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Abstract

We consider random access in wireless networks under the physical interference model, wherein

the receiver is capable of power-based capture, i.e., a packet can be decoded correctly in the presence

of multiple transmissions if the received Signal to Interference and Noise Ratio exceeds a threshold.

We propose a splitting algorithm that varies the transmission powers of users on the basis of quaternary

channel feedback (idle, success, capture, collision). We show that our algorithm achieves a maximum

stable throughput of 0.5518. Simulation results demonstrate that our algorithm achieves higher through-

put and lower delay than that of the First Come First Serve splitting algorithm with uniform transmission

power.

This work was done while the first author was a Ph.D. student at Department of Electrical Engineering, Indian Institute of

Technology Bombay. This is an expanded and revised version of the work presented at IEEE MILCOM 2007, Orlando, FL,

USA.
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Power Controlled FCFS Splitting Algorithm for

Wireless Networks

I. INTRODUCTION

Medium Access Control (MAC) problem is present in all communication networks, both wired

and wireless. Multiple nodes (users) can access a single channel simultaneously to communicate

with each other or a common receiver – the challenge is to design efficient channel access

algorithms to achieve the desired performance in terms of throughput and delay. Several solutions

to the MAC problem have been proposed depending on source traffic characteristics, channel

models and Quality of Service (QoS) requirements of the users.

MAC protocols can be broadly classified into two types: fixed resource allocation protocols and

random access protocols. Fixed resource allocation protocols such as Time Division Multiple

Access (TDMA), Frequency Division Multiple Access (FDMA) and Code Division Multiple

Access (CDMA) assign orthogonal or near-orthogonal channels to every user and are mostly

implemented in voice-dominant circuit switched networks. These protocols typically require the

presence of a central entity, such as a base station in cellular networks, to perform channel allo-

cation and admission control, i.e., they are highly centralized. Though fixed resource allocation

protocols are contention-free and can multiplex users with similar traffic characteristics easily,

they suffer from low throughput and high channel access delay when the traffic is bursty and

there are large number of users. On the other hand, in random access protocols, users vary their

transmission probabilities or transmission times based on limited channel feedback, i.e., random

access protocols are highly distributed. Random access protocols are more suitable for scenarios

wherein many users with varied traffic requirements have to be multiplexed.

Random access algorithms for satellite communications, multidrop telephone lines and multi-

tap bus (“traditional random access algorithms”) have been well studied for the past four decades.

See [1] for a textbook treatment of traditional random access algorithms. These algorithms can

be broadly classified into three categories: ALOHA [2], [3], Carrier Sense Multiple Access [4]

and tree (or stack or splitting) algorithms [5]. Traditional random access algorithms have been

implemented in practical systems. For example, ALOHA is used in most cellular networks (for
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example, GSM networks) to request channel access and also used in satellite communication

networks. Carrier Sense Multiple Access with Collision Detection (CSMA/CD) is used to resolve

contentions in Local Area Networks (LANs) like IEEE 802.3 based Ethernet [6], while Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) is used to resolve contentions in

IEEE 802.11 based Wireless LANs [7].

In First Come First Serve (FCFS) splitting algorithm [1], nodes involved in a collision split

into two subsets based on the arrival times of collided packets. Using this approach, each subset

consists of all packets that arrived in some given interval, and when a collision occurs, that

interval will be split into two smaller intervals. By always transmitting packets that arrived in

the earlier interval first, the algorithm transmits successful packets in the order of their arrival.

The FCFS algorithm is stable for λ < 0.4871 [1]. Conflict resolution protocols based on tree

algorithms have provable stability properties [8].

On the other hand, random access algorithms that incorporate physical layer characteristics

such as Signal to Interference and Noise Ratio (SINR) and channel variations have only been

studied recently. These algorithms, which have been primarily proposed for wireless networks,

can be broadly classified into three categories: algorithms based on signal processing and diversity

techniques, channel-aware ALOHA algorithms based on adapting the retransmission probabilities

of contending users and “tree-like” algorithms based on adapting the set of contending users.

Existing random access algorithms, such as CSMA/CA, are not channel-aware and can lead to

low throughput. Thus, the design of physical layer aware random access algorithms can be a

potential step towards achieving higher data rates in future wireless networks.

Existing research work on physical layer aware random access algorithms can be broadly

classified into the following categories:

1) Techniques which employ signal processing and diversity techniques to correctly decode

received packets, for example in [9], [10], [11], [12],

2) “Channel-aware ALOHA” techniques whose central theme is to adapt the retransmission

probabilities of users, for example in [13], [14], [15], [16], [17], and

3) Splitting (or tree or stack) algorithms whose main idea is to adapt the set of contending

users based on feedback from the channel or common receiver, as in [18], [19], [20].

Note that some form on random access is necessary in a wireless network (say, for

connection setup or topology discovery) before it is possible to employ more sophisticated
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and computationally intensive scheduled channel access techniques. For example, in a

GSM wireless cellular network, mobile stations transmit on the random access channel

for sub-channel reservation and synchronization with the base station. In a WiMAX

network, a subscriber station transmits randomly on pre-determined frequency bands

(control channels) to set up its connection to the base station. In a WLAN, clients employ

binary exponential backoff prior to sensing the channel and sending data to the access

point.

A. Related Work on Physical Layer Aware Splitting Algorithms

In this section, we mainly review representative research work on random access algorithms

whose main idea is to adapt the set of contending users based on feedback from the channel

or the common receiver. In such work, the authors develop and analyze splitting algorithms for

various models of the wireless channel and evaluate the performance of their algorithms via

simulations.

In [18], the authors propose an opportunistic splitting algorithm for a multipoint to point

wireless network. They assume a slotted system, block fading channel and {0, 1, e} feedback,

where 0, 1 and e denote idle, success and error respectively. Assuming that each user only

knows its own channel gain and the number of backlogged users, the authors propose a distributed

splitting algorithm to determine the user with the best channel gain over a sequence of mini-slots.

The algorithm determines a lower threshold Hl and a higher threshold Hh for each mini-slot,

such that only users whose channel gains lie between between Hl and Hh are allowed to transmit

their packets. Based on results from “partitioning a sample with binary type questions” [21], they

show that the average number of mini-slots required to determine the user with the best channel

is 2.5, independent of the number of users and the fading distribution. However, their algorithm

is based on the assumption that every user can accurately estimate the number of backlogged

users.

In [19], the authors consider a random access network with infinite users, Poisson arrivals

and {0, k, e} immediate feedback, where k is any positive integer. In contrast to standard tree

algorithms, such as Basic Tree Algorithms (BTA), Modified Tree Algorithm (MTA) [22] and

FCFS that discard collided packets, they propose an algorithm that stores collided packets. The

receiver extracts information from the collided packets by relying on successive interference
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cancellation techniques ([9], Chapter 7) and the tree structure of a collision resolution algorithm.

Though their algorithm achieves a stable throughput of 0.693, it requires infinite storage and

increased input voltage range at the receiver, which may not be feasible in practical systems.

In [20], the author considers a multipoint to point wireless channel with and without capture

and Multiple Packet Reception (MPR). The channel provides Empty(E)/Non-Empty(NE) feed-

back to all active users and ‘success’ feedback to successful users only. The users do not need

to know the starting times and ending times of collision resolution periods. For such a channel

with E/NE binary feedback, the author proposes and analyzes a stack multiple access algorithm

that is limited sensing and does not require any frame synchronization. The author considers

two models for capture, namely Rayleigh fading with incoherent and coherent combining of

joint interference power. For MPR, the author assumes a maximum of two successes during a

collision. The maximum throughput of the algorithm is numerically evaluated to be 0.6548 when

capture and MPR are present, and 0.2891 when both effects are absent.

In [23], the authors consider a random access network with finite number of nodes

(users) having limited energy, Poisson arrivals and {0, 1, e} feedback under the physical

interference model. They propose Random Energy Based Splitting (REBS) algorithm

wherein the criterion for splitting the number of interfering users is based on the amount

of residual energy at each node. In REBS, the probability that a packet in the left subtree

belongs to a high-energy node is strictly greater than the probability that it originated

from a low-energy node, leading to energy savings. Assuming that the initial energies of the

nodes are uniformly distributed, they demonstrate the energy-efficacy of REBS algorithm

compared to FCFS algorithm via simulations. Finally, they suggest hybrid algorithms for

the cases where all nodes have equal energy or unlimited energy.

Finally, we briefly review representative research papers which focus on power control tech-

niques in random access wireless networks. We then motivate the use of variable transmission

power to increase the throughput in random access wireless networks in Section I-B.

In [24], the author considers a time-slotted CDMA-based wireless network wherein a finite

number of nodes communicate with a common receiver. The author formulates the problem

of determining the set of nodes that can transmit in each slot along with their corresponding

transmission powers, subject to constraints on maximum transmission power and the SINRs

of all transmissions exceeding the communication threshold. Due to its NP-hard nature, the
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problem is relaxed to a case wherein a node transmits with a certain probability in each slot.

Equivalently, the problem of joint power control and link scheduling is transformed to a problem

of power controlled random access, wherein the objective is to determine the probability of

transmission ∆i and transmission power Pi for each node i, subject to constraints on maximum

transmission power and the “expected SINR” exceeding the communication threshold. The author

seeks to minimize a weighted sum of the maximum transmission power and maximum reciprocal

probability, i.e., minimize (maxi Pi + λ maxi
1

∆i
). This convex optimization problem is solved

using techniques from geometric programming [25]. Finally, the author derives the probability of

outage1 and delay distribution of buffered packets and demonstrates the efficacy of the schemes

via simulations.

In [26], the authors investigate transmission power control and rate adaptation in random access

wireless networks using game theoretic techniques. They consider multiple transmitters sharing

a time-slotted channel to communicate equal-length packets with a common receiver. A user’s

packet is successfully received if the SINR at the receiver is no less than a certain threshold called

the communication threshold, i.e., the authors employ the physical interference model [27]. The

random access problem is formulated as a game wherein each user selects its strategy (transmit

or wait) at each stage of the game in a non-cooperative (independent) or cooperative manner. The

authors evaluate equilibrium strategies for non-cooperative and cooperative symmetric random

access games. Finally, the authors describe distributed power control and rate adaptation games

for non-cooperative users for a collision channel with power-based capture. Their numerical

results demonstrate improved expected user utilities when power control and rate adaptation are

incorporated, at the expense of increased computational complexity. Though the authors propose

a distributed random access algorithm based on game theoretic techniques, it also assumes that

every user knows n, the number of backlogged users, in each slot. In practice, n can only be

estimated using techniques such as Rivest’s pseudo-Bayesian algorithm [28].

B. Contributions of our Work

Though researchers have addressed the problem of random access in wireless networks by

considering various channel models, different types of feedback and realistic criteria for suc-

1An outage occurs on a link if the received (actual) SINR on the link is less a certain threshold.
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cessful packet reception, only few of them exploit the idea that throughput gains are achievable

in a random access wireless network by varying transmission powers of users.

We envisage developing a power controlled random access algorithm for wireless networks

under the physical interference model. We seek an algorithm that yields higher throughput than

traditional random access algorithms. In cognizance of these requirements, we propose a power

controlled splitting algorithm for wireless networks. The algorithm is so designed that successful

packets are transmitted in the order of their arrivals, i.e., in an FCFS manner.

In the system model that we consider, if multiple transmissions occur, the receiver can decode

a certain user’s packet correctly only if the received SINR exceeds a threshold, i.e., we consider a

channel with power-based capture. The notion of capture has been addressed previously, though

in different contexts [15], [20], [29], [30]. However, in this paper, we motivate the idea that a

user can transmit at variable power levels to increase the chances of capture. Moreover, unlike

[15], [20], [29], [30], we assume {0, 1, c, e} feedback, where 0, 1 and e denote idle, success and

error respectively, and c denotes capture in the presence of multiple transmissions. Note that this

system model is different from those considered in existing works on splitting algorithms for

wireless networks. For example, in [20], the author proposes a novel splitting algorithm, but does

not take into account throughput gains possible by varying the transmission power. Though the

authors of [18] propose a splitting algorithm to determine the user with the best channel gain,

their algorithm may not be practical because it assumes that every user can accurately estimate

the number of backlogged users.

The rest of the paper is organized as follows. We describe our system model in Section II

and motivate variable transmission powers of contending users in Section III. We describe the

proposed random access algorithm and provide an illustrative example in Section IV. We model

the algorithm dynamics by a Markov chain and derive its maximum stable throughput in Section

V. The performance of the proposed algorithm is evaluated in Section VI. We conclude in Section

VII.

II. SYSTEM MODEL

Consider a multipoint to point wireless network. We assume the following:

1) Slotted system: Users (nodes) transmit fixed-length packets to a common receiver over a

time-slotted channel. All users are synchronized such that the reception of a packet starts
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at an integer time and ends before the next integer time.

2) Poisson arrivals: The packet arrival process is Poisson distributed with overall rate λ, and

each packet arrives to a new user that has never been assigned a packet before. After a

user successfully transmits its packet, that user ceases to exist and does not contend for

channel access in future time slots.

3) Channel model: The wireless channel is modeled by the path loss propagation model. The

received signal power at a distance D from the transmitter is given by P
Dβ , where P is the

transmission power and β is the path loss factor. We do not consider fading and shadowing

effects.

4) Equal distances: We assume that each user is at the same distance D from the

common receiver.

5) Power-based capture: According to the physical interference model [27], a packet

transmission from jth transmitter, denoted by ti,j, to receiver r in ith time slot is

successful if and only if the SINR at receiver r is greater than or equal to the

communication threshold γc
2, i.e.,

Pi,j

Dβ

N0 +
∑Mi

k=1

k 6=j

Pi,k

Dβ

> γc, (1)

where

Mi = number of concurrent transmitters in ith time slot,

ti,j = jth transmitter in ith time slot (j = 1, 2, . . . , Mi),

D = Euclidean distance between any transmitter ti,j and r,

Pi,j = transmission power of ti,j ,

N0 = thermal noise power spectral density.

6) {0, 1, c, e} immediate feedback: At the end of each slot, users are informed of the feedback

from the receiver immediately and without any error. The feedback is one of:

a) idle (0): when no packet transmission occurs,

2In literature, γc is also referred to as capture ratio [20], capture threshold [15] and power ratio threshold [10].
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b) perfect reception (1): when one packet transmission occurs and is received success-

fully,

c) capture (c): when multiple packet transmissions occur and only one packet is received

successfully, or

d) collision (e): when multiple packet transmissions occur and no packet reception is

successful.

The receiver can distinguish between 1 and c by using energy detectors [19], [31]. Thus,

at the end of every slot, only two bits are required to provide feedback from the receiver

to all users. Note that two bits are required to provide feedback even for the classical

{0, 1, e} feedback model. Thus, our {0, 1, c, e} immediate feedback assumption does not

increase the number of bits required for feedback..

7) Window Channel Access Algorithm: We first define Collision Resolution Period (CRP)

as the time interval from the slot where an initial collision occurs up to and including

the slot in which all users recognize that all packets involved in the collision have been

successfully received. In a window channel access algorithm, after the completion of

the current CRP, only packets that arrive in a specific window on the time axis are

allowed to join the new CRP. If we φ0 denote the maximum window duration and τ

denote the time elapsed from the end of the current window till the end of the CRP

it generates, then the next window size is min(φ0, τ).

The above assumptions are similar to the standard assumptions employed for the analysis of

traditional random access algorithms such as ALOHA and FCFS.

III. MOTIVATION AND PROBLEM FORMULATION

The maximum stable throughput of the well-known FCFS splitting algorithm is 0.4871 [1],

which is the highest throughput amongst a wide class of random access algorithms for wired

networks. However, in a wireless network, transmission power of a node provides an extra degree

of freedom, and higher throughputs are achievable.

Consider a scenario wherein all contending nodes transmit with equal power P in a given time

slot. When only one node transmits, its packet is successfully received if the SINR threshold

condition (1) is satisfied, i.e.,

P > γcN0D
β. (2)
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When M nodes transmit concurrently with equal power P , where M > 2, the SINR correspond-

ing to ith transmission is given by

SINR1 =
P

Dβ

N0 + (M − 1) P
Dβ

, (3)

Note that the signal attenuation model of (3) is valid only for the far field region, i.e.,

beyond a distance of 1 m from the transmitter3. For brevity in notation, we assume that

D > 1 throughout this paper. More importantly, the right hand side of (3) is always less

than 1. Since γc > 1 for all practical narrowband communication receivers [10], SINRi < γc

∀ i and all M transmissions are unsuccessful4. Thus, when multiple nodes transmit with equal

power, a collision occurs irrespective of the transmission power P .

However, the above situation can be circumvented by varying transmission powers of users

in some special cases. With relatively small attempt rates, when a collision occurs, it is most

likely between only two packets [1]. In this case, if the receiver is capable of power-based

capture, a collision between two nodes can be avoided by using different transmission powers.

Specifically, one of the nodes, say N1, transmits with minimum power P1 such that, if it were

the only node transmitting in that time slot, then its packet transmission will be successful. From

(1), the required nominal power is

P1 = γcN0D
β. (4)

The other node, say N2, transmits with minimum power P2 such that if there is exactly one other

node transmitting at nominal power P1, then the packet transmitted by N2 will be successful.

From (1) and (4), we obtain

P2

Dβ

N0 + P1

Dβ

= γc,

P2 = γc(1 + γc)N0D
β. (5)

Note that P2

P1
= 1+γc. We do not consider more than two power levels for the following reasons:

1) it complicates the power-control algorithm, and

3In general, (3) can be written as SINR1 =

P

max(1,D)β

N0+(M−1) P

max(1,D)β

.

4For a spread spectrum CDMA system with processing gain L, (3) gets modified to SINR1 =

P

Dβ

N0+ I
L

(M−1) P

Dβ

[26]. For

such a wideband system, γc < 1, and more than one packet can be decoded correctly in the presence of multiple transmissions.

However, in this paper, we consider narrowband systems only.
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2) most devices have constraints on peak transmission power.

Note that the above power control technique converts some collisions into “captures”. Thus, it

has the potential of increasing the throughput of random access algorithms employing uniform

transmission power.

We seek to design a distributed algorithm incorporating this power control technique, while

still ensuring that the algorithm transmits successful packets in the order of their arrival, i.e., in

an FCFS manner5.

IV. PCFCFS INTERVAL SPLITTING ALGORITHM

In this section, we present an algorithmic description of the proposed Power Controlled First

Come First Serve (PCFCFS) splitting algorithm. We also explain the behavior of the proposed

algorithm by providing an illustrative example.

A. Notation and Terminology

We first describe the notation. Slot k is defined to be the time interval [k, k + 1). At each

integer time k (k > 1), the algorithm specifies the packets to be transmitted in slot k to be the

set of all packets that arrived in an earlier interval [T (k), T (k) + φ(k)), which is defined as the

allocation interval for slot k. The maximum size of the allocation interval is denoted by φ0, a

parameter which will be optimized for maximum throughput in Section V. Packets are indexed

as 1, 2, . . . in the order of their arrival. Since the arrival times are Poisson distributed with rate λ,

the inter-arrival times are exponentially distributed with mean 1
λ
. Let ai denote the arrival time

of ith packet. Using the memoryless property of the exponential distribution (and without loss

of generality), we assume that a1 = 0. The transmission power of ith packet in slot k is denoted

by Pi(k), where Pi(k) ∈ {0, P1, P2}. Note that, if Pi(k) = 0, then ith packet is not transmitted

in slot k.

The proposed Power Controlled First Come First Serve (PCFCFS) splitting algorithm is the set

of rules by which the users compute allocation interval parameters {T (k+1), φ(k+1), σ(k+1)}

and transmission power Pi(k + 1) for slot k + 1 in terms of the feedback and allocation interval

5Since successful packets are transmitted in an FCFS manner, the delay experienced by a packet will not be significantly

higher than the average packet delay. Thus, from a QoS perspective, FCFS transmission of packets not only guarantees average

delay bounds, but also ensures fairness of users’ packets.
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parameters for slot k. In our algorithm, every allocation interval is tagged as a “left” (L) or

“right” (R) interval. σ(k) denotes the tag (L or R) of allocation interval [T (k), T (k)+φ(k)) in

slot k. Moreover, whenever an allocation interval is split, it is always split into two equal-sized

subintervals, and these subintervals (L,R) are said to correspond to each other.

B. Illustrative Example

In this section, we elucidate the rules of the PCFCFS algorithm for a single CRP by

providing an illustrative example. The algorithm will be formally described in Section

IV-C.

current time

current time

current time

current time

allocation interval

allocation interval interval

interval

waiting

waiting

k + 1

k + 2

T (k)

k

k + 3

T (k) + φ(k)

L time

time

time

time

current time

timek + 4
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allocation interval

P2
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allocation interval
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T (k + 3)

T (k + 4)

P2P2

P2 P1 P1

P1

P2 P1

P1

R

P1

T (k + 1) + φ(k + 1)

T (k + 2) + φ(k + 2)

T (k + 3) + φ(k + 3)

T (k + 4) + φ(k + 4)

Fig. 1. PCFCFS splitting algorithm illustrating a collision followed by another collision.
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P P
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waiting interval

P P

k

allocation interval

L
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P P P
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time
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P
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T (k + 5) + α(k + 5)
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T (k + 3) T (k + 3) + α(k + 3)
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P
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T (k + 4)

k + 5
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Fig. 2. FCFS splitting algorithm illustrating a collision followed by another collision.

Consider the scenario shown in Figure 1. In slot k, the allocation interval has three nodes

in its left half and one node in its right half. All ‘left half’ nodes transmit with higher power

P2, while the ‘right half’ node transmits with nominal power P1, leading to a collision. So, the

allocation interval is split, with the left interval L being the allocation interval for slot k + 1.

In slot k + 1, the allocation interval has one node in its left half, which transmits with higher

power P2, and two nodes in its right half, which transmit with nominal power P1. Hence, a

collision occurs, and the allocation interval L is split into two equal sized subintervals LL and

LR, with LL being the allocation interval for slot k+2. Since a collision is followed by another

collision, the right interval R is returned to the waiting interval in slot k + 2. In slot k + 2,

there is only one node in the allocation interval. Since this lone node lies in the right half of the

allocation interval, it transmits with nominal power P1, leading to a success. Thus, LR becomes
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the allocation interval for slot k+3. For this allocation interval, the node in the left half transmits

with higher power P2 and the node in the right half transmits with nominal power P1, resulting

in a capture of the packet transmitted by the former node. Consequently, LRR becomes the new

allocation interval for slot k + 4. Finally, in slot k + 4, the lone node transmits with nominal

power P1, leading to a deterministic success and completing the CRP. For the same sequence of

arrival times, the behavior of the FCFS algorithm with uniform transmission power P is shown

in Figure 2. Note that the FCFS algorithm requires 6 slots to resolve the collisions, while the

proposed PCFCFS algorithm requires only 5 slots.

C. Algorithm Description

Algorithm 1 describes the proposed PCFCFS splitting algorithm.

In Phase 1 of the algorithm, we initialize various quantities. τ denotes the number of slots

for which the algorithm operates; ideally τ → ∞. By convention, the initial allocation interval

is [0, min(φ0, 1)), which is a right interval (R). The initial channel feedback is assumed to be

idle (0).

In Phase 2 of the algorithm, we determine power levels, obtain channel feedback and compute

allocation interval parameters for each successive slot k. In Phase 2a, all users whose arrival

times lie in the left half of the current allocation interval transmit with higher power P2, while

all users whose arrival times lie in the right half of the current allocation interval transmit with

nominal power P1. However, if a capture occurred in the previous slot k − 1, all users in the

current allocation interval transmit with nominal power P1. Therefore, our algorithm always

transmits successful packets in an FCFS manner. In Phase 2b, the allocation interval parameters

are modulated based on the channel feedback. More specifically, if a collision occurs, then the left

half of the current allocation interval becomes the new allocation interval. If a capture occurs, then

the right half of the current allocation interval becomes the new allocation interval. If a success

occurs and the current allocation interval is tagged as a left interval, then the corresponding right

interval becomes the new allocation interval. If an idle occurs and the current allocation interval

is tagged as a left interval, then the left half of the corresponding right interval becomes the new

allocation interval. Otherwise, if a success or an idle occurs and the current allocation interval is

tagged as a right interval, the waiting interval truncated to length φ0 becomes the new allocation

interval, and a new Collision Resolution Period (CRP) begins in the next time slot k + 1.
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Algorithm 1 PCFCFS splitting algorithm

1: input: φ0, P1, P2, arrivals a1, a2, a3, . . . in [0, τ) {Phase 1 begins}

2: T (1)← 0

3: φ(1)← min(φ0, 1)

4: σ(1) = R

5: feedback = 0 {Phase 1 ends}

6: for k ← 1 to τ do {Phase 2 begins}

7: if feedback 6= c then {Phase 2a begins}

8: for all i such that T (k)6ai<T (k)+
φ(k)

2
do

9: Pi(k) = P2

10: end for

11: for all i such that T (k)+
φ(k)

2
6ai<T (k)+φ(k) do

12: Pi(k) = P1

13: end for

14: end if{Phase 2a ends}

15: transmit packets whose arrivals times lie in [T (k), T (k) + φ(k)) and obtain channel

feedback {Phase 2b begins}

16: if feedback = e then

17: T (k + 1)← T (k)

18: φ(k + 1)← φ(k)
2

19: σ(k + 1)← L

20: else if feedback = c then

21: T (k + 1)← T (k) + φ(k)
2

22: φ(k + 1)← φ(k)
2

23: σ(k + 1)←R

24: else if feedback = 1 and σ(k) = L then

25: T (k + 1)← T (k) + φ(k)

26: φ(k + 1)← φ(k)

27: σ(k + 1)←R

28: else if feedback = 0 and σ(k) = L then

29: T (k + 1)← T (k) + φ(k)

30: φ(k + 1)← φ(k)
2

31: σ(k + 1)← L

32: else

33: T (k + 1)← T (k) + φ(k)

34: φ(k + 1) = min(φ0, k − T (k))

35: σ(k + 1)←R

36: end if{Phase 2b ends}

37: end for{Phase 2 ends}
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V. THROUGHPUT ANALYSIS

In this section, we derive the maximum stable throughput of PCFCFS. Recall that

PCFCFS employs Window Access (WA) as its channel access algorithm (Assumption 7,

Section II). However, for purposes of throughput analysis, we assume that PCFCFS employs

Simplified Window Access (SWA), wherein the initial allocation interval (window size) after

each CRP has the constant duration of φ0. It can be shown that SWA channel access

algorithm has the same throughput as the WA channel access algorithm [8].
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Fig. 3. Discrete Time Markov Chain representing a CRP of PCFCFS splitting algorithm.

The evolution of a CRP can be represented by the Discrete Time Markov Chain (DTMC)

shown in Figure 3. Every state in the DTMC is a pair (σ, i), where σ is the status {L, L′, R, R′, C}

and i is the number of times the original allocation interval (of length φ0) has been split. State

(R, 0) corresponds to the initial slot of a CRP. If an idle or a success occurs, the CRP ends

immediately and a new CRP begins in the next slot. If a capture occurs, a transition occurs to state
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(C, 1), where C indicates that capture has occurred in the allocation interval. If a collision occurs

in (R, 0), a transition occurs to state (L, 1). Each subsequent idle in a left allocation interval

generates one additional split with a smaller left allocation interval, corresponding to a transition

to (L′, i+1), where L′ indicates that the current left allocation interval has been reached after a

collision (in some time slot) followed by one or more idles. A collision in an allocation interval

generates one additional split with a smaller left allocation interval, corresponding to a transition

to (L, i+1), where L indicates that the current left allocation interval has been reached just after

a collision. A capture in an allocation interval generates an additional split with a smaller right

allocation interval and corresponds to a transition to (C, i + 1). This is followed by a success

from (C, i+1) to (R, 0), thus ending the CRP. A success in a left allocation interval leads to the

corresponding right allocation interval with no additional split, which causes a transition from

(L, i) to (R, i), or (L′, i) to (R′, i). A success in (R′, i) causes a transition to (R, 0), thus ending

the CRP. It can be easily verified that the states and transitions in Figure 3 constitute a Markov

chain, i.e., each transition from every state is independent of the path used to reach the given

state.

We now analyze a single CRP. Assume that the size of the initial allocation interval is φ0

(corresponding to state (R, 0)). Each splitting of the allocation interval halves this, so that states

(L, i), (L′, i), (R, i), (R′, i) and (C, i) in Figure 3 correspond to allocation intervals of size

2−iφ0. Since the arrival process is Poisson with rate λ, the number of packets in the original

allocation interval is a Poisson random variable (r.v.) with mean λφ0. Consequently, the a priori

distributions on the number of packets in disjoint subintervals are independent and Poisson.

Define Gi as the expected number of packets in an interval that has been split i times. Thus

Gi = 2−iλφ0 = 2−iG0 ∀ i > 0, (6)

Gi =
1

2
Gi−1 ∀ i > 1. (7)

We view (R, 0) as the starting state as well as the final state. For brevity in notation, the

transition probability from state (A, i) to state (B, j) is denoted by PAi,Bj
, where A, B ∈

{L, L′, R, R′, C} and i, j ∈ {0} ∪ Z
+ (see Figure 3). For example, the transition probability

from (L, 1) to (C, 2) is denoted by PL1,C2 .

PR0,R0 is the probability of an idle or success in the first slot of the CRP. Since the number

of packets in the initial allocation interval is Poisson with mean G0, the probability of 0 or 1
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(xL packets) (xR packets)

Fig. 4. Notation for number of packets in left and right subintervals of the original allocation interval.

packet is

PR0,R0 = (1 + G0)e
−G0 . (8)

PR0,C1 is the probability of capture in the first slot of a CRP. Let xL and xR denote the number

of packets in the left and right halves of the original allocation interval respectively, as shown in

Figure 4. Capture occurs if and only if xL = 1 and xR = 1. xL and xR are independent Poisson

r.v.s of mean G1 each. Thus

PR0,C1 = Pr(xL = 1, xR = 1),

= Pr(xL = 1) Pr(xR = 1),

= G2
1e

−2G1 ,

PR0,C1 =
G2

0

4
e−G0 . (9)

State (L, 1) is entered after collision in state (R, 0). Using (8) and (9), this occurs with

probability

PR0,L1 = 1− PR0,R0 − PR0,C1,

PR0,L1 = 1−
(

1 + G0 +
G2

0

4

)

e−G0 . (10)

Since a capture is always followed by a deterministic success,

PCi,R0 = 1 ∀ i > 1. (11)
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Lemma 1: The outgoing transition probabilities from (L, i), where i > 1, are given by

PLi,Ri
=

(1− e−Gi −Gie
−Gi)Gie

−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

, (12)

PLi,L
′

i+1
=

(1− e−Gi −Gie
−Gi)e−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

, (13)

PLi,Ci+1
=

G2
i

4
e−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

, (14)

PLi,Li+1
=

1− (1 + Gi +
G2

i

4
)e−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

. (15)

Proof: Refer to Appendix A.

Lemma 2: The outgoing transition probabilities from (R, i) are given by

PRi,Ci+1
=

G2
i

4
e−Gi

1− (1 + Gi)e−Gi
∀ i > 1, (16)

PRi,Li+1
=

1−
(

1 + Gi +
G2

i

4

)

e−Gi

1− (1 + Gi)e−Gi
∀ i > 1. (17)

Proof: Refer to Appendix B.

Lemma 3: The outgoing transition probabilities from (L′, i) are given by

PL′

i
,R′

i
=

(1− e−Gi)Gie
−Gi

1− (1 + Gi−1)e−Gi−1
∀ i > 2, (18)

PL′

i
,L′

i+1
=

(1− e−Gi −Gie
−Gi)e−Gi

1− (1 + Gi−1)e−Gi−1
∀ i > 2, (19)

PL′

i
,Ci+1

=
G2

i

4
e−Gi

1− (1 + Gi−1)e−Gi−1
∀ i > 2, (20)

PL′

i
,Li+1

=
1−

(

1 + Gi +
G2

i

4

)

e−Gi

1− (1 + Gi−1)e−Gi−1
∀ i > 2. (21)

Proof: Refer to Appendix C.
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Lemma 4: The outgoing transition probabilities from (R′, i) are given by

PR′

i
,R0

=
Gie

−Gi

1− e−Gi
∀ i > 2, (22)

PR′

i
,Ci+1

=
G2

i

4
e−Gi

1− e−Gi
∀ i > 2, (23)

PR′

i
,Li+1

=
1−

(

1 + Gi +
G2

i

4

)

e−Gi

1− e−Gi
∀ i > 2. (24)

Proof: Refer to Appendix D.

In summary, Figure 3 is a DTMC and the transition probabilities are given by (8), (9), (10)

and (11), and Lemmas 1, 2, 3 and 4.

We now analyze the DTMC in Figure 3. Observe that no state can be entered more than once

before the return to (R, 0). Let QXi
denote the probability that state (X, i) is entered before

returning to (R, 0), where X ∈ {L, L′, R, R′, C} and i ∈ Z
+. In other words, QXi

denotes the

probability of hitting (X, i) in a CRP given that we start from (R, 0). Note that QC1 = PR0,C1

and QL1 = PR0,L1 . The probabilities QXi
can be calculated iteratively from the initial state (R, 0)

as follows:

QC1 =
G2

0

4
e−G0 , (25)

QL1 = 1−
(

1 + G0 +
G2

0

4

)

e−G0 , (26)

QC2 = QL1PL1,C2 + QR1PR1,C2, (27)

QL′

2
= QL1PL1,L′

2
, (28)

QL2 = QL1PL1,L2 + QR1PR1,L2 , (29)

QLi
= QL′

i−1
PL′

i−1,Li
+ QLi−1

PLi−1,Li
+ QRi−1

PRi−1,Li

+ QR′

i−1
PR′

i−1,Ri
∀ i > 3, (30)

QL′

i
= QL′

i−1
PL′

i−1,L′

i
+ QLi−1

PLi−1,L′

i
∀ i > 3, (31)

QRi
= QLi

PLi,Ri
∀ i > 1, (32)

QR′

i
= QL′

i
PL′

i
,R′

i
∀ i > 2, (33)

QCi
= QL′

i−1
PL′

i−1,Ci
+ QLi

PLi,Ci
+ QRi−1

PRi−1,Ci
+ QR′

i−1
PR′

i−1,Ci
∀ i > 3. (34)
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Let random variable K denote the number of slots in a CRP. Thus, K equals the number of

states visited in the Markov chain, including the initial state (R, 0), before the return to (R, 0).

Thus

E[K] = 1 +
∞
∑

i=1

(QLi
+ QL′

i
+ QRi

+ QR′

i
+ QCi

), (35)

where we assume QL′

1
= QR′

1
= 0.

We evaluate the change in T (k) from one CRP to the next, i.e., we evaluate the difference in

left endpoints of initial allocation intervals of successive CRPs. For the assumed initial interval

of size φ0, this change is at most φ0. However, if left allocation intervals have collisions or

captures (e.g., L in Figure 1), then the corresponding right allocation intervals (e.g., R in Figure

1) are returned to the waiting interval, and the change is less than φ0. Let random variable F

denote the fraction of φ0 returned in this manner over a CRP, so that φ0(1− F ) is the change

in T (k). We distinguish between two cases:

1) If a left allocation interval of type (L, i) has a collision or a capture, then the corresponding

right allocation interval (R, i) is returned to the waiting interval. Let ULi
denote the

probability that (L, i) has a collision or a capture. Hence, ULi
denotes the probability

that (L, i) has two or more packets. Thus, ULi
= PLi,Li+1

+ PLi,Ci+1
. Using (14) and (15),

we obtain

ULi
=

1− (1 + Gi)e
−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

∀ i > 1. (36)

2) If a left allocation interval of type (L′, i) has a collision or a capture, then the corresponding

right allocation interval (R′, i) is returned to the waiting interval. Let UL′

i
denote the

probability that (L′, i) has a collision or a capture. Hence, UL′

i
denotes the probability that

(L′, i) has two or more packets. Thus, UL′

i
= PL′

i
,Li+1

+ PL′

i
,Ci+1

. Using (20) and (21), we

obtain

UL′

i
=

1−
(

1 + Gi

)

e−Gi

1− (1 + Gi−1)e−Gi−1
∀ i > 2. (37)

In either case, the fraction of the original allocation interval returned on such a collision or a

capture is 2−i. Therefore, the expected value of F is

E[F ] =
∞
∑

i=1

(QLi
ULi

+ QL′

i
UL′

i
)2−i, (38)
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where we assume UL′

1
= 0.

From (6), (35) and (38), we observe that E[K] and E[F ] are functions only of the product

λφ0. Note that as i → ∞, Gi = 2−iλφ0 → 0. Using the Taylor series expansion for ex or

L’Hôpital’s Rule, we can easily prove that:

1)

lim
i→∞

PL′

i
,R′

i
=

1

2
, (39)

lim
i→∞

PL′

i
,L′

i+1
=

1

4
, (40)

lim
i→∞

PL′

i
,Ci+1

=
1

8
, (41)

lim
i→∞

PL′

i
,Li+1

=
1

8
, (42)

2)

lim
i→∞

PR′

i
,R0

= 1, (43)

lim
i→∞

PR′

i
,Ci+1

= 0, (44)

lim
i→∞

PR′

i
,Li+1

= 0, (45)

3)

lim
i→∞

PLi,Ri
= 0, (46)

lim
i→∞

PLi,L
′

i+1
=

1

2
, (47)

lim
i→∞

PLi,Ci+1
=

1

4
, (48)

lim
i→∞

PLi,Li+1
=

1

4
, (49)

4)

lim
i→∞

PRi,Ci+1
=

1

2
, (50)

lim
i→∞

PRi,Li+1
=

1

2
. (51)

The proofs of these results are given in Appendix E. Hence, QLi
, QL′

i
, QR′

i
and QCi

tend to

zero with increasing i as 2−i, while QRi
tends to zero with increasing i as 4−i. Thus, E[K] and

E[F ] can be easily evaluated numerically as functions of λφ0.
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Define the time backlog to be the difference between the current time and the left endpoint

of the allocation interval, i.e., k−T (k). Note that all packets that arrived in the interval T (k), k

have not yet been successfully transmitted, i.e., they are backlogged. Moreover, we define the

drift D to be the expected change in time backlog, k − T (k), over a CRP, assuming an initial

allocation interval of φ0. Thus, D is the expected number of slots in a CRP less the expected

change in T (k), and is given by

D = E[K]− φ0(1− E[F ]). (52)

The drift is negative if E[K] < φ0(1− E[F ]). Equivalently, the drift is negative if

λ <
λφ0(1−E[F ])

E[K]
=: ζ. (53)
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Fig. 5. Plot of ζ versus λφ0.

The right hand side of (53), ζ , is a function of λφ0 and is plotted in Figure 5. We observe

that ζ takes its maximum value at λφ0 = 1.4. More precisely, ζ has a numerically evaluated
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maximum of 0.5518 at λφ0 = 1.4. If φ0 is chosen to be 1.4
0.5518

= 2.54, then (53) is satisfied for

all λ < 0.5518. Thus, the expected time backlog decreases whenever it is initially larger than φ0,

and we infer that the algorithm is stable for λ < 0.5518. We have therefore proved the following

result.

Proposition 1: The maximum stable throughput of the PCFCFS algorithm is 0.5518.

VI. NUMERICAL RESULTS

In our numerical experiments, we use values of system parameters that are commonly en-

countered in wireless networks [32]. We compare the performance of the following algorithms:

1) FCFS with uniform power P1,

2) REBS [23] with uniform power P1, and

3) PCFCFS.

For each algorithm, the value of the initial allocation interval is chosen so as to achieve

maximum stable throughput. For FCFS, maximum stable throughput occurs when its initial

allocation interval, α0 = 2.6 [1]. From Section V, the maximum throughput of PCFCFS occurs

at φ0 = 2.54. For REBS, we use a fixed temporal allocation interval χ0 = 2 [23]. Let n

denote the number of arrivals in [0, τ), nsuc denote the number of successful packets in [0, τ)

and di denote the departure time of ith packet.

For a given set of system parameters, we compute the following performance metrics:

Throughput =
nsuc

τ
, (54)

Average Delay =

∑n
i=1(di − ai)

n
, (55)

Average Power =

∑n
i=1

∑di

k=⌈ai⌉
Pi(k)

n
. (56)

Keeping all other parameters fixed, we observe the effect of increasing the arrival rate on the

throughput, average delay and average power.

The system parameters for our numerical experiments are shown in Table I. From (4) and

(5), we obtain P1 = 0.2 mW and P2 = 0.6 mW. We vary the arrival rate λ from 0.40 to 0.60

packets/second in steps of 0.01. Figure 6 plots the throughput versus arrival rate for the FCFS,

REBS and PCFCFS algorithms. Figure 7 plots the average delay per successful packet versus
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Parameter Symbol Value

communication threshold γc 3 dB

noise power spectral density N0 -90 dBm

path loss exponent β 4

transmitter-receiver distance D 100 m

initial allocation interval of FCFS α0 2.6 s

initial allocation interval of PCFCFS φ0 2.54 s

algorithm operation time τ 10
5 s

TABLE I

SYSTEM PARAMETERS FOR PERFORMANCE EVALUATION OF PCFCFS AND FCFS ALGORITHMS.
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Fig. 8. Average power versus arrival rate for FCFS, PCFCFS and REBS algorithms.

arrival rate for all algorithms. Finally, Figure 8 plots the average power per successful packet

versus arrival rate for all algorithms.

For arrival rates exceeding 0.56, the throughput of PCFCFS is less than the arrival rate (Figure

6) and the average delay of PCFCFS increases rapidly (Figure 7), which leads to a substantial
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increase in the number of backlogged packets and system instability. Hence, the maximum stable

throughput of PCFCFS is between 0.55 and 0.56. Thus, Figures 6 and 7 corroborate our result

that the maximum stable throughput of PCFCFS is 0.5518 (see Section V).

For both PCFCFS and FCFS, the departure rate (throughput) equals the arrival rate for all

arrival rates up to 0.487 (Figure 6). Hence, both these algorithms are stable for arrival rates

below 0.487. For arrival rates exceeding 0.487, the departure rate of FCFS is strictly lower than

its arrival rate, leading to packet backlog and system instability. On the other hand, for PCFCFS,

the departure rate still equals its arrival rate for arrival rates between 0.487 and 0.5518. In other

words, the PCFCFS algorithm is stable for a higher range of arrival rates compared to FCFS

algorithm. However, the PCFCFS algorithm becomes unstable for arrival rates exceeding 0.5518.

For REBS, the throughput is about 5− 10% lower than the arrival rate. However, the

throughput of REBS is higher than that of FCFS for arrival rates exceeding 0.52. Moreover,

REBS achieves a maximum throughput of 0.513. This is because REBS has been designed

to optimize on power rather than throughput. This is corroborated by Figure 8, which

shows that REBS expends about 50% power per packet compared to PFCFS.

In summary, from a throughput and delay perspective, PCFCFS outperforms both FCFS

and REBS algorithms, as corroborated by Figures 6 and 7. However, this is achieved at the

cost of expending higher power per packet. PCFCFS algorithm can be potentially applicable

to wireless networks wherein users do not have stringent requirements on transmit power

but expect high data rates from the service provider.

VII. DISCUSSIONS AND CONCLUSIONS

In this section, we relax some of the assumptions of Section II and discuss their impact

on the design of the PCFCFS algorithm. Specifically, we consider realistic scenarios such

as unequal distances of transmitters (users) from the receiver and slow fading in wireless

channels. Finally, we conclude the paper.

In general, transmitters (users) can be located at unequal distances from the receiver.

For such a scenario, it is reasonable to assume that each user can estimate the distance to

the receiver (instead of the exact geographical location). A possible solution to the distance

estimation problem would be to use global positioning system or ranging techniques. Once

a user i has estimated its distance Di to the receiver, it can compute its nominal and
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higher transmission power levels P1,i and P2,i using (4) and (5) respectively. Note that

even in the case of unequal distances, one packet is received successfully in a slot if one

user i transmits with power P1,i or two users i and j transmit with powers P1,i and P2,j.

Since the receiver does not require knowledge of users’ transmission powers, the PCFCFS

algorithm can still be employed in its original form at the receiver.

In realistic wireless channels, the received signal power varies not only due to distance-

dependent propagation loss (Assumption 3 in Section II), but also due to time-varying

channel gain termed as fading. Since the receiver in PCFCFS algorithm employs energy

detectors to distinguish between success (1) and capture (c), fading effects can lead to

some incorrect decisions. A possible modification to the PCFCFS algorithm to alleviate

this problem is as follows. Under the assumption that channel gain remains constant in a

slot but can vary from slot to slot (slow fading), the receiver can adaptively change the

threshold used by the energy detector to distinguish between 1 and c. A possible method

would be to compute a weighted combination of channel gains in the last few slots to

estimate the channel gain (and thus the energy detector threshold) in the current slot,

using an algorithm like Least Mean Squares (LMS).

In this paper, we have considered random access in wireless networks under the physical

interference model. By recognizing that the receiver can successfully decode the strongest

packet in presence of multiple transmissions, we have proposed PCFCFS, a splitting

algorithm that modulates transmission powers of users based on observed channel feedback.

PCFCFS achieves higher throughput and lower delay than those of FCFS and REBS

algorithms with uniform transmission power. We show that the maximum stable throughput

of PCFCFS is 0.5518. PCFCFS can be implemented in those scenarios where users are

willing to trade some power for a substantial gain in throughput. Moreover, if users can

estimate the arrival rate of packets, then they can employ FCFS algorithm for arrival

rates up to 0.4871 and PCFCFS algorithm for higher arrival rates, thus leading to further

reduction in average transmission power.
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APPENDIX A

PROOF OF LEMMA 1

Refer to Figure 3. For i = 1, (L, i) is entered only via a collision in (R, i − 1). For i = 2,

(L, i) is entered only via a collision in (L, i− 1) or (R, i− 1). For i > 3, (L, i) is entered only

via a collision in (L′, i−1), (L, i−1), (R, i−1) or (R′, i−1). In every case, a subinterval Y is

split into Y L and Y R, and Y L becomes the new allocation interval. Let xY L and xY R denote

the number of packets in Y L and Y R respectively. A priori, xY L and xY R are independent

Poisson r.v.s of mean Gi each. The event that a collision occurred in the previous state is

{xY L + xY R > 2} ∩ {xY L = xY R = 1}c =: CY . Note that xY L + xY R = xY is a Poisson r.v. of

mean Gi−1. From (7), Gi = 1
2
Gi−1 ∀ i > 1. The probability of success in (L, i) is the probability

that xY L = 1 conditional on CY , i.e.,

PLi,Ri
= Pr(xY L = 1|CY ),

=
Pr(CY |xY L = 1) Pr(xY L = 1)

Pr(CY )
,

=
Pr({xY R = 1} ∩ {xY R = 1}c) Pr(xY L = 1)

Pr(CY )
,

=
Pr(xY R > 2) Pr(xY L = 1)

Pr({xY L + xY R > 2} ∩ {xY L = xY R = 1}c)
,

=
Pr(xY R > 2) Pr(xY L = 1)

Pr(xY > 2)− Pr(xY L = 1) Pr(xY R = 1)
,

=
(1− e−Gi −Gie

−Gi)Gie
−Gi

1− e−Gi−1 −Gi−1e−Gi−1 −G2
i e

−2Gi
,

PLi,Ri
=

(1− e−Gi −Gie
−Gi)Gie

−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

. (57)
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The probability of idle in (L, i) is the probability that xY L = 0 conditional on CY , i.e.,

PLi,L
′

i+1
= Pr(xY L = 0|CY ),

=
Pr(CY |xY L = 0) Pr(xY L = 0)

Pr(CY )
,

=
Pr({xY R > 2} ∩ {xY R = 1}c) Pr(xY L = 0)

Pr(CY )
,

=
Pr(xY R > 2) Pr(xY L = 0)

Pr({xY L + xY R > 2} ∩ {xY L = xY R = 1}c)
,

=
Pr(xY R > 2) Pr(xY L = 0)

Pr(xY > 2)− Pr(xY L = 1) Pr(xY R = 1)
,

=
(1− e−Gi −Gie

−Gi)e−Gi

1− e−Gi−1 −Gi−1e−Gi−1 −G2
i e

−2Gi
,

PLi,L
′

i+1
=

(1− e−Gi −Gie
−Gi)e−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

. (58)

Let xY LL and xY LR denote the number of packets in Y LL and Y LR respectively. xY LL and

xY LR are independent Poisson r.v.s of mean Gi+1 each, and xY LL+xY LR = xY L. The probability

of capture in (L, i) is the probability that xY LL = 1 and xY LR = 1 conditional on CY , i.e.,

PLi,Ci+1
= Pr(xY LL = 1, xY LR = 1|CY ),

=
Pr(CY |xY LL = 1, xY LR = 1) Pr(xY LL = 1, xY LR = 1)

Pr({xY L + xY R > 2} ∩ {xY L = xY R = 1}c)
,

=
Pr(CY |xY L = 2) Pr(xY LL = 1) Pr(xY LR = 1)

Pr({xY L + xY R > 2} ∩ {xY L = xY R = 1}c)
,

=
Pr(xY R > 0) Pr(xY LL = 1) Pr(xY LR = 1)

Pr(xY > 2)− Pr(xY L = 1) Pr(xY R = 1)
,

=
1.G2

i+1e
−2Gi+1

1− e−Gi−1 −Gi−1e−Gi−1 −G2
i e

−2Gi
,

PLi,Ci+1
=

G2
i

4
e−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

. (59)

From (57), (58) and (59), we obtain

PLi,Li+1
= 1− PLi,Ri

− PLi,L
′

i+1
− PLi,Ci+1

,

PLi,Li+1
=

1−
(

1 + Gi +
G2

i

4

)

e−Gi

1−
(

1 + Gi−1 +
G2

i−1

4

)

e−Gi−1

. (60)
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APPENDIX B

PROOF OF LEMMA 2

Refer to Figure 3. For i > 1, (R, i) is entered only via a success in (L, i). Recall that (L, i)

was entered only via a collision from a previous state. We use the notation introduced in the

proof of Lemma 1. Define the event

SY L := CY ∩ {xY L = 1},

= {xY L + xY R > 2} ∩ {xY L = xY R = 1}c ∩ {xY L = 1},

= {xY R > 1} ∩ {xY R = 1}c ∩ {xY L = 1},

SY L = {xY R > 2} ∩ {xY L = 1}. (61)

Let xY RL and xY RR denote the number of packets in Y RL and Y RR respectively. xY RL and

xY RR are independent Poisson r.v.s of mean Gi+1 each. Since xY R > 2, a success or an idle can

never occur in state (R, i). Note that xY R = xY RL + xY RR. The probability of capture in state

(R, i) is the probability that xY RL = 1 and xY RR = 1 conditional on SY L, i.e.,

PRi,Ci+1
= Pr(xY RL = 1, xY RR = 1|xY R > 2, xY L = 1),

= Pr(xY RL = 1, xY RR = 1|xY R > 2),

=
Pr(xY R > 2|xY RL = 1, xY RR = 1) Pr(xY RL = 1, xY RR = 1)

Pr(xY R > 2)
,

=
Pr(xY RL + xY RR > 2|xY RL = 1, xY RR = 1) Pr(xY RL = 1, xY RR = 1)

Pr(xY R > 2)
,

=
1. Pr(xY RL = 1) Pr(xY RR = 1)

Pr(xY R > 2)
,

=
G2

i+1e
−2Gi+1

1− e−Gi −Gie−Gi
,

PRi,Ci+1
=

G2
i

4
e−Gi

1− (1 + Gi)e−Gi
. (62)

From (62), we obtain

PRi,Li+1
= 1− PRi,Ci+1

,

= 1−
G2

i

4
e−Gi

1− (1 + Gi)e−Gi
,

PRi,Li+1
=

1−
(

1 + Gi +
G2

i

4

)

e−Gi

1− (1 + Gi)e−Gi
. (63)
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APPENDIX C

PROOF OF LEMMA 3

Refer to Figure 3. For i = 2, (L′, i) is entered only by an idle in (L, i− 1). For i > 3, state

(L′, i) is entered by an idle in (L′, i− 1) or an idle in (L, i− 1). In every case, a residual right

subinterval, say Z, is split into ZL and ZR, and ZL becomes the new allocation interval. Note

that (L′, i) can be entered if and only if there is a collision (in some time slot) followed by

one or more idles. Therefore, Z must contain at least two packets. Let xZL and xZR denote the

number of packets in ZL and ZR respectively. A priori, xZL and xZR are independent Poisson

r.v.s of mean Gi each. Let xZ denote the number of packets in Z. Thus xZ = xZL + xZR, xZ

is a Poisson r.v. of mean Gi−1 and xZ > 2.

The probability of success in (L′, i) is the probability that xZL = 1 conditional on xZ > 2,

i.e.,

PL′

i
,R′

i
= Pr(xZL = 1|xZ > 2),

=
Pr(xZ > 2|xZL = 1) Pr(xZL = 1)

Pr(xZ > 2)
,

=
Pr(xZL + xZR > 2|xZL = 1) Pr(xZL = 1)

Pr(xZ > 2)
,

=
Pr(xZR > 1) Pr(xZL = 1)

Pr(xZ > 2)
,

PL′

i
,R′

i
=

(1− e−Gi)Gie
−Gi

1− (1 + Gi−1)e−Gi−1
. (64)

The probability of idle in (L′, i) is the probability that xZL = 0 conditional on xZ > 2, i.e.,

PL′

i
,L′

i+1
= Pr(xZL = 0|xZ > 2),

=
Pr(xZ > 2|xZL = 0) Pr(xZL = 0)

Pr(xZ > 2)
,

=
Pr(xZL + xZR > 2|xZL = 0) Pr(xZL = 0)

Pr(xZ > 2)
,

=
Pr(xZR > 2) Pr(xZL = 0)

Pr(xZ > 2)
,

PL′

i
,L′

i+1
=

(1− e−Gi −Gie
−Gi)e−Gi

1− (1 + Gi−1)e−Gi−1
. (65)

Let xZLL and xZLR denote the number of packets in ZLL and ZLR respectively. A priori,xZLL

and xZLR are independent Poisson r.v.s of mean Gi+1 each. The probability of capture in (L′, i)
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is the probability that xZLL = 1 and xZLR = 1 conditional on xZ > 2, i.e.,

PL′

i
,Ci+1

= Pr(xZLL = 1, xZLR = 1|xZ > 2),

=
Pr(xZ > 2|xZLL = 1, xZLR = 1) Pr(xZLL = 1, xZLR = 1)

Pr(xZ > 2)
,

=
1. Pr(xZLL = 1) Pr(xZLR = 1)

Pr(xZ > 2)
,

=
G2

i+1e
−2Gi+1

1− e−Gi−1 −Gi−1e−Gi−1
,

PL′

i
,Ci+1

=
G2

i

4
e−Gi

1− (1 + Gi−1)e−Gi−1
. (66)

From (64), (65) and (66), we obtain

PL′

i
,Li+1

= 1− PL′

i
,R′

i
− PL′

i
,L′

i+1
− PL′

i
,C′

i+1
, (67)

PL′

i
,Li+1

=
1−

(

1 + Gi +
G2

i

4

)

e−Gi

1− (1 + Gi−1)e−Gi−1
. (68)

APPENDIX D

PROOF OF LEMMA 4

Refer to Figure 3. For i > 2, state (R′, i) is entered if and only if a success occurs in state

(L′, i). When (L′, i) was entered, a residual right subinterval Z was split into ZL and ZR, and

ZL became the new allocation interval. Recall that xZ > 2, since (L′, i) can only be entered

after a collision followed by one or more idles. A success in (L′, i) implies xZL = 1. Hence,

(R′, i) is entered if and only if both these events occurs, i.e., xZ > 2 and xZL = 1. Therefore,

(R′, i) can be entered if and only if xZR > 1. Note that there can never be an idle from (R′, i).

The probability of success in (R′, i) is the probability that xZR = 1 conditional on xZR > 1,

i.e.,

PR′

i
,R0

= Pr(xZR = 1|xZR > 1),

=
Pr(xZR > 1|xZR = 1) Pr(xZR = 1)

Pr(xZR > 1)
,

PR′

i
,R0

=
Gie

−Gi

1− e−Gi
. (69)

Let xZRL and xZRR denote the number of packets in ZRL and ZRR respectively. Note that

xZR = xZRL + xZRR. xZRL and xZRR are independent Poisson r.v.s of mean Gi+1 each. The



33

probability of capture in state (R′, i) is the probability that xZRL = 1 and xZRR = 1 conditional

on xZR > 1, i.e.,

PR′

i
,Ci+1

= Pr(xZRL = 1, xZRR = 1|xZR > 1),

=
Pr(xZR > 1|xZRL = 1, xZRR = 1) Pr(xZRL = 1, xZRR = 1)

Pr(xZR > 1)
,

=
1. Pr(xZRL = 1) Pr(xZRR = 1)

Pr(xZR > 1)
,

=
G2

i+1e
−2Gi+1

1− e−Gi
,

PR′

i
,Ci+1

=
G2

i

4
e−Gi

1− e−Gi
. (70)

From (69) and (70), we obtain

PR′

i
,Li+1

= 1− PR′

i
,R0
− PR′

i
,Ci+1

,

PR′

i
,Li+1

=
1−

(

1 + Gi +
G2

i

4

)

e−Gi

1− e−Gi
. (71)

APPENDIX E

PROOFS OF LIMITING TRANSITION PROBABILITIES

According to L’Hôpital’s Rule, if limx→c f(x) and limx→c g(x) are both zero or are both ±∞

and, if limx→c
f(x)
g(x)

has a finite value or if the limit is ±∞, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
. (72)

We will employ L’Hôpital’s Rule to prove (39) in this appendix.

The proofs of (40) - (51) are similar to those of (39) and omitted for brevity.

A. Proof of (39)

Proof: In (18), substitute Gi = x. From (7), Gi−1 = 2Gi = 2x. As i→∞, Gi = 2−iλφ0 →

0. Thus, using L’Hôpital’s Rule successively, we obtain
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lim
i→∞

PL′

i
,R′

i
= lim

x→0

(1− e−x)xe−x

1− (1 + 2x)e−2x
,

= lim
x→0

d
dx

(xe−x − xe−2x)
d
dx

(1− e−2x − 2xe−2x)
,

= lim
x→0

e−x + xe−x − e−2x

4xe−2x
,

= lim
x→0

d
dx

(e−x + xe−x − e−2x)
d
dx

(4xe−2x)
,

= lim
x→0

2e−2x − xe−x

4e−2x − 8xe−2x
,

lim
i→∞

PL′

i
,R′

i
=

1

2
.
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