Ethernet based Broadband Access Networks

Abhay Karandikar Department of Electrical Engineering IIT Bombay Mumbai 400076 karandi@ee.iitb.ac.in

> ICBN 2003, Bangalore, Invited Talk

Agenda of Talk

- Current Broadband Access Architecture
- Ethernet in Next Generation Access
 - Ethernet in First Mile
 - Ethernet in Metro Access
- Transport Mechanism
 - Ethernet in Metro Access
 - Role of MPLS
 - Ethernet in First Mile
 - Eiso Architecture

Current Broadband Access Architecture

• First Mile

- xDSL
- DOCSIS Cable Network
- Broadband Wireless
- Metro Access
 - Physical Layer
 - SONET/SDH
 - Transport
 - ATM

DSL Access Architecture

May 06, 2003

ICBN, 2003, Bangalore

Limitations of Current Access Architecture

- Low bandwidth
- High cost per port
- Inflexible provisioning
- For converged data, cell based/TDM based technology is inefficient

Requirements of Next Gen Broadband Access Architecture

- Scalable aggregation
- High bandwidth
- Efficient transport of voice, data and video
- Quality of Service (QoS) guarantees and usage based billing
- Rapid deployment and provisioning
- Protection and restoration capability

Next Gen Broadband Access

- First Mile
 - Ethernet in the First Mile (EFM)
- Metro Access
 - Next Generation SONET/SDH
 - Ethernet over SONET/SDH
 - Gigabit Ethernet
 - 1/10 Gbps Fully meshed architecture
 - Resilient Packet Ring/Dynamic Packet Transport

Standardization

- Ethernet in First Mile
 - IEEE 802.3ah
- Ethernet in Metro Access
 - Metro Ethernet Forum (MEF)
 - MPLS Forum
 - IETF MPLS Working Group
 - IETF PWE3 Working Group

Ethernet in First Mile

- Efficient transport of broadband data
- Rapid provisioning
 - Ethernet based solution can scale in granularity of 64 Kbps
- Optimized solution for multi-tenant/multi-unit residential/office building
- With Ethernet in Metro and Ethernet in Enterprise, EFM provides end to end Ethernet solution

EFM (IEEE 802.3ah) Approaches

- EFM Copper (EFMC)
 - 10 Mbps over Copper up to at least 750 meters
- EFM Fiber (EFMF)
 - 100 Mbps and 1 Gbps up to at least 10 Kms
- EFM PON
 - 1 Gbps and beyond upto 20 Kms.

Ethernet in Metro Access

- Reduces the cost of per user provisioning
- Efficient and Flexible transport
- Ease of Interworking
- Ubiquitous adoption

Metro Ethernet Forum (MEF) Services

- Ethernet Line Service
 - Point to Point Service
- Ethernet LAN Service
 - Multipoint to multipoint

(Source: Metro Ethernet Forum white paper)

Carrier Class Ethernet-Requirements

- Notion of Ethernet Virtual Circuit
 - Connects two or more UNI
 - Like ATM Virtual Circuit
- Guaranteed SLA and QoS Attributes
 - Committed Information Rate (CIR)
 - Committed Burst Size (CBS)
 - Peak Information Rate (PIR)
 - Maximum Burst Size (MBS)

Carrier Class Ethernet

- 50ms Resiliency and Protection
- Support of TDM voice through Circuit Emulation
- Provisioning and Service Management

Transport for Ethernet Services

Native Ethernet

- IEEE 802.3, 802.3ad, 802.1p, 802.1Q, 802.1s, 802.1x
- MPLS
 - RSVP-TE
 - DiffServ for QoS

Ethernet as Transport - Limitations

- Carrier class features
 - No admission control
 - No buffer management/scheduling
 - No concept of Ethernet circuit with QoS features and end to end context
 - Inefficient multi-service transport
- Scalability
 - Limited VLAN Tag space
 - Large number of MAC addresses

Ethernet Limitations

- Protection and Restoration
 - Limited protection and restoration
 - Available only through Rapid Spanning Tree protocol
- Performance Management
 - No OAM capability in Ethernet

MPLS as Transport Mechanism

- Scalability in terms of aggregation
- End to End QoS
 - Guaranteed Bandwidth LSP
- Offers circuit setup and traffic engineering capabilities
- Protection and Restoration
 - MPLS-TE (Backup LSP/LSP Preemption, Fast Reroute Option)

MPLS Bridges the gap

- Ethernet Encapsulation over MPLS
 - Bridging the gap for providing Ethernet Line and Ethernet LAN services
 - Martini Draft
 - Layer 2 Ethernet VPN (point to point)
 - Kompella Draft
 - Layer 2 Ethernet VPN (point to multipoint)

Challenges.....

• Effective multi-service transport

- Circuit Emulation
 - TDM circuit emulation over Packet Switched Network (CSEoPSN) (Sasha Draft)
- MPLS performance monitoring and service provisioning

Ethernet in First Mile--Issues

- IEEE 802.3ah working on MAC and PHY layer and OAM issues
- Issues not attempted
 - Bandwidth Reservations and QoS in EFM
 - Broadband Loop Emulation for multiservice transport

Eiso Access for EFM

- Eisodus Networks, a company incubated in IIT Bombay developing architecture for QoS management in EFM
- EFM Topology
 - Hub and Spoke
 - Tree and Branch

(Eiso Access is patent pending concept of Eisodus Networks)

May 06, 2003

ICBN, 2003, Bangalore

Ethernet Access Architecture

Eiso Access Architecture

- Ethernet transport in First Mile is on Ethernet Circuit
- Ethernet Circuit has QoS attributes
- Ethernet Switches in First Mile support QoS at Layer 2 (Priority Scheduling and Packet Dropping)
- Ethernet circuits can be aggregated into MPLS LSP at Ethernet Access Concentrator (which acts as LER)

Eiso QoS Management

• Ethernet Circuit

- Statically provisioned through NMS
- Dynamic provisioning through proprietary protocol
- TDM Voice over Ethernet Circuit
 - Broadband Loop Emulation
- Service Level Specification
 - CIR
 - CBS
 - Enforced through Ingress Rate Limiting

Conclusions

- Ethernet evolving as Next Generation Access Technology
 - Cost Effective
 - Flexible
 - Simple
- MPLS with TE capabilities is key to provision Ethernet Services in Metro Access
- Proposed Eiso Architectures provides the bridge between Metro and Customer in First Mile

Acknowledgements

Eisodus Networks Pvt Ltd

- Sunil Mehta
- Abhijit Gadgil
- Zainul Charbiwala
- Praveen Kumar