrical  machines and transmission lines;  Computer  aided design.

 

Texts/References

Ned   Mohan,    T.M.  Undeland  and   W.P.   Robbins,   Power Electronics:   Converters,  Applications   and   Design, John Wiley, Singapore, 1994

A.  K. Sawhney, A Basic Course in Electrical Machine  Design, Dhanpatrai and Sons, New Delhi, 1991.

 


EE421 Communication System Theory                                                                                                                     2 1 0 6       ñ

 

Brief review of signal analysis: Fourier  transforms;  signal representation  and  decomposition;  deterministic  and  non-deterministic   signals;   applications  to  the   study   of communication systems.

        

Communication  systems:  essential  components;   modulation; transmission,  reception; ideal and  non-ideal  communication systems; system level analysis

Random   variables   and   processes:   probability   density functions,  discrete and continuous densities;  marginal  and joint  densities; conditional probabilities and functions  of random   variables;  collection  of  random   variables   and stochastic processes

 

Mathematical  representation   of signals and noise: noise as a   stochastic   process;  Gaussian  random   variables   and processes; mean, correlation functions, covariance functions; stationarity   and  white  Gaussian  noise;  power   spectral densities;

 

Comparative  study  of  modulation techniques  on  S/N  ratio basis: the effect of noise on   different   modulation techniques;  figures  of merit; amplitude modulation  in  the presence  of noise; frequency modulation in the  presence  of noise; noise in digital communication systems and how it  may  be handled.

 

Texts/References

H.  Taub  and  D.L.  Shilling,  Principles  of  Communication Systems, McGraw Hill Intl. Student Edition,1971.

M. Schwartz, Information Transmission, Modulation and  Noise, McGraw Hill, 1980.

 


EE425 VLSI Technology                                                                                                                                                2 1 0 6      ñ

 

An  Introduction to MOS devices, design of inverters,  static and dynamic logic circuits. Domino and zipper logic.  Custom, semi-custom  and cell library based design. Design of  analog building   backs.  Effect  of  device  scaling   on   circuit performance.

 

An overview of IC Technology and its requirements. Unit steps used in IC Technology: Wafer cleaning, photo-lithography, wet and  dry etching, oxidation and diffusion, ion  implantation, CVD  and  LPCVD techniques for deposition  of  poly  silicon, silicon, silicon nitride and silicon di-oxide.  Metallisation and passivation.

 

Special  techniques  for  modern  processes  :   self-aligned silicides,  shallow junction formation, nitrided oxides  etc. Process flows for CMOS and bipolor IC processes.

 

Introduction  to  process, device, circuit logic  and  timing simulation.  Hardware  desciption languages  for  high  level design.

 

Texts/References

S.M.  Sze,  Physics of Semiconductor Devices,  2nd  edition, John Wiley, 1981

N.  Weste and K. Eshraghian, CMOS VLSI Design, Addison  Wesley, 1993.

S.M. Sze, VLSI Technology, McGraw Hill, 1988. 

 


EE426 Digital Communication Systems                                                                                                                2 1 0 6          ñ

 

Elements   of digital communication systems:  source  coding, channel  coding,  modulation/demodulation,  Information   and channel  capacity: Discrete communication channels and  their analysis. Baseband data transmission of analog signals. Time-division  multiplexing  of digital  signals.  Synchronization methods.

 

Texts/References

K.S.  Shanmugam,  Digital and Analog  Communication  Systems, Wiley Int. Pub. 1980.

M. Schwartz, Information Transmission, Modulation and  Noise, McGraw Hill Int. Student Edition, 1980.

Proakis  J.J., Digital Communications, 2nd edition,  Mc  Graw Hill 1989.

S.S.   Haykin,   An  Introduction  to  Analog   and   Digital Communication Systems, Wiley Eastern 1989.

 


EE429 Discrete Data and Digital Control                                                                                                             3 0 0 6   ñ

 

Prerequisite : EE-302

 

Sampling  and data reconstruction processes: Sampled  -  Data control systems, ideal sampler, sampling theorem, sample  and  hold operations, frequency domain considerations.

 

Z-transforms: Properties Inverse, applications to solution of difference equations, convolution sums;

 

Stability  of  discrete systems: location  of  poles,  Jury's stability  criterion,  stability  analysis  through  bilinear transforms.

 

Design  of  digital  control  systems:  PID  controllers  and frequency domain compensation design, state variable  methods and the discrete linear regulator problem.

 

Texts/References

M. Gopal, Digital Control Engineering, Wiley Eastern, 1988.

K.J  Astrom,  B   Wittenmark,  Computer  Controlled  Systems, 2nd edition Prentice -Hall India 1994

R. Isermann, Digital Control, Vol 1 Narosa Publications, 1993.

 


EE432 Special Semiconductor Devices                                                                                                            2 1 0 6              ñ

 

Metal  semiconductor  contacts, MIS and  MOS  devices.  Power semiconductor devices. Heterojunction      devices. Optoelectronic  devices.  Microwave semiconductor devices. Quantum well devices. Semiconductor memories.

 

Texts/References

Kwok K. Ng, Complete Guide to Semiconductor Devices,  McGraw-Hill, 1995.

S.M.  Sze, Physics of Semiconductor Devices,  Wiley  Eastern, 1981.

S.K. Ghandhi, Semiconductor Power Devices, Wiley Interscience, 1977.

B.J. Baliga, Modern Power Devices, Wiley Interscience, 1987.

P.   Bhattacharya,  Semiconductor   Optoelectronic   Devices. Prentice-Hall India, 1995.

 


EE433 Electronic Instrumentation                                                                                                                   3 0 0 6              ñ

 

Instrumentation  and isolation amplifiers.  Analog  switches, S/H   circuits,  multiplexers and  demultiplexers,   sampling and  quantization,  antialiasing  filters, Data   converters,  V/F,  F/V,  A/D,  D/A conversion. Data  acquisition   system. Signal  measurement   in  the presence of  noise.  Noise   in  Electronic  systems,    design   of  low   noise    circuits,   Programmable  instruments  and digital  interfacing:  serial, parallel. GPIB.

 

Texts/References

B.H.  Oliver  and  J.M.  Cage,  Electronic  Measurements  and Instrumentation, McGraw Hill, 1971.

J.A. Alloca, Electronic Instrumentation, Prentice Hall, 1987.

S.  Soclof,  Applications  of  Analog  Integrated   Circuits, Prentice Hall, India, 1990.

A.J. Bowels, Digital Instrumentation, McGraw Hill, 1986.

C.S. Rangan, G.R. Sarma, V.S.V. Mani, Instrumentation Devices and Systems, Tata McGraw-Hill, 1990.

T.S.  Rathore,  Digital Measurement Techniques,  Narosa,  New Delhi, 1996.

 


EE434  Industrial Instrumentation                                                                                                                   3 0 0 6   ñ

 

Introduction:  Instrumentation systems. Static  and   dynamic characteristics of instruments, noise in measurement systems.

 

Instrumentation systems for physical  measurements: Measurement   and  control  of displacement,  strain,  force, torque acceleration,  temperature and flow.

 

Non destructive  testing : Ultrasonic and eddy  current.

 

Signal Conditioning and acquisition:  Signal  conditioning, signal  transmission  methods; Data loggers,  PC  based  data acquisition   systems,   Interfacing   and   bus   standards, programmable   logic   controllers   and   their   industrial applications.

 

Texts/References

E.O. Doebelin, Measurement Systems, McGraw Hill, 1991.

J.P.  Bentley, Principle of Measurement Systems,  John  Wiley and Sons, 1987.

C.S.  Rangan,  G.R.  Sharma,  V.S.V.  Mani,   Instrumentation Devices and Systems, Tata McGraw Hill, 1997.

D.V.S.  Murthy,  Transducers  and  Instrumentation,  Prentice Hall, 1997.

M.  Tooley,  PC Based Instrumentation  and  Control;  Newnes, 1997.

R.  Randolf, K.G. Kingham, Jones, Instrumentation  Technology, Vol. 5, Butter Worths, 1995.

 


EE437  Analog Filters                                                                                     3 0 0            ñ

 

Filter   preliminaries:  Terminology;  Magnitude  and   Phase responses; Classification (LPF, HPF, BPF, APF etc.,)

 

Approximation Theory: Butterworth, Chebychev, Elliptic  and Bessel Filters; Frequency Transformation.

 

Sensitivity:  Basic  concepts;  Application to  filters  -  Q sensitivity, wp sensitivity. Elements  of   passive  network  synthesis:   Properties  and synthesis of  LC, RC   driving point and transfer  functions;  Singly- and Doubly-terminated ladder networks.

 

Basics   of  Active  Filter  Synthesis:  RC-OPAMP   circuits, Biquad  circuits  based  on negative  feedback  and  positive feedback  topologies;   Active  networks  based  on   passive  ladder  structures;   Effects  of   real  OPAMPS  on   active filters.

 

Introduction to Switched-Capacitor Filters:  The MOS  switch;  Simulation of resistors using Switched -Capacitor circuits.

 

Texts/References

G. Daryanani, Principles of  Active Networks Synthesis  and Design, John Wiley and Sons, 1976.

A.S.  Sedra and  P.O. Brockett, Filter Theory  and  Design: Active and  Passive, Matrix Publishers, 1978.

M.E. Van Valkenburg,  Analog  Filter  Design, Holt, Rinehart and Winston, 1982.

G.S. Moschytz and P. Horn,  Active Filter Design Hand-Book,  John Wiley and Sons, 1981.

G.S.  Moschytz: (Ed.),  MOS   Switched   Capacitor   Filters: Analysis and Design, IEEE Press, 1981.

 


EE438 Control System Design                                                                                                                            2 1 0 6          ñ

 

Pre-requisite: EE-302 (exposure)

 

Introduction  to  design:  State-space  models;   Performance measures  like ISE, ITAE; Quadratic indices;  Controllability and Observability.

 

Linear Quadratic Regulator (LQR): Performance index;  Optimal control   law;  Algebraic  Riccati   eqn.;   Frequency-domain interpretation.Linear Quadratic Gaussian (LQG): Statistical descriptions  of  noise; Kalman filter; Stability margins.

 

H    Design: Uncertainty descriptions;  Robustness  measures; Formulation for control-synthesis; Riccati eqn.;  Model-order reduction.

 

Case  studies: Inverted pendulum; Missile  guidance;  Process control.

 

Texts/References

B. Friedland, Control System Design, McGraw Hill 1986.

B.D.O. Anderson and J.B. Moore, Optimal Control - LQ Methods, Prentice Hall of India, New Delhi, 1989.

J.C.  Doyle,  B.A.  Francis  and  A.R.  Tannenbaum,  Feedback Control Theory, Maxwell Macmilan International Ed., 1992.

 

 


EE450  Computer Control and Automation of Power Systems                                                                       2 1 0 6            ñ

 

Introduction  to energy control centres; Various states of a power system; SCADA systems and RTUs.

 

EMS software: State estimation; Optimal power flow;  Reactive power   control;  Operator  request   loadflow;   Contingency analysis.

 

Active  power control: Speed control of generators; Tie  line control;  Frequency  control;  Generation  scheduling  in  an interconnected system; Automatic generation control;  Primary  and   secondary  control;  Economic   dispatch;   Performance criteria under transient and steady state conditions.

 

Computer aided protection: Introduction; Basic configuration; Line, bus, generator, transformer protection; Numeric  relays and application of DSP to protection.

 

Automation:   Monitoring,  Protection  and   control;   IEDs; Adaptive relaying.

 

Texts/References

A.G.  Phadke  and  J.S. Thorp, Computer  Relaying  for  Power Systems, John Wiley & Sons, New York, 1988.

O.I.  Elgerd,   Electric Energy System  Theory,  Tata  McGraw Hill, New Delhi, 1982.

P.  Kundur, Power System Stability and Control,  McGraw  Hill Inc., New York, 1995.

Selected papers from  IEEE Computer Applications in Power.

 


EE452  Microwave and Satellite Communication                                                                                               2  1  0  6    ñ     

Prerequisite : EE-301

 

Microwave    components:  Tees,   circulators,    directional couplers,  attenuators, phase shifters, S-parameter  analysis of microwave components.

 

Microwave sources: Klystron, microwave semiconductor devices,low  noise microwave amplifiers, parameteric amplifiers.

 

Physical  media and link components: Microwave  bands for  satellite communication:   Satellite   microwave  link  calculations;   Earth  station   components,  parabolic  dish antennas, G/T ratio.

 

Modulation  Schemes used in satellite  links: FDMA, TDMA  and packet switched systems; spread spectrum techniques and  CDMA systems

 

Satellite  systems:  Statellite classes;  statellite  orbits: launching  of  a satellite and their  monitoring.  Low  orbit satellites for mobile communication.

        

Texts/References

R.E.  Collin, Foundations of Microwave Engineering, Mc Graw Hill 2nd Ed. 1992.

D.M. Pozar, Microwave Engineering, John Wiley, 1996.

Pratt  and  Bostian, Satellite  Communication,  John  Wiley International 1986.

 


EE455 Communication Electronics Lab                                                                                                             0 0 1.5 1.5    ñ 

 

 (To Supplement EE-308 and EE-405)