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Abstract

We present a rigorous geometric analysis of the compu-

tation of the global position of an airborne video camera

using aerial images of known landmarks. This has also

been known as the perspective-n-point (PnP) problem.

Based on the analysis, a robust Hough transform-like

method, facilitated by a class of CORDIC-structured

computations, to �nd the solution for the problem, is

shown feasible within the framework of terrain naviga-

tion. It empowers aerial surveillance systems to nav-

igate e�ectively when the global position and inertial

navigation sensors become faulty, inaccurate, or dys-

functional.

1. Introduction

The perspective-n-point problem is to determine the

position of the camera from images of known land-

marks, given the intrinsic parameters of the camera.

In case there are three nonlinear landmarks, a set of

three quadratic equations with three unknowns can be

formed [1], that can produce as many as eight solu-

tions. Fischler and Bolles [2] derive a biquadratic poly-

nomial equation with one unknown, that has a maxi-

mum of four solutions. For the case of four landmarks,

Rives et al. [1] �nd a unique solution if the landmarks

are coplanar by �nding the solutions using three land-

marks, then verifying them with the fourth one. If the

four landmarks are not coplanar, they derive a set of

six quadratic equations with four unknowns. Horaud

et al. [3] form a biquadratic polynomial equation in

one unknown for non-coplanar landmarks. The equa-

tion can have as many as four solutions, but some of

them can be eliminated. A more general approach to

�nding solutions for the perspective-n-point problem is

to use the least-square techniques [4].

In terrain navigation, the global position of an air-

borne camera system is usually available through GPS.

However, there are circumstances where the position

given by a GPS is not accurate due to built-in errors,

dysfunctional GPS, or noise caused by intentional R-F

jamming. Information gathered from images of known

landmarks then can be used to compensate the GPS

errors in such cases [5] [6].

We now present our analysis for the problem

through constructive geometry. The main result of the

analysis is: for any two landmarks in an image, we can

construct a unique toroid in the world space, that con-

stitutes all possible positions of the camera. The toroid

can be easily generated using a CORDIC [7] structured

hardware, to register a vote at the appropriate cells of

a three-dimensional array of accumulators. For exam-

ple, in the case of four landmarks, six toroids could

be generated, corresponding to the six quadratic equa-

tions derived by Rives et al. [1]. An acceptable solution

would be identi�able at the cell with a vote of at least

three and at most six. The geometric nature of the

proposed approach helps understand the span of the

subspace (3-dimensional world) to which the expected

solution would be constrained. Thus, a �nite num-

ber of accumulators are suÆcient. Moreover, we use a

multi-resolution recursive approach outlined in [8] for

the implementation. It is envisioned that real world

applications would employ recursive/adaptive Kalman

predictors to estimate the GPS based on most recent

positions over the 
ight path. Such information, if

available, could accelerate the e�ective search for the

hough-transform cells that instantiate the �nal solu-

tion.

2. The Analysis

2.1. Geometric Analysis

We assume that the operational nature of the imaging

system follows geometric optics [9] and perspective pro-



jection. Our results are based on the classic theorem

of angles on circles [10] which states: Given a circle,

and a chord AB dividing the circle into two sectors.

Then, the angle subtended by the arc AB at the center

is exactly twice that of the angle subtended by the arc

AB at any point on the circumference along the sector

AB. Its corollary states that: The locus of the vertex

C of all triangles with a �xed apex angle 6 ACB and

�xed end points A and B is a sector of a circle [10].

Theorem 1. Given an image of two landmarks and

therefore the angle subtended by them at the pupil

of the camera. Then, the unknown geoposition of the

camera is constrained to a unique circle on the principal

plane of imaging; and, it is also constrained onto the

surface of a unique toroid in space when the principal

plane can not be uniquely �xed.

Proof. We prove the above claim by constructing the

circle and the toroid as described below.

Let the points A and B be the two landmarks ob-

served by the camera C from an unknown geolocation.

Then, the plane ACB is the principal plane as shown

in Figure 1. Let � be the angle 6 ACB; which can be

computed from the video image. Details of the imaging

model will be shown in Section 2.2. Also, let nP be the

normal of the principal plane ACB: And, let L be the

length of the line segment AB: From the geolocations

of A and B compute the midpointM on AB: Draw the

bisector of AB; the line perpendicular to AB passing

through M: Locate the center O on the bisector at a

distance h from M ; and, compute the radius R as:

h =
L

2

1

tan �
; and R =

s�
h2 +

L2

4

�
(1)

Also, XM = 0:5 (XA +XB) : The direction cosines l

of the line segment AB; and p that of its bisector are:

l =
XB �XA

jXB �XAj
and p = nP � l (2)

Then, trace the locus of all feasible positions of the

camera C; by tracingXC(�);
�
� � �

2

�
� � �

�
3�
2
� �

�
:

X(�) = XM + hp+ (R cos�)l+ (R sin�)p (3)

Then, based on the Theorem of Thales[10] we prove

that the circle is unique.

When the principal plane is not explicitly known,

any plane can be used to construct the circular arc �rst,

which is then rotated about the axis AB to create the

toroidal surface. For example, consider the unit vector

e3 = 1p
3
(1; 1; 1): If l 6= e3 then let nB = e3; else, let

nB = 1p
3
(�1; 1; 1): Then compute, nP = nB � l;p =

nP �l; and q = l�p: Then, for any (�; �);�� < � � �
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Figure 1: Two landmarks A and B are imaged from

a camera at an unknown geolocation C: The angle �
is measured from the image. Then, the circle is con-

structed from the value � and the locations of A and

B is unique.
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, compute X(�; �) on the

surface of the toroid as:

X(�; �) = (V� cos�)p+ (V� sin�)q + U�l+XM (4)

where

U� = R cos� and V� = h+R sin� (5)

This completes our proof.

2.2. Imaging Model

The geometric model of the aerial imaging system is il-

lustrated in Figure 2. The notation used in this paper

is as follows: An object A located at XA; is imaged
by a camera C kept from a geoposition XC : Perspec-
tive imaging is assumed. The image point xA is on

the z = �f plane of the camera coordinate system

(x; y; z); however, the derivations will consider z = f
plane [11]. The angle �Z and the vector XC denote the

instantaneous orientation and geolocation of the cam-

era. Also, �A describes the line of sight of A from the

current location XC of the camera C: The angle �a
and the vector xa are used to represent the direction

and position of a; the image of A; measured in the 3-D

frame of reference of the camera. The uppercase sub-

scripts are used to indicate quantities that are prone

to sensor inaccuracies; and, lowercase subscripts will
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Figure 2: Two objects A and B kept in an arbitrary

locations are imaged by a video camera from XC : The
z axis, called the optical axis, is shown in dotted lines.

Also, the di�erential angle �ab is measured accurately

at the image-resolution.

be used to denote quantities which are measured using

the observed image.

Lemma 1. Let A and B be two objects in the �eld

of view of the camera C which is located at XC : Then,
the angle 6 ACB subtended by the 3-D line segment

AB at the pupil of the camera C can be measured

accurately without any explicit knowledge of the exact

geoposition and orientation of the camera.

Proof. We observe from Figure 2, that

tan �A =
XA �XC

ZA � ZC
(6)

We assume that the video imaging system has already

been calibrated, and its intrinsic parameters such as

the location of the optical center within the given im-

age, pixel dimensions, and focal length have been de-

termined and made available. Also, we assume that

the exact location of the point a; the image of A has

been determined by standard image processing tech-

niques at the best possible accuracy. Then, �a can be

computed from the video-image based measurement of

xa: Thus,

�a = arctan

�
xa
f

�
: (7)

which satis�es the expression,

�a = �A � �Z : (8)

Also,

�A � �B = (�A � �Z)� (�B � �Z) (9)

= �a � �b (10)

= arctan tan(�a � �b) (11)

= arctan

�
(xa � xb)f

f2 + xaxb

�
(12)

�AB = mab; (13)

wheremab is computed from xa and xb and treated as a
single measurement derived through the image. Thus,

even though XC and �Z are not explicitly known, the

di�erence �AB = (�A � �B) could be measured indi-

rectly from the image. Moreover, the di�erential na-

ture of the quantity �AB makes it insensitive to the

orientation jitters of the camera.

3. Hough Transform based Hard-

ware Solution

Given the image of three or more landmarks, the task

is to identify the intersection of three toroids, each of

which constrains the feasible camera location onto its

surface.

The sequential, CORDIC-structured and real-time

computability of X(�; �) suggests a possibility of com-
puting the camera location through an approach based

on the Hough Transforms [13]. A CORDIC structured

hardware [7] would rapidly generate the circle and the

toroid as follows. For example, the value of X(�) can
be computed as follows, using a recursive algorithm for

Equation (3).

�0 := 0;u0 := 1; v0 := 0; (14)�
uk
vk

�
=

�
1 �Æ
Æ 1

��
uk�1
vk�1

�
(15)

�k = �k�1 + Æ (16)

X(�k) = XO + hp+ ukl+ vkp (17)

where Æ � sinÆ is chosen as Æ = 2�8, to perform the

computation rapidly in hardware [7]. The computa-

tional accuracy of this approach could be further en-

hanced by considering the three stage lifting procedure

proposed in [14] and [15].

In this context, the vote-accumulation and search

take place in the XY Z space. The XY Z space is di-

vided into a three-dimensional grid; and each cell is

assigned a vote accumulator. The unknown camera

position is traced by a toroid to be determined by lo-

cating two known landmarks in the image. The vote at

each bin on the surface of the toroid would be suitably

increased as the toroid is being traced. When there are

more than two landmarks, it is likely that all toroids

constructed from all landmark-pairs would intersect at



one point indicating the most likely location of the un-

known camera position. Then, the computation of the

camera location becomes one that of �nding the cell

that has the highest number of votes.

The design principles of Breshenham[16] algorithms

used in computer graphics are suitably used to generate

the toroidal surface based on the CORDIC structured

computations of (4). Given two landmarksXi;Xj : The
�rst step is to choose an arbitrary point Xa in the 3-D

grid of the accumulators, hence a voxel in the subspace

of anticipated solution. Then, the normal to the plane

passing through the landmarks and the said point is

computed for applying (4). It is observed that, X(�; �)
for any � and � = �

2
; would represent a point on the

circle which is at a maximum distance from the baseline

IJ: Let, 4� chosen such that,

0 < 4� <
1

h+R
(18)

to extend the computation of (??) into tracing (4) it-

eratively. Then, two consecutive circles drawn to trace

X(�; �) and X(�; �+4�); would di�er by a value less

than one voxel, at � = �
2
: And, for all other values of �

the distance between corresponding points will be even

smaller. Thus, repeated application of (4) would pro-

duce a continuous, one voxel-thick and hollow toroidal

surface. In general, the discretization could become

a source of inaccuracies in the �nal outcome. The

toroids are generated by incrementing the angles � and

�; whereas the search space is divided along the X;Y;
and Z axes. The error analysis of such generalized of

Hough transform techniques could be found in [17].

It is of practical concern to address the possibility

that the XY Z�volume to be covered by the accumu-

lators may be too large. This could require more com-

putational e�ort to solve the original problem than the

previously known methods to compute the camera po-

sition. However, this potential disadvantage must be

put in context with the traditional advantages of the

Hough-transform based techniques. The underlying

clustering ability of the proposed approach produces

the net result which is also advocated by RANSAC

[2]. Moreover, in many instances of terrain navigation

we have access to a quick estimate of the camera posi-

tion: for examples, 1) from data provided by GPS with

knownmaximum errors, or 2) from a suitably processed

estimate based on previous GPS data before the GPS

becomes faulty. Hence, the search space can be lim-

ited into a relatively small volume. Also, we employ a

multi-resolution approach to speed up the computation

[8].
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Figure 3: Three colinear landmarks in the most

canonical and parameterized con�guration and the the

uniquely found location G of the camera computed

from �1 and �2 and �:

4. Special Con�gurations

There are special cases in which we can simplify the

results of Section 2 so that faster computations can

be achieved. The cases to be presented in this section

are based on our observation that, if there are three

colinear landmarks, then the camera position can be

constrained to a unique circle in the world space.

Theorem 2. Given an image of three colinear land-

marks, and the orientation of the principal plane of

imaging; then, the geolocation the camera is uniquely

determined.

Proof. Let L1; L2; L3 be the three landmarks. By def-

inition, we know the orientation of the principal plane

and three points on the plane, hence it is uniquely

�xed. Let C12 and C23 be the two uniquely de�ned

circles constructed on the principal plane by applying

Theorem 1, to the landmark-pairs L1; L2 and L2; L3

respectively.

Example 1. Consider an instance shown in Figure

2., where the landmarks are located at:(0; 0); (2; 0); and
(2 + 2�; 0);� > 0; on the X-axis; the pairwise di�eren-

tial angles subtended (at the camera) by the two con-

secutive pairs of landmarks are �1 and �2 respectively.
Then, the camera position: (xg ; yg) can be uniquely

extracted as:

(xg ; yg) =

�
2(1�m�1)

m2 + 1
;
2m(1 + �1)

m2 + 1

�
(19)

where, �1 = cot �1; �2 = cot �2 and, m = ��2��1
1+�

: In
a more general case we assume the landmarks to be

at: (0; 0); (d2; 0); (d3; 0): Then, we let � =
(d3�d2)

d2
and

scale the �nal solution by a factor of: d2=2:
Theorem 3. Given an image of three colinear land-

marks, then the geolocation of the camera is con-



strained to a circle on a plane perpendicular to the line

passing through the landmarks; and, both the circle

and the plane are unique.

Proof. Let L1; L2 and L3 be the landmarks; and,

let l be the direction cosine of the line L123 passing

through these landmarks. Let nP be the normal of

a plane passing through the colinear landmarks. One

such normal can be uniquely identi�ed following the

procedure used in the proof of Theorem 1; also p =

nP � l: Then, let G be the geolocation of the camera

uniquely resolved by applying the second theorem in

this context. Also, we apply the insight gained from

the canonical Example 1 above. Then, in our case:

d2 = L12 and d3 = L13 are the pairwise distance of

the landmarks L2 and L3 respectively from L1: Then,
XG = XL1

+ (sxg)l+ (syg)p; and, s =
d2
2
is the scale

factor for applying the results of the canonical results

from Example 1. Now, rigidly rotate the entire plane

around the axis L123 by 2� radians. It will produce a

circle of radius syg contained in a plane perpendicular

to L123; and, the plane is at a distance sxg from the

landmark L1: Since G is unique and L123 is �xed, both

the circle and the plane of the circle are unique. And,

hence the claim.

Consider another special case where there are four

coplanar landmarks, and no three colinear. We extend

the result from Theorem 3 to show that, with these four

coplanar landmarks, we can construct two circles in the

world space. Note that these two circles can intersect

at no more than two points, and in that case one of the

intersections will be on or below the ground plane, as

shown in Figure 4. It means we can derive an analytic

solution for the case of four coplanar landmarks from

our constructions. However, in reality the inaccura-

cies introduced due to discrete sampling of the images

with �nite pixel size may result in a situation where

these circles may not intersect. Obviously, our Hough

transform-like approach provides a robust technique to

accommodate that.

The most canonical form occurs when three non co-

linear land marks are observed. Then, the unknown

position of the camera and the three landmarks form a

tetrahedron, with the camera being located at its apex.

The search for the 3-D position of the apex, is e�ec-

tively reduced to solving the orthocenter of the triangle

formed by three points on the ground plane which cor-

respond to the �nal position of the apex when each of

the side (two landmarks and the apex) is unfolded. We

have been able to solve this problem using a 1-D search.

Simulations have resulted only two real solutions. This

is in accordance with [2].
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Figure 4: Four coplanar landmarks in a canonical con-

�guration are imaged by a camera at G; two circles are

computed from the two sets of diagonals of the quadri-

lateral ABCD: The chord of intersection of the circles,

shown in a dotted line, is perpendicular to the ground

plane.

5. Experimental Results

We conducted a set of experiments to validate the ba-

sic concepts. The tests were carried out on a Newport-

Optics Optical Test Bench of size 90 � 30 � 60 �tted
with 4 fully calibrated video cameras. The test scene

was made of points in the three-dimensional space. We

measured the location of these points and treated them

as landmarks; and, acquired their image from a cam-

era, whose precalibrated location was treated as the

unknown geolocation system. These results will be pre-

sented at the conference.

Based on the experimental and simulation results,

the following observations can be made.

1. The focal length of the camera should be short to

obtain more reliable results.

2. The farther the distance between two landmarks,

provided they can both appear in an image frame,

the more reliable the measurement.

3. The closer the landmarks to the camera, the more

accurate the results.

We found that our observations agree in general with

the results of Weng at al. [18] and Lee [19]. Details on

the algebraic methods for error estimation and analysis

are discussed in [18].

6. Conclusions

A rigorous geometric analysis of visual landmark based

terrain navigation has been presented. The new in-

sights introduced in this paper may be summarized as:



1) an image of two landmarks helps to constrain the un-

known geoposition of the aerial observer onto the sur-

face of a unique toroid; 2) an image of three colinear

landmarks reduces the same onto a uniquely de�ned

circle, which is also perpendicular to the axis pass-

ing through the landmarks. We have also presented

a Hough transform-like approach, facilitated by a class

of CORDIC-structured computations based on the re-

sults of our analysis, that provides a fast and robust

technique for compensating the GPS errors in locating

the position of an aerial camera system.
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