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Abstract  
Floating-point analog-to-digital converters (FP-ADC) have been shown useful in 

applications where, high resolution for small signals and wide dynamic range is desired. FP-
ADCs employ a non-uniform quantization and typically dissipate less power and require less 
hardware than comparable uniform quantizers for a given dynamic range and resolution. A FP-
ADC is discussed for the purpose of achieving a wide dynamic range without demanding high 
resolution, when the high resolution is merely for covering the signal dynamic range rather than 
the quantization accuracy. Comparing floating-point quantization with uniform quantization, it 
is shown that the FP-ADC is superior from a statistical point of view to the ADC, but at the 
prize of doubling the conversion time. This report discusses sequential FP-ADC, and its key 
circuitry, achievable performance, conversion time and sensitivities to mismatches. Also, this 
report discusses, parallel FP-ADC, to realize a reduction in conversion time, while preserving 
the highest possible resolution.  

1 Introduction  
The input range of an ADC must be designed in such a way that the peak input 

signal is reliably covered. It means that the ADC must have a very high resolution, when the 

signal amplitude fluctuates in a very large dynamic range and the quantization accuracy is 

needed even for the smallest signal. In many cases, high resolution is designed for merely 

covering the signal dynamic range rather than the quantization accuracy [1]. Actually, in such a 

converter, the resolution for large signals is unnecessarily high like in radars and 

communication applications. It would be more rational, if the ADC offers more or less the same 

resolution for large and small signals within the input range. 

A large dynamic range can be achieved by increasing the resolution of an A/D 

converter. This is however not so easy in CMOS. Very accurate S/H circuits, amplifiers and 

passive components are needed which hardly can be accomplished in a CMOS process, 

especially when speed, power and area are considered. In such a solution, a small input signal 

uses only a small portion of the A/D converter, which is sensitive to noise. A better solution 

would be to amplify the small and the large signals differently so that they can be converted to 

digital when they are more or less at the same level, analogous to an automatic gain control 
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(AGC) amplifier. In such a way, the resolution does not have to be increased. Instead, it can be 

kept constant for different signals [1]. The effective bits float in an additional range, similar to a 

floating-point number representation, which explains why it is called a floating-point A/D 

converter.   

Traditionally, the problem of extending the dynamic range is done with nonlinear 

compression or by using automatic gain control (AGC) amplifiers. But AGC system can not 

handle fast fluctuating signals. Instead, a logarithmic amplifier has to be used for compressing 

the input signal dynamic range. The accuracy, however, will be seriously degraded for a large 

compression ratio. In order to produce a linear digital output, a look-up table must be used 

which has to match with the amplifier characteristics precisely. Unlike the solution of 

logarithmic amplifier, an FP-ADC directly gives a linear digital output. For large and small 

signals, the effective resolutions are kept constant, similar to floating-point number 

representation. The virtual input range of such an ADC is much larger than the actual one so it 

can handle a small input range imposed by a low voltage supply.  

The high resolution is achieved in flash converters by increasing number 

comparators, which leads to increase in size and cost. By choosing two-step ADC [5], where 

one for coarse quantization and another one for fine quantization, resolution is increased with 

less number of comparators with penalty of double conversion time. Floating point quantization 

implies finding both the exponent and mantissa of a signal sample. Other than logarithmic 

amplifier approach, an approach based on a uniform quantization ADC connected to the 

acquired signal through a programmable gain amplifier (PGA) is presented in sec.2.1. Firstly, 

the ADC performs a conversion cycle to find out the exponent and then, setting the PGA gain 

correspondingly, it executes a second conversion to determine the mantissa. This converter type 

is called sequential FP-ADC or two-cycle FP-ADC [2]. This solution preserves high precision 

of uniform ADCs and avoids separate coding stages at the expense of doubling the conversion 

time. To speed up the conversion process, architecture with two ADCs (one for coarse 

quantization and the other for fine one) is presented in the section 2.2. Still having the two 

quantizers connected in cascade, the two quantization cycles are disjunctive and speed 

improvement is mainly obtained from using a variant of the flash ADC for the exponent 

acquisition [1]. In this solution, the key is to realize a preamplifier which produces multiple 

output signals with weighted gains, instead of first finding the signal domain (exponent) and 
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amplifying like in single ADC sequential FP-ADC.   

To overcome the conversion time and amplifier mismatches problem, a parallel 

ADC [2] has been discussed in sec.3. It is based on uniform quantizers that preserve the 

precision of the sequential FP-ADC, while minimizing the conversion time close to the one of 

the non-uniform one-cycle quantizer.  The parallel FP-ADC consists of two ADCs that work 

simultaneously: one determines the exponent, while the other one, connected to the quantizer 

input over a programmable gain amplifier, finds the mantissa. If two time adjacent samples 

have the same exponent, the conversion result is delivered immediately; if not, the mantissa is 

acquired again with PGA gain reset to the most recently acquired exponent. 

2 Sequential Floating Point ADC  

2.1 Single ADC Sequential FP-ADC  
The sequential FP-ADC [2] is schematically presented in Fig. 1. It consists of an 

ADC with uniform quantization, a programmable gain amplifier (PGA) and a gain control unit 

(GCU). This sequential converter uses same ADC for mantissa and exponent extraction. The 

ADC is an ideal quantizer with rounding quantization and a quantization step; its input range is 

(-VFS, VFS). The mantissa (ym) is expressed using m bits, and the exponent (e) is expressed as an 

E-bit number. The sequential FP-ADC [2] performs a quantization in two cycles as described in 

the Statechart diagram of Fig. 2. To begin with, in the AcqExponent state, GCU sets the PGA 

gain to    the     minimum   (PGA gain: = 1),   letting the input voltage (x) to be presented as it is 

(x =x) to the ADC input.   

               

  

      Fig.1. Block diagram of a sequential FP-ADC. [2] 
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The converter performs the first conversion and its result ( ye ) is employed by the 

GCU to calculate the exponent (e) using the following equation    
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To express the exponent as an E-bit number, the ADC has to have a resolution 

m 2
E
, with m and E being natural numbers.  To take full advantage of the m-bit resolution in 

expressing the exponent values, powers of 2 are chosen for m i.e., m=2
E
. Based on the exponent 

e calculated with equation (1), a new gain value is determined by the GCU, finalizing the second 

sub-state of AcqExponent 

gain:=  2
maxE - e 

, with max E =  2
E -1.            (2)    

      

  

Fig.2. Statechart diagram of sequential floating-point ADC. [2]  
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In the next state (AcqMantissa, Fig. 2), the PGA is set accordingly to the gain value 

that was calculated previously in the AcqExponent state. The input signal (x) is thus amplified 

such as to maintain the PGA output signal (x' := gain.x) in the upper half of the ADC conversion   

range, (VFS > |x'| > VFS/2), i.e., to get the best possible use of the ADCs resolution. The ADC 

now performs a second conversion cycle to measure the mantissa (ym). Based on the exponent 

(e) and the mantissa (ym), the quantization function of the FP-ADC, Q(x), is given by equation 

(3)    
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The graphic representation of this quantization function (for m=4 and E=2) is given 

in Fig. 3, along with the correspondent exponent function e = f (x) and the quantization function 

of the employed uniform quantizer (b=4). To minimize the overload noise of a uniform 

quantizer, its input range is usually set to an interval that reduces the probability of a quantized 

signal falling outside it. The input range of a uniform quantizer that acquires a normally 

distributed signal with mean 0 and variance 

 

is usually set to [-4 , 4 ] (the four sigma loading 

rule [4]). To use the same FP-ADC [2] model for quantizing such Gaussian signals, the input 

range of its quantization function from Fig. 3 is normalized to [4, 4]. The FP-ADC quantization 

function presents a visible improvement of precision for quantizing small signals, a progress that 

is achieved by reducing the length of the quantization interval for that range.   

 

Fig.3. Quantization functions: FP-ADC (thin line) and uniform ADC (thick line). [2] 
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This classic procedure provides the floating-point result directly in its normalized form, but, 

even by using the fastest analog-to-digital parallel conversion technique, it doubles the 

conversion time. 

2.2 Double ADC Sequential FP-ADC  

  

Fig.4. Double ADC Sequential FP-ADC. [1]  

The double ADC sequential FP-ADC [1] shown in Fig.4., has got first ADC, which 

consists delay balanced input amplifier network, S/H circuits, comparators and output selector 

using Ex-OR gates. Second ADC is a uniform ADC which converts the analog output from 

balanced amplifier network according to selection of logic circuit. The delay-balanced input 

amplifier network amplifies the input analog signal and produces m amplified signals with 

amplifications 2(i-1).k, where k =constant and i = l, 2,..., m, respectively. When k = l or 2, the 

signal amplitudes are weighted in the form of binary or quaternary. Part of the signals may be 

nonlinear or saturated. The largest linear signal will appear at one of the outputs. This particular 

output may change from one to another, depending on the input signal amplitude. The signals 

are sampled with identical sampling-and-hold (S/H) circuits using the same sampling clock to 

produce m voltage samples fed to corresponding switches. In order to select the largest linear 

signal, these samples, except for sample m, are compared through comparators with a reference 

voltage Vr = (Vmax/2) where Vmax, is the maximum linear voltage output of the amplifiers. For a 

bi-directional signal, e.g. radio IF signal, ±Vr are used instead of Vr. Since no principle 
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difference, mainly focus is on one-directional signals below.  The thermometer code 

produced by the comparators is further transferred to an m-bit flag code F by the XOR gates. 

The XOR gate located at the interface of 0- to-1 will generate logic high to turn on the switch at 

the same position. Note that one input of XOR gate 1 is always connected to logic low, and one 

input of XOR gate m is always connected to logic high. In such a way, when the signal is out of 

the designed dynamic range, switch 1 will be kept on, and when the signal is too small, switch m 

will be kept on. The n-bit ADC, therefore, will not miss any signal even in the two extreme 

cases. In the same time, the m-bit flag code F is fed to the digital output circuit. Assuming 

F=00001000 (m=8), the position of flag "1" indicates the location and the amplification of the 

selected signal. The digital output circuit combines the n-bit data code D, the m-bit flag code F 

and the constant k to generate a final output DFk with  n+(m-l)k bits, i.e. the dynamic range has 

been expanded by (m-l)k bits. If k is an integer, only simple shifting operations are involved. In 

contrast to the converting curve of a logarithmic ADC shown in Fig. 5(a), the converting curve 

of an FP-ADC [1] is formed by the combination of multiple linear lines, the bold part in Fig, 

5(b) for m=4 and k=l.   

 

Fig.5. Logarithmic (a) and Floating point-ADC (b). [1] 

Note that unlike a Single ADC sequential FP-ADC (sec-2.1), the signal in the 

Double ADC sequential FP-ADC is not sampled and converted until it becomes large enough so 

the impact of errors is reduced. It can be seen as that the input range has been expanded by a 

factor of m. This is a very useful feature for low supply voltage applications where the actual 

input range is increasingly smaller. The n-bit ADC can be any type in principle but a small input 

load is preferred so a pipelined ADC or a parallel successive approximation ADC [5] is more 

suitable here. The part that is different from a traditional ADC, particularly the input amplifier 
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network has been discussed. In the following discussion, with assumption   of k= l, i.e. the 

signals are weighted in a binary form. The most important yet difficult issues are delay skew, 

amplification mismatch, DC offset, and amplifier over-voltage; these issues are discussed in the 

following sections. 

2.2.1 Input Amplifier Network 
Two basic issues for the input network are, to balance the delays and to weight the 

amplifications as accurate as possible. For simplicity, it is possible to use a binary amplifier tree 

[1]. To further improve the matching, a parallel structure has been presented here. The idea is to 

only use passive components for weighting the amplifications while keeping the amplifiers as 

identical as  possible, see Fig. 6 for an example of m=5.     

   

Fig.6. Input Amplifier network with m=5. [1]  

A passive network is more accurate and stable than amplifiers. It is possible for a 

resistive divider to achieve up to a 10-bit accuracy by a careful design. By using the delay 

compensating resistors (horizontal ones), the delay differences are negligible [1]. The amplifier 

outputs are used only when they fall into the window between Vr and 2Vr, or the amplifier input 

signals fall into the window between Vr/16 and Vr/8 because of the resistor divider network. It 

means that the noise impact is the same for all channels. The input network can be made in two 

steps, as shown in Fig. 7, to facilitate a larger dynamic range with limited division ratio of 

resistive divider to maintain accuracy. 
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Fig.7. Input amplifier network for m=8. [1] 

2.2.2 DC-offset and over-voltage 
The amplifier DC-offsets seriously limits the achievable accuracy. For a radio IF 

signal, AC coupling can effectively remove the DC-offsets as presented in [3]. It is, however, 

not applicable for a universal ADC. Over-voltage causes another kind of problem. The amplifier 

saturated by an over-voltage input will seriously distort and delay the signal during its recovery 

period, leading to large sampling errors. A limiter can be used at the input to prevent the 

amplifier from over-voltage [3]. It is however difficult to eliminate the problem completely. The 

method introduced [1] below is different from above approaches to solve the two problems 

simultaneously, see Fig. 8.a.    

  

Fig.8.a. Amplifier and S/H channel in sampling mode. [1]   

 

Fig.8.b. Amplifier and S/H channel in S5 discharge. [1]   
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Fig.8.c. Amplifier and S/H channel in holding mode. [1]  

Capacitors C1 and C2 are equal to implement differential charge transfer technique 
by switching actions.  

In sampling mode:  

See Fig.8. 

Vc1=16Vin + 16Voff1 

 

Voff2 

Vc2=Voff2 

Vout=Voff2 

Where, Vc1: Voltage across capacitor C1  

Vc2 : Voltage across capacitor C2  

Voff1, Voff2 are offset voltages of amplifier A1 and A2 respectively 

Charge in C1 (q1) = C1 (16Vin + 16Voff1 

 

Voff2) 

Charge in C2 (q2) = C2 (Voff2)  

In holding mode:  

See Fig.8.c. 

During holding mode all switches change their position. The voltage across 

capacitors C1 and C2 changes accordingly. 

Vc1= Vout 

 

Voff2, 

Vc2= Voff2 16Voff1, 

Charge in C2 (q2) = (Voff2 16Voff1) C2, 

Charge discharged from C2 = (Voff2 Voff2 +16Voff1) C2, 

Due to differential charge transfer, C1 is discharged (due to polarity) by equal 

amount of charge discharge of C2. 

C1 (Vout 

 

Voff2) = (16Vin + 16Voff1 

 

Voff2) C1  (Voff2 Voff2 +16Voff1) C2, 

Since, C1 = C2 

                     Vout = 16Vin. 
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S5 is an optional switch (see Fig.8.b), temporarily connecting the output of Al to 

ground in the beginning of holding phase to speed up the recovery of Al from saturation. During 

the holding phase, the input of A2 should still be Voff2. As a result, the offset voltages of both A1 

and A2 are cancelled. Note that, S4 is the only switch sensitive to clock and charge feed-through. 

All other switches just connect well-defined voltages and do not affect the accuracy. Therefore, 

this is quite feasible [1]. Moreover, since the input of A1 is connected to the signal ground after 

each sampling phase, the amplifier input voltage always starts from minimum, which effectively 

eliminates the over-voltage delay problem. The speed, however, will be affected by the settling 

time of A1.  

  

Fig.9. Two amplifiers in parallel to speed up. [1] 

In order to increase speed [1], two amplifiers (A1 and A1') can be used for each 

channel, as shown in Fig. 9.  A1 and A1' will gain more time for signal settling. When they are 

switched to the holding phase, S5 or S5' will help them to quickly come back to the signal 

ground (see Fig.9.for timing). The power of A1 and A1' should be kept low to limit the total 

power consumption. A low power amplifier has to be used. 

2.2.3 Impacts of mismatches 
The double ADC sequential FP-ADC [1], which is discussed, is insensitive to the 

variation of Vr, as long as Vr < (Vmax/2), see Fig.10. Vmax is the maximum input voltage of 

uniform ADC. The only impact is that the utilized linear region moves up or down. The 

switching point between two amplifiers is still well defined, see the bold lines. If the n-bit ADC 

covers the variation region, there will be very little impact. The system is also insensitive to the 

variation of absolute amplifications as long as they are matched. The reason is that the 

amplification ratio is defined through the passive components rather than the active amplifiers. 

The impact will be the same as the variation of Vr, but, instead of Vr, the scales of vertical lines 

(i.e. the absolute amplifications) change equally. As long as the linear region is still larger than 

2Vr, the impact is very little.  
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Fig.10. Impact of reference voltage variation. [1]   

The impact of amplification discrepancy on the linearity is shown in Fig. 11, where 

the amplification of channel 2 is lower.  

 

Fig.11. Impact of amplification mismatch. [1] 

The gain mismatch in the amplifier network is due to two factors: the accuracy of 

the passive divider and the amplifiers. With careful layout the mismatch in the passive divider 

can be minimized. The gain in the amplifiers is harder to match. The negative feedback (NFB) 

with high loop gain, A , makes total gain inversely proportional to feedback gain . It is clear 

that a high loop gain will transfer the gain matching problem from the active element to the 

passive feedback network. 

Delay Time Error: 
When the delays of the amplifiers are not completely matched, the signal will have 

different delays through the amplifier tree. The sample point will then be changing relatively to 

the input signal when switching the active output from one node to another. This will introduce 

a time jitter and add distortion to the signal. As seen in Fig.12.the error is maximum, where the 

signal slope is at its maximum.  
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Fig.12. Jitter when switching mode. [1] 

3 Parallel FP-ADC  

A parallel FP-ADC structure that exhibits a faster conversion rate is presented. The 

quantization function of the parallel FP-ADC [2] is identical to the one of the sequential FP-

ADC, but the conversion speed is increased by a factor that depends on the statistical properties 

of the acquired signal. The presented circuit consists of two ADCs (ADC-M and ADC-E) and 

PGA, as shown in Fig. 13. The ADC-M is a uniform quantization ADC that measures the 

mantissa, and has an m-bit resolution. To find out the exponent of the quantized signal, the 

uniform quantizer ADC-E and the GCU blocks implement a logarithmic conversion 

characteristic. The two steps of the classic sequential FP-ADC are performed in parallel, as they 

are presented in the Statechart diagram of Fig. 14. The conversion process (ACQ) is completed 

in two concurrent states, AcqExponent and AcqMantissa (Fig. 14) that are carried out by ADC-E 

and ADC-M (Fig. 13), respectively; both converters are fired up synchronously by the start 

signal. The ADC-E performs a coarse conversion and based on its result (ye), the GCU 

determines the exponent e and the corresponding PGA gaint. At the same time, the ADC-M 

performs a conversion for getting the mantissa ym. The PGA gain is set to a value that was 

previously predicted based on the history of the acquired signal, aiming to maintain the PGA 

output ( x

 

) in the upper half of the ADC-M conversion range, thus getting the best accuracy out 

of the ADC m-bit resolution.  The simplest approach of a zero degree polynomial extrapolation 

is considered to illustrate the gain prediction of the parallel FP-ADC (PGA gain:= gaint-1). 
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Fig.13. Block diagram of parallel FP-ADC. [2]    

 

Fig.14. Statechart diagram of parallel FP-ADC. [2]   

The result of the floating-point quantization is correct if the absolute value of the 

current quantized signal (x = x . gaint-1) falls in the upper half  of   the    ADC-M conversion 

range    (VFS> x >VFS/2 ), i.e., the ADC-E has currently acquired the same exponent as the 

preceding sample (gaint = gaint-1).This gain comparison is carried out as soon as the GCU 

determines the current gain and sends the termination logic signal ECE over to the ADC-M to 

synchronize its operation. If the predicted gain coincides with the current acquired one, the GCU 

generates the EOC signal to indicate the end of conversion and the ADC-M comes back to its 

initial IDLE state, as well. If the previously predicted gain of the PGA (gaint-1) has driven the 

signal out of the conversion range of the ADC-M ( x >VFS) or it falls inside the lower half of 
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it ( x < VFS/2 ), the GCU sets the PGA gain to the current acquired exponent (PGA gaint-1 ) 

and the ADC-M repeats the measurement to get the correct mantissa. The EOC signal is 

generated after this second conversion cycle is accomplished, and the ADC-M is driven back 

into its initial IDLE state. In conclusion, a correct acquisition is accomplished in one conversion 

cycle if the voltage at the input of the ADC-M is in the upper half of its conversion range 

otherwise in a series of two conversion cycles if a readjustment of the gain of the PGA is 

required.  

3.1 Characteristics of parallel floating-point ADC 
The quantizer s dynamics, the signal-to-quantization noise Ratio (SNR) and the 

conversion time are the most important characteristics of the FP-ADC that are considered. The 

performance of the proposed FP-ADC [2] that uses E bits to represent the exponent (i.e., ADC-E 

resolution) and m bits for the mantissa (i.e., ADC-M resolution) is compared against the 

characteristics of a fixed-point uniform quantizer having b-bits resolution.  

A. Quantizers Dynamics  

The quantizer s dynamic is defined as the ratio between the largest admissible 

quantizer input signal and the smallest one that gives a nonzero quantized acquisition, given the 

condition that the magnitude of the input signal is bounded to the quantization range. The 2 s 

complement code is usually used in uniform mid tread quantizers to represent bipolar signals. 

The largest positive number that can be expressed with b bits in 2 s complement is (y+ = 2b-1-1), 

while the smallest negative number is (y- = 2b-1). For y+  y- , to be considered an acceptable 

approximation, the dynamic DU of a b-bit resolution ADC is given by equation (4)  

DU = 2b-1.    (4) 

To evaluate the efficiency of using a word of a given length, the resolutions of the 

uniform quantizer (b) and of the FP-ADC (E+m), respectively, are considered equal: 

b = E+m.    (5) 

Observing the same constraint from equation (4),i.e.y+  y-

 

with maxE = 2E -1,  

the FP-ADC dynamic can be expressed in terms of the dynamic of the fixed-point uniform 

quantizer (DU)  

DF = 2maxE . 2m-1 = 2maxE 

 

E. DU.    (6) 
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Comparing a 12-bit uniform quantizer with an FP-ADC characterized by E+m=12, 

the FP-ADC can acquire signals with higher dynamics; if the exponent is expressed by a 3-bit 

number (E=3), then DF /DU =16 and, if E=4, then DF /DU =2048. 

B. Signal-to-Quantization Noise 

Then, the signal-to-quantization noise ratio [4] of the uniform quantizer can be 

expressed in terms of its resolution b, as given by equation (7)    

SNRU=3. 4b-2.   (7) 

If a normally distributed signal with mean 0 and variance is quantized with this uniform 

quantizer having an input range of [-4 , +4 ], then the ADC quantization step 

 

can be 

expressed in terms of its resolution and of the signal variance     

b
b

32.
2

8
.   (8) 

The quantizer absolute error is defined by    
 = Q(x) 

 

x. 
while the relative error is defined by    

r = /x = ( Q(x) 

 

x ) / x.   (9)  

 

Fig.15. Normalized absolute quantization error. [2] 

The uniform quantizer introduces an absolute error no larger than /2 along the 

quantizer input range. Since outside the interval [-2, 2] both quantizers present the same error, 

that region was not represented in Fig. 15. Inside [-2, 2], representing half of the maximum input 
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range, there are 2E -1 measurement domains, where, compared to a uniform ADC, the FP-ADC 

exhibits a smaller quantization error, since the floating-point quantization step gets finer as the 

quantizer input signal becomes smaller as given by [2].  

The relative error ( r) shows the superiority of the FP-ADC over the uniform ADC 

[2]. The relative error of the two compared quantizers is represented in Fig.16. The absolute 

error of the uniform quantizer (presented by the thick line graph in Fig.16.) equals the input 

signal (

 

= x) all over the quantizer input sub-domain (- /2, /2), determining the highest 

relative error (100%). Since the smallest quantization step of the FP-ADC is E = /2maxE << . 

The FP-ADC exhibits a relative error remarkably smaller than that of the uniform quantizer all 

through the interval [-2, 2]. 

         

 

Fig.16. Relative quantization error. [2] 

For a normally distributed signal with mean 0, G(x) is the ratio between the SNR of 

the uniform and of the floating-point quantizer, respectively (10).   

G(x) = 
U

F

SNR

SNR
.      (10)  

If ADCs with the same resolutions are used to implement both the uniform and 

FP-ADC quantizers (m=b), then G(x)>1. The local values of this function are higher for small 

signals, as seen from the graph of Fig.17. Thus the smallest FP-ADC step length is set-up to 

quantize the smallest input signals. Increasing the resolution of the uniform ADC, increases the 

SNR of the FP-ADC highly compare to the uniform ADC for small signals, increases the 

dynamic range of FP-ADC [2].  
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Fig.17. Relative quantization error. [2] 

C. Conversion Time 
The conversion time is the most important characteristics of the FP-ADC, if the 

FP-ADC is used, where high speed and high dynamic range are required like in radar 

applications. The conversion time of a classic FP-ADC with double sequential conversion is    

TF =2TU. The conversion time of the parallel FP-ADC is function of statistic properties of the 

acquired signal [2]. If this is a second order centered Gaussian, then the average conversion time 

(TF), expressed in terms of the auto correlation factor  is  

.
1

8
2

c   (11)   

TF = (1+ ec).TU.     (12) 

From the above equation (12), it is observed that the conversion time tends to be equal to that of 

a uniform fixed-point converter as 

 

gets closer to 1. But as the signal fluctuation is more with 

respect to time, then conversion time cannot be closer to uniform fixed-point converter always.  

4 Conclusion 
The demand on very high resolution uniform ADC can be avoided by using the 

sequential FP-ADC discussed in sec.2.2, when the purpose is to cover the dynamic range rather 

than the accuracy. A deeper analysis of the pre amplifier performance regarding the delay 

mismatch has to be done. A parallel FP-ADC structure is discussed in sec.3 to make full use of 

the remarkable precision of the uniform quantizers, while minimizing the conversion time. This 

report presents a circuit that implements this structure along with the equations of the major 

static and dynamic parameters of the discussed parallel FP-ADC. For large and small signals, 
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the effective resolutions are kept constant, similar to a floating-point number representation by 

that high resolution for small signals are achieved. Further research is aiming toward the 

reduction of the acquisition time by a more accurate prediction of the measurement domain 

while minimizing the quantization noise. One aspect not looked upon in this report is the power 

consumption. This parameter is very important in today s portable equipment and a careful 

design should take this into consideration. 
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