

SDN for 5G Wireless Networks: Research and Standardization Directions

Globecom 2019

Abhay Karandikar

Director Indian Institute of Technology Kanpur, India <u>director@iitk.ac.in</u> karandi@ee.iitb.ac.in

Pranav Jha

Senior Research Scientist Indian Institute of Technology Bombay, India pranavjha@ee.iitb.ac.in

Agenda

- Mobile Networks Moving towards 5G
 - Issues with existing mobile Networks LTE and Public Wi-Fi Networks
 - Expectations from 5G Mobile Networks
- Introduction to Software Defined Networking
- SDN Architecture and Protocols
 - ONF, RFC 7426
 - OpenFlow, OF-Config, NETCONF
- Introduction to Network Function Virtualization
- Using SDN in Mobile Networks
 - Research Proposals
- Using NFV in Mobile Networks
 - Research Proposals
- 5G Standards and Protocols
 - 3GPP 5G Architecture and SDN & NFV (RAN and Core network)
 - 3GPP SDN Interfaces and Protocols F1, E1, PFCP, NGAP
 - IEEE Standards IEEE P1930.1
- Radio Resource Management and a Few Other Use cases

Mobile Networks – Moving Towards 5G

Mobile Network Landscape

- Increased Network Densification
 - Heterogeneous Networks
 - Coexistence of Small and Large Cells
- Multi-RAT Networks
 - Different Radio Access Technologies exist together
 - LTE, WLAN, and 5G in near future
- RAN Fragmented Decision Making
 - LTE eNBs, WLAN Access Points and Controllers and gNBs take decisions independently
 - Increased Complexity
 - Dual Connectivity Complex Procedure
 - Suboptimal Resource Utilization
 - Load Balancing

Dual Connectivity – An Example

- Heterogeneous Network (HetNet)
 - Macro cells overlaid with small cells
 - A solution to handle the increasing mobile data traffic
- Large no. of small cells in HetNet
 - Increase in no of handovers and handover failures
- Dual Connectivity
 - UE simultaneously connected to small & macro cells
 - Data transfer over both cells
 - Small as well as Macro cell
 - Control plane communication through Macro cell only
 - Reduces Handover Signaling and Handover Failures in Hetnet
 - Improves per-user throughput and system capacity

LTE Dual Connectivity Architectures

- LTE LTE Dual Connectivity
 - A UE utilises Radio Resources provided by two eNBs
 - Master and Secondary eNBs
 - eNBs connected via a non-ideal backhaul over the X2 interface
- Control plane Communication
 - Through the Master Node
 - RRC located at MeNB
 - SRBs (SRB1 and SRB2) use the radio resources of the MeNB only
 - S1-MME located at MeNB
- User plane handled by MN, SN or both
- LTE-WLAN aggregation (LWA)
 - A Connected UE can utilize radio resources of LTE & WLAN both
 - configured by the eNB
- Similar to LTE DC
- Control plane Communication through eNB
 - SRBs use the radio resources of the eNB only
 - S1-MME located at the eNB
- User plane handled by eNB and WLAN both
- Two Schemes for data transfer
 - Split Bearer
 - Switched Bearer (similar to SCG bearer in LTE DC)
- One more variant LWIP

Courtesy : 3GPP TS 36.300 and TR 36.842

5G Multi-Radio DC Architecture

Courtesy: 3GPP TS 37.340

- Generalization of the LTE DC to Multi-Radio Scenario
- UE utilises resources provided by two different RAN nodes
 - One providing NR access
 - Other one providing either E-UTRA or NR access
 - Connected via ideal/nonideal backhaul
- Connected to either 4G or 5G Core
 - Through MN
- Three types of SRBs
 - SRB1 and SRB2 can be split across both MN and SN
 - SRB3 is through SN
 - Initial signalling through MN only

Dual Connectivity Issues with the Existing Architecture

- Disparate DC Mechanisms
 - Each DC mechanism is different from the others
 - LTE DC allows for SRB setup between MN and UE only
 - MR-DC allows for an additional SRB between SN and UE
 - Subtle differences in DC mechanism across RATs Brings higher complexity
- Complex Control Plane Interaction
 - Radio Resources in each BS under the control of RRC at each eNB/gNB
 - Extensive coordination between MN and SN
 - MN and SN exchanges control plane information
 - to be shared with UE/CN
- Not all combinations of DC supported
 - DC between 5G NR and WLAN not yet supported
- Multiple mechanisms for WLAN interworking with 3GPP Network
 - WLAN Interworking with 5G Core through a new interworking function N3IWF, TNGF
 - LTE WLAN Aggregation Another mechanism for interworking
 - WLAN Interworking with 4G Core through evolved Packet Data Gateway (ePDG)

Load Balancing - Suboptimal Utilization of Resources

- Distributed scheme across eNBs (gNBs)
 - Load Information shared over X2/Xn
 - No Load Information in the absence of X2/Xn
 - No entity with a unified/global view of RAN resources
 - Load Balancing may not be very effective
- Load balancing across RATs even more difficult
 - Wi-Fi and eNB/gNB
 - (Though 3GPP is trying to build some mechanism)

WLAN Deployments Today

- Significant change in WLAN Deployment Landscape
 - Earlier WLAN deployments catered to enterprise networks
 - A single vendor enough to provide access to all users
 - Now large scale deployment of IEEE WLANs
 - Public Wi-Fi Networks being deployed by Operators
 - Typically Multi-vendor Networks
- Centralized architectures for Public Wi-Fi Networks
 - Most commonly used architecture
 - Centralized Controller, typically called Access Controller (AC)
 - Wireless nodes, Access Points (APs)
 - APs together with the AC support the IEEE 802.11 functions
 - Offers better manageability and control of the underlying RAN

Public Wi-Fi Network Architecture

Public Wi-Fi Network Architecture

- ACs manage, control, and configure the APs
 - Typically terminates the control and management traffic received from APs
- AC may also be an aggregation point for the data plane
 - AC may lie in the data path between the UE/AP and the external data networks, e.g., Internet
 - All types of traffic, i.e., control, management and data traffic from different APs may be aggregated at the AC
- AC could be connected to the AP
 - Over Layer 3 (Internet Protocol) or Layer 2 (Ethernet) interface
- Multiple ACs may be present in a network to support
 - Redundancy
 - Load balancing
- The distribution of functions/services across AP and AC may vary
- AC and AP Communication
 - Typically based on the CAPWAP or other similar protocols
 - CAPWAP Control And Provisioning of Wireless Access Points Protocol
 - IETF RFC 5415 and RFC 5416

Public Wi-Fi Network Architecture

- AC forwards the UL data (from the UE) to Broadband Network Gateway
 Further sent by BNG towards Internet/External Data Network
- DL data destined for a UE is received by the AC from the BNG
 - Forwarded towards the UE via the associated AP
- AC can be collocated with BNG
- AC communicates with AAA for subscriber authentication
 - Either directly or via the BNG
- Public Wi-Fi network may be connected to the cellular core networks
 - BNG connected to the existing 4G Core Network
 - Via the evolved Packet Data Gateway (ePDG)
 - AAA server in Public Wi-Fi network connected to 4G Core AAA server
 - For 3GPP based authentication of the subscribers
- Wi-Fi Network may be integrated with 3GPP 5G Core Network too
 - Non-3GPP Interworking Function
 - Trusted non-3GPP Gateway Function
 - Being defined as part of 3GPP's 5G specifications

Public W-Fi Network Architecture – Issues/Challenges

- Vendor Interoperability
 - No universally acceptable interface between AC and AP
 - or at least acceptable to a majority of the vendors
 - APs and ACs from different vendors do not interwork
- Non-interoperability of equipment slows down
 - Network Deployment
 - Network Upgrades
 - Introduction of new services
- No clear separation between control plane and data plane
 - Another Key Issue
 - AC not only a control plane entity, an aggregation point for data plane as well
 - Increased complexity of the Node
 - Independent evolution of Data Plane and Control Plane not possible
 - Throttles innovation, delays introduction of new services
- Such Centralized Architectures also RAT specific
 - Typically catering to IEEE 802.11 based networks only
 - No centralized RAN controller for, e.g., 3GPP LTE
 - RAN control functionality is embedded in individual eNBs
 - Though Management function may be centralized in an EMS/NMS System
- No unified architectural framework to describe Multi-RAT RAN
 - comprising of different RATs, e.g., IEEE 802.11, IEEE 802.22, 3GPP 4G-LTE, 3GPP-5G

Mobile Networks – Where is it headed?

- Huge Growth in Mobile Usage
- 7.9 billion mobile subscriptions world-wide
- 6 billion mobile broadband subscriptions
 - Year-on-year growth of 15%
- Growth primarily in data traffic
- Lower ARPU

Courtesy : Ericsson Mobility Report June 2019

What does growth in data traffic mean?

Application/Usage Diversity – A key need for 5G

Courtesy –ITU/IEEE

Usage Diversity and Network Capabilities

- Application/Usage Diversity
 - Variety of Business Customers
 Automotive, Manufacturing, Public Safety, e-Commerce, Healthcare...
 - Flexibility
- Enhanced Network Capability over 4G
 - Higher throughput (peak as well as user experienced)
 - Lower Latency
 - High Connection Density
 - Enhanced Mobility
- Efficiency and Cost Reduction
 - Provide enhanced capabilities w/o increasing
 - Energy Consumption, Network Equipment Cost, Deployment Cost
 - Efficient Control and Management
 - Improved Performance

Courtesy -ITU

How do you address these Challenges?

A Short Detour

Software Defined Networking and Network Function Virtualization

Software Defined Networking (SDN)

- Network divided into two set of functions
 - Control Function
 - Programs forwarding elements
 - Forwarding Function
 - Responsible for Data Forwarding
- Functions separated through an open programmable Interface

SDN Architecture

Traditional Networks vs Software Defined Networks

- Traditional Networks
 - Tightly coupled control and forwarding function
 - Proprietary Interfaces
 - Vendor Monopoly and Lack of Interoperability
 - Throttles Innovation
 - Independent innovation at constituent planes not possible
 - Distributed intelligence and state
 - Suboptimal decisions due to fragmented view
- Software Defined Network
 - Separation of control & data planes
 - Open, Standardized interfaces for the Controller to control/manage the data plane
 - Distributed Data Plane
 - Logically Centralized Control plane
 - Unified Control

SDN based Network

Traditional Network

How does SDN help?

- Programmable Network
 - Application Provides policies, decisions to the Controller
 - Through North bound interface
 - e.g., REST based interface
 - Controller configures Forwarding Elements
 - Through South bound interface
 - e.g., OpenFlow, NETCONF
- Better utilization of network resources due to a unified global view of the network
 - Intelligence logically centralized
- Easy introduction of new services, e.g., Dual Connectivity
- Independent evolution of all three planes
- Reduced cost of the network elements

SDN Architecture – ONF

- Architectural frameworks for SDN defined on similar lines by
 - Open Networking Foundation (ONF) and Internet Engineering Task Force (IETF)
- ONF Architecture
 - Management Plane
 - Responsible for allocating resources and configuring the policy decisions for a particular client or application
 - Application Plane
 - Consists of SDN applications that request certain services from the controller plane
 - Controller or Control Plane
 - A Group of SDN controllers
 - Configures the data forwarding and processing rules
 - Data Plane
 - Responsible for the actual data processing and forwarding of data/packets
- Two sets of APIs are defined
 - Using the controller plane as the reference
- The Interface between Application and Controller Plane
 - A-CPI or North Bound Interface (NBI)
- The Interface between the Controller and the Data plane
 - D-CPI or South Bound Interface (SBI)
- OpenFlow A widely used protocol for the D-CPI

SDN Architecture - ONF

Courtesy -ONF

Some SDN Protocols - OpenFlow

- Goal
 - Creation of Virtualized Programmable Networks
 - Facilitate research and experimentation in campus networks
- Flow-tables
 - Most forwarding entities in Networks (switches/routers) has a flow-table
 - Identifies individual traffic flows
 - Helps in Routing, NATing, QoS, Firewall, Statistics Collection
- OpenFlow
 - A protocol between the Controller and the Forwarding Elements (Switches) in the Network
 - Enables a Controller to manipulate the flow-table in the switch

Courtesy: Nick McKeown et al. "OpenFlow: Enabling Innovation in Campus Networks", Open Networking Foundation "OpenFlow Switch Specification"

OpenFlow Switch

- The Switch performs actions, e.g.,
 - Forward the packets through a port
 - Drop packets
 - Forward Packets to the Controller for analysis and flow table configuration
- Supports OpenFlow Protocol
 - Enables exchange of commands and packets between a controller and the switch
 - an open and standard way for a controller to communicate with a switch
 - Uses a secure communication channel
- Has a Flow Table
 - Identifies individual flows with an action associated with each flow
 - Tells the switch how to process a particular flow

OpenFlow Switch

- A Flow Table entry has three fields
- A packet header that defines the flow, e.g.,
 - Packets belonging to a TCP connection
 - Packets for a particular MAC address or IP address
 - Packets matching a specific header
- An associated action, i.e., how the switch should process the flow packets
 - Output Action
 - Forward a packet to a specified OpenFlow port for egress processing
 - Group
 - Process the packet through the specified group
 - The exact interpretation depends on the type of group
 - Drop
 - Packets whose action sets have no output/group action are dropped
- Counters/Statistics
 - No of Bytes/Packets exchanged for the flow
 - Time since the flow is active/not active

OpenFlow Controller

- An entity interacting with the switch using the OpenFlow protocol
- Typically controls many OpenFlow Switches
- Adds, Modifies, and Deletes flow entries in flow tables of Switches
- Both Reactive and Proactive Establishment of Flows
 - Reactive Flow Establishment
 - A Switch forwards packets of a new flow to the Controller encapsulated in an OpenFlow message
 - Controller analyses the packets and decides to setup a new flow entry in the flow tables of the switches
 - Proactive Flow Establishment
 - Controller adds flow entries in the flow tables before the packets of a flow are received by the switches
- Static as well as Dynamic Flow Establishment
- May also configure the switch ports and other switch resources
 - Possibly through OpenFlow Management And Configuration Protocol
 - One can also use a protocol like NETCONF

SDN and OpenFlow - Network Slicing

- Usage of flow-space as the network resource
 - Facilitates virtualization of the network
- Virtualization over Flow Space
 - Can be divided into sub-spaces with each sub-space representing a virtual network

OpenFlow Switch

OpenFlow Controller

- The Switch can support virtualization through flow space splitting
- Partition traffic into different sets of flows
 - Each set of flows A separate Logical Network (Network Slice)
- Network Slice
 - Different Treatment, e.g., QoS
- Each Network Slice can be controlled separately

SDN and OpenFlow - Recursive Architecture

- SDN Controllers may be placed
 - In a recursive fashion for better scalability
- Recursion allows for
 - Applications to provide finer-grained services by combining multiple applications
- Higher level controller, e.g., at level "n + 1" appears to the lower level controller "n" as an Application
- The controller at level "n 1" appears as Data Plane to Controller at level "n"
- Open Flow and Recursion
 - Division of flow-space into smaller sub-spaces can also lead to Recursive Network Architecture
- A Lower-level Controller
 - Divides the flow-space into sub-spaces
 - Maps these individual sub-spaces to independent virtual networks
- These virtual networks (sub-spaces) may be controlled by separate higher-level controllers
- Virtual network controllers can manipulate the corresponding virtual networks through OpenFlow protocol

Courtesy –ONF

OF-CONFIG and NETCONF

- A Companion Protocol to OpenFlow
- OpenFlow Protocol assumes
 - OpenFlow switch already configured with relevant parameters
- OF-CONFIG Configuration and Management Protocol of
 - An Operational context containing an OpenFlow Logical Switch
 - OpenFlow Logical Switch An abstract
 OpenFlow Switch
- OF-CONFIG Configures an OpenFlow Logical Switch
 - Enables control of the OpenFlow Logical switch by a Controller thru OpenFlow protocol
 - Typically operates on a slower time scale than OpenFlow - Being a Configuration protocol
- OpenFlow
Configuration PointOpenFlow
ControllerOpenFlow
OF CONFIGOpenFlowOperation Context
OpenFlow SwitchOpenFlow Switch

- Uses Yang

OF-CONFIG and NETCONF

- OpenFlow Capable Switch
 - An Operating Context for one or more OpenFlow Logical Switches
 - Equivalent to an actual physical or virtual network element (e.g. an Ethernet switch)
 - Hosts one or more OpenFlow Logical Switches by partitioning a set of OpenFlow resources, e.g., ports and queues
- OF-CONFIG enables
 - Dynamic association of the OpenFlow related resources of an OpenFlow Capable Switch with specific OpenFlow Logical Switches
- Each OpenFlow Logical Switch can assume full control over the resources assigned to it

OpenFlow Controller

OpenFlow

OF-CONFIG and NETCONF

- OF-CONFIG uses NETCONF as the underlying Transport
- NETCONF
 - IETF RFC 6241
 - Provides mechanism to Install, Manipulate, and Delete the configuration of network devices
- Uses an XML-based data encoding for the configuration data as well as the protocol messages
- YANG Modelling Language
 - IETF RFC 6020
 - For specifying NETCONF data models and protocol operations
- Operates on top of Remote Procedure Call based messaging layer

Network Functions Virtualisation

- Network Function (NF)
 - A Functional block within a network infrastructure
 - well-defined external interfaces
 - well-defined functional behaviour
 - Typically a network node or a physical appliance : eNB/gNB, MME/AMF, SMF, UPF/PGW
- What is Network Functions Virtualisation (NFV)?
 - Separation of Network Functions from the Hardware
 - Through virtual hardware abstraction
 - Network Functions are typically implemented using software
 - Few actual hardware dependencies
 - Decouples Network Functions from the underlying Hardware
 - Decouples software implementations of Network Functions from the computation, storage, and networking resources
 - Virtualisation insulates the Network Functions from those resources through a virtualisation layer

Network Functions Virtualisation

Courtesy : ETSI

Why NFV?

- Today's Operator Networks Issues
 - Networks contain a variety of proprietary hardware equipment
 - Launch of a new service may require a new type of hardware leading to an undesirable situation
 - Finding the space and power to accommodate these hardware
 - Increasing cost of energy, capital investment
 - Lack of skills to design, integrate and operate the complex equipment set
 - Hardware-based equipment reach end of life in a few years
 - Repeat Procure-design-integrate-deploy cycle

NFV - Management and Orchestration

- Orchestration of Resources (Physical and/or Software) supporting
 Infrastructure Virtualisation
- Lifecycle Management of VNFs
- Why do you need this?
 - Network functions are decoupled from the Infrastructure
 - You need an infrastructure manager to manage and assign resources to the Network Functions
- Similar to the job of Operating System (Linux) on a Machine
- Focuses on all virtualisation-specific management tasks
- Not responsible for regular Network Management functions
 - Responsibility of NMS, EMS

Why NFV? - Benefits

- Reduced Equipment Cost
- Reduced Cost of Development
- Reduced Power Consumption
- Reduced Time to Market through minimisation of the development cycle
- Multi-tenancy support
 - Usage of a single platform for different applications and users
 - Operators to share resources across services and different customer bases
- Rapid scaling up/down of services and targeted delivery
 - Based on geography or customer groups
- Brings openness, encourages innovation
 - Easy to introduce new services at much lower risk
- Opens the virtual appliance/equipment market
 - Pure Software companies, Small Players, Academic Institutions

SDN and NFV – Relationship

- What do you think?
- Typically complementary and not dependent
- Network Functions can be virtualised and deployed without SDN being required and vice-versa, though
 - SDN can facilitate NFV through virtualization of networks
 - NFV can facilitate SDN by, say, running SDN Controller as a VNF
- Combining them together may lead to development of some interesting use cases
 - These use cases can be supported w/o SDN & NFV also
 - But SDN & NFV provides a more elegant/easier approach towards their implementation

Applying SDN and NFV to Mobile Networks

The Need for SDN in Mobile Networks

- Tightly coupled Control and Data Planes
- Proprietary Interfaces, Vendor Lock-in
- Distributed Intelligence
- Existence of multiple Radio Access Technologies
 Fragmented Control and Management of RATs
- User Association and Mobility
 - Signal strength based User Association to Network
 - Change in user association due to Mobility
 - Uneven load across network elements
 - Dual/Multi Connectivity

3GPP LTE Architecture – Compatibility with SDN?

Courtesy: 3GPP TS 36.300, "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,"

3GPP LTE Architecture – Compatibility with SDN?

• RAN

- Control plane consists of
 - Radio Resource Control, Radio Resource Management etc.
- Data plane consists of
 - Radio Interface Stack consisting of PDCP, RLC, MAC, PHY layers
 - S1-U/X2-U Interfaces comprising of GTP-U/UDP/IP layers etc.
 - Packet Forwarding, Ciphering, Rate Enforcement

• Core

- MME Control Plane Entity
 - UE Authentication and Control signaling
 - Bearer Management
- SGW/PGW Both data and control plane functionality
 - Terminating Control Plane Protocols: GTP-C, Diameter
 - UE Mobility Anchoring
 - UE IP address Management
 - Session (Bearer) Management
 - Packet Forwarding and Filtering
- Issues
 - Separation between the Control and Data Plane
 - neither open nor standardized
 - Distributed Intelligence in RAN
- Control and User Plane Separation (CUPS) in LTE Core has been taken up in 3GPP Release 14 to make it compatible with SDN
 - Both SGW and PGW have been separated into SGW-C/PGW-C and SGW-U/PGW-U

Questions to think

- How to apply SDN to Mobile Networks
 - SDN originated in wired/IP based networks
 - The concepts, which are important in SDN based wired networks, are they useful in Mobile networks also?
 - Concept of flows are quite commonly used in SDN based wired networks
 - OpenFlow protocol is based on the abstraction of flows
 - Is the concept of Flows useful for SDN based Mobile Networks?
 - Typically Mobile Networks comprise of two parts
 - Radio Access Network
 - Core Network
 - SDN for Core Network and SDN for RANs Are the issues same or different?
- SDN related Issues
 - Scalability in SDN based Mobile Networks
 - Timing Constraints and SDN based Architecture
 - Hierarchical Architecture Does it help?
- Mobility handling and SDN
- Interference Management and SDN
- NFV
 - How do we apply NFV to Mobile Networks?
 - How does it help?

Let us look at some Research Proposals first

OpenRoads – An OpenFlow based Platform

• An SDN based platform for wireless networks

- Supports Control of Mobile network comprising WiFi APs and WiMax BS
- Goal to verify and validate
 - Mobility Solutions, e.g., HO Algorithms
 - Routing Protocols
- Comprises of
 - A Controller
 - Data Path elements WiFi APs, OpenFlow Switches, WiMax BS
- Provides control of the network
 - Datapath Control with the help of OpenFlow Forwarding Control
 - Control of the device configuration through SNMP
- SNMP enables
 - Configuration of the switches and wireless access points
 - Parameters, e.g., transmit power Impacts the performance
 - Reporting of events to Controllers
 - such as a Station joining a WiFi AP
- OpenFlow enables
 - Redirection of Flows and therefore the Mobility
- Mobility Algorithms can be tested over the platform

Courtesy: Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Nikhil Handigol, Te-Yuan Huang, Michael Chan, and Nick McKeown, "OpenRoads: Empowering Research in Mobile Networks" ACM Sigcomm 2009

OpenRoads – Network Slicing

- Supports Network Slicing through Flowvisor
- Divide the flow-space in sub-spaces Network Slices

Courtesy: Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Nikhil Handigol, Te-Yuan Huang, Michael Chan, and Nick McKeown, "OpenRoads: Empowering Research in Mobile Networks" ACM Sigcomm 2009

OpenRoads – Discussion Points

- IEEE 802.11 MAC layer has many similarities to Ethernet MAC
 - Possible to view WLAN APs (with 802.11 MAC) as Ethernet switches
 - OpenFlow protocol can be used to control APs
- Using Flow level abstraction as interface between the control plane and the data plane in mobile networks
 - Allocation of Radio Resources, e.g., Bandwidth to each of the Network Slices (flow-space)
 - Hidden from the SDN Controller
 - Responsibility of the data plane entities (APs) instead
 - However APs unaware of the network slices
 - Flowvisor responsible for creating the slices
 - Over the flow-space manifested by APs (sub-spaces)
 - APs unable to maintain slice specific separation over radio resources
- Allocation of radio resources to different slices may vary over time
 - Due to the time and user specific variation in radio channels

OpenRoads – Discussion Points

- Support for Cellular Networks BSs LTE/5G NR ??
 - LTE and 5G-NR follow a much more complex radio protocol structure than IEEE 802.11 WLANs
 - Concept of Tunnels/Bearers
- Movement of Flows during UE Mobility
 - UEs may have multiple Flows
 - How to associate a Flow to a UE
 - A UE may be accessing Multiple Slices simultaneously

SDN for Cellular RAN - SoftRAN

- Proposed to harness the dense deployments of base stations
 - Dense Deployments with Frequency Reuse One
 - Users spend more time @cell boundaries
 - Distributed Control may have issues
- SoftRAN
 - Control functionality of multiple base stations abstracted as a large base station : Controller
- Physical base stations
 - Radio elements with data plane and some control function (for localized decision making)
- Controller A global view of the network
 - Network state maintained in a Database RAN Information Base
 - Interference Map, Flow Records, Operator Preferences
 - Decisions affecting other BS made at Controller
 - Handover
 - Transmit Power Control
 - UL RB Allocation
 - Decisions not affecting neighbours or shorter time scale made locally at physical BS
 - DL RB Allocation

Courtesy: A. Gudipati, D. Perry, L. E. Li, and S. Katti, "SoftRAN: Software Defined Radio Access Network," ACM SIGCOMM workshop on Hot topics in software defined networking, 2013.

SoftRAN – Discussion Points

- Hierarchical Control of RAN
 - Global Controller
 - Managing a large number of Base Stations
 - Local Controllers
 - At Individual Base Stations
- Focused towards Dense LTE Networks and Frequency Reuse One Scenario
- Proposed Architecture similar to
 - Centralized RRM/SON architecture
 - Base Station Controller ~ Centralized RRM or Centralized SON Server
- No Change on the User Equipment side
- How the LTE RAN looks like in terms of protocol Stacks
 Not clear

Courtesy: A. Gudipati, D. Perry, L. E. Li, and S. Katti, "SoftRAN: Software Defined Radio Access Network," ACM SIGCOMM workshop on Hot topics in software defined networking, 2013.

SoftRAN and Radiovisor

- Radivisor A Solution for LTE RAN Slicing
- Tries to address some of the Issues with OpenFlow based Slicing
- Based on SoftRAN Architecture
- Interference one of the key issues in Wireless Networks
 - Additional factor for slice creation and management
- Spectrum Resources allocated for each slice
 - Must be isolated
 - Not Interfere with one another
- Provides mechanisms for Slice splitting, Merging
- Supports inclusion of per-slice Controller and Applications
- Flexible and Independent Deployment of per slice configuration
 - MAC Scheduling
 - Physical layer Configuration
- Though has some of the same Issues as SoftRAN

FlexRAN

- Software defined RAN for cellular networks
- Designed and implemented for LTE networks
- Possibly extensible for future RATs
 - some of the necessary steps for the same described
- Hierarchical architecture
 - A centralized master controller
 - A FlexRAN agent (local controller) at every eNodeB
- Control functionality within RRC, PDCP, RLC and MAC
 - Moved to the Master Controller
- Master controller performs
 - radio resource scheduling decisions centrally for eNodeBs under its control
- Provides flexibility to use FlexRAN in bandwidth constrained environments
 - Introduces control modules known as Virtual Subsystem Functions (VSFs) within the FlexRAN agent
 - scheduling policies and resource configurations
 - Allows for localized operation at eNodeBs
- Suitability of FlexRAN for
 - Interference management
 - Network slicing
 - User centric networks

SDN for LTE – CellSDN, SoftCell

- Related Proposals
- Utilizes SDN to address issues with LTE Network
- Challenges of LTE Network
 - P-GW centralizes certain data-plane functions
 - Monitoring
 - Access control
 - Quality-of-service
 - All traffic is tunnelled and goes through P-GW
 - Difficult to host popular content inside cellular network
 - Scalability and Cost of Equipment (P-GW)
 - Vendor-specific configuration interfaces
 - Large Number of Tunable Parameters
 - Difficult for Operators to manage
 - Distributed Control Multiple Control Plane Entities

CellSDN – Proposed Architecture

- Existing LTE Network entities are modified/replaced
 - SDN Controller
 - Logically Centralized Control
 - Applies Subscriber Specific Policies
 - Common Control
 Protocol OpenFlow
 - BSs across different RATS, though focus on LTE
- SDN Switches
 - OVS type Switches, Packet Forwarding functionality
 - May support DPI etc.
- Middleboxes
 - Content adaptation, Optimization
- eNB RRMs are centralized – part of the SDN Controller

CellSDN - Features

- Express Policy in terms of Subscriber Attributes
 - CellOS translates subscriber specific policies into switch specific rules, say, IP address based rule
- Local Control Agent at each switch
 - Simple Control Plane actions, e.g., changing the weight/priority of a queue when traffic exceeds a threshold
 - Control Plane Scalability
- Switches Flexible Data-plane Functionality
 - Deep Packet Inspection, Header Compression
 - Reduction in the no. of Middleboxes
- Granular Packet Classification and Flexible Routing

 Lesser load on Middleboxes
- Seamless Mobility Support Proactive Flow Creation

CellSDN – Discussion Points

- Influenced by OpenRoads Architecture
 - Extended to LTE Cellular Network
- Virtualization of BSs
 - FlowVisor to be extended to virtualize/slice BS resources
 - to create virtual Base Stations
 - Virtualization of Resources Time-slots, Subcarriers, and Power
- How to support BS Virtualization
 - w/o modifying the physical-layer protocol
 - Controller can convey high-level information, e.g., id of virtual provider through the control plane to the UE
 - w/o physical broadcasting of the provider information
 - Allows UE to display the virtual provider
 - Does it mean changes in the LTE SIBs and the RRC protocol?
 - The idea sketched at a high level
- How Mobility is supported?
 - Are GTP tunnels used? OpenFlow does not support GTP tunnelling
- Hierarchical SDN Control to an extent
 - Some state maintained at Local Control Agent

SoftCell – Proposed Architecture

- SDN based Architecture for LTE Core Network
 - Similar to Data Centre architectures
 - Enhancement of the CellSDN Architecture Focus on Core Network
- Three types of components
 - SDN Controller
 - Middleboxes
 - Switches
 - Access Switches
 - Core Switches
- No specialized Core network forwarding elements
 - No S-GWs and P-GWs
 - No GTP-Tunnels
- Controller
 - Implements high-level service policies
 - Installs switch-level rules to direct traffic through middleboxes
 - To compute the paths, accesses Subscriber specific Attributes and Application specific Policies

Courtesy: Xin Jiny, Li Erran Li, Laurent Vanbevery, and Jennifer Rexford, SoftCell: Scalable and Flexible Cellular Core Network Architecture

SoftCell – Proposed Architecture

SoftCell – Discussion Points

- UEs
 - No Modifications in UE, similar to the existing LTE network
 - IP address allocated to UE does not change as it moves across base stations
 - Changes in the cellular core network not visible to the UEs
- Middleboxes
 - e.g., firewall, cache server
 - Stateful middleboxes all packets of a connection to traverse the same instance
- Switches
 - OVS type Switches, perform packet forwarding function
- Base stations
 - Uses existing protocols to connect to UE
- No GTP-Tunnels
 - Mobility support through a separate location dependent IP address for routing within the Core Network and Internet
 - Access switches perform the address translation

SoftCell – Discussion Points

- Focus on LTE Core Network
 - Based on the CellSDN Architecture
- Complementary to approaches focussed on SDN based RAN
 - SoftRAN
- Enables usage of Middleboxes in the Core as well as the Edge
- In a way, tries to utilize the concept of service function chaining in core
- Incremental Deployment in existing cellular networks
 - Thru deployment of CN proxies at BSs
 - Proxies serve as the GTP tunnel end-points
 - The Core network between BSs and the Internet is an IP core
 - Managed by the SoftCell SDN Controller
- Interworking with LTE networks
 - For interworking, SoftCell controller needs to communicate with eNodeBs and MMEs using standard LTE protocols
- Hierarchical Control
- Handling Controller Failure
 - Controller Replication
 - Querying Local Agents

MobileFlow - SDN based end-to-end Architecture

- Mobile Network is treated as an Overlay Network
- Comprises of forwarding elements and a Controller
 - MobileFlow Controller(MFC)
 - MobileFlow Forwarding Engine (MFFE)
- Mobile Flow Controller and Applications used to steer traffic thru MFFEs
- Backward compatible with 4G core networks
- SDN based network architecture
- Tries to address the integration issue between SDN-based Mobile networks and legacy mobile networks, e.g., 4G LTE
- Focussed on separation of Control plane and data plane in Core
- Not clear how SDN concepts is applied in RAN

Courtesy: Kostas Pentikousis, Yan Wang, and Weihua Hu, "MobileFlow: Toward Software-Defined Mobile Networks," IEEE Communications Magazine • July 2013.

MobileFlow - SDN based end-to-end Architecture

Courtesy: Kostas Pentikousis, Yan Wang, and Weihua Hu, "MobileFlow: Toward Software-Defined Mobile Networks," IEEE Communications Magazine • July 2013.

SDN based Architecture for Ultra Dense Networks

- SDN Architecture for Ultra Dense Networks
 - Microwave base stations (BSs),
 - Dense Microwave small cell base stations (SBSs)
 - ultra-dense mmWave Access Points
- MM-Wave Access Points (AP)
 - Primary data transmission point for users
- Microwave cells are for
 - Network control, Information Measurement, Control Signal transmission
- Hierarchical SDN Architecture
 - SDN Controllers classified into two levels
 - Centralized superior SDN controller
 - Localized subordinate SDN controller

Source: Guanding Yu, Rui Liu, Qimei Chen, and Zhenzhou Tang, "A Hierarchical SDN Architecture for Ultra-Dense Millimeter-Wave Cellular Networks"

SDN based Architecture for Ultra Dense Networks contd.

- Subordinate (Localized) SDN Controller
 - Resource allocation and traffic scheduling
 - Reduced computational complexity and network delay
 - Each subordinate SDN Controller has a service area
 - Comprising microwave Small cell BSs and mmWave APs
 - Users in a service area served by subordinate SDN Controller
 - User Association, Load Balancing, and Resource Allocation within its service area
 - Each user is associated with a
 - Small Cell BS for signalling
 - mmWave AP for data transmission
 - The service areas of different subordinate SDN Controller are non-overlapping
 - Ensures each user served by only one subordinate SDN
- Superior SDN Controller
 - Load Balancing and Energy Efficiency
 - Subordinate Control and Management
 - Change in Service Area configuration
 - Addition/deletion of free mmWave Access Points
 - Exchanges of mmWave Access Points among subordinate SDNs
- Similar to other hierarchical SDN based architectures

NFV based Approaches

Using Network Function Virtualization in RAN

- NFV aims to
 - Utilize Industry Standard Infrastructure
 - High capacity Servers, Switches and High volume Storage
 - Instantiate different Network equipment types over the shared infrastructure
 - Leveraging standard virtualization techniques
- The equipment could be located in
 - Data centres
 - Network Nodes
 - End-user Premises
- Packet Core of the Mobile Network Utilizing NFV
- Challenges in using NFV in RAN
 - Execution of RAN functionality on COTS hardware and software platform
 - RAN lower layer (PHY and MAC) function are time-critical

Virtualization of LTE RAN

- Multiple virtual eNodeBs over a physical eNodeB platform
 - Hypervisor-based Scheme
 - Network Function Virtualization
 - Focus on Air Interface Virtualization
- LTE Hypervisor responsible for virtualizing the eNodeB Into multiple virtual eNodeBs
- Each virtual eNodeB may be used by a different operator

Courtesy: Yasir Zaki, Liang Zhao, Carmelita Goerg; "LTE Wireless Virtualization and Spectrum Management"

Virtualization of LTE RAN

- Physical Resources scheduled among different virtual eNodeBs
 - Similar to XEN hypervisor
 - Focus on Radio Resource Scheduling
 - LTE uses OFDMA in the downlink
 - OFDMA sub-carriers (PRBs) are scheduled between virtual eNodeBs
 - Essentially splitting the frequency spectrum between them
- Hypervisor collects information from the individual virtual eNodeBs
 - User channel conditions
 - Load
 - Priorities & QoS Requirements
 - Contract of each of the operators
- Hypervisor uses the collected information to schedule the PRBs across virtual eNodeBs

Virtualization of LTE RAN – Discussion Points

- NFV Based Scheme
 - Though predates NFV standardization
- It is not entirely clear how the radio resources of a cell/eNB is shared across these virtual eNBs
 - In terms of standard PRB bandwidths (6, 15, 25, 50, 75 PRBs) or a more flexible scheme?
 - Does the PRB allocation change over time?
 - How control channel resources (PDCCH etc.) are allocated to virtual eNodeBs?
- eNodeB Data Plane Virtualization
 - Apparently the virtual eNodeBs do not contain the control plane functionality
- How eNodeB control plane works in this scheme?
 - Do the virtual eNBs broadcast their system information individually over the air?
 - Do the UEs perceive these virtual eNBs as individual eNBs?
- How would this scheme work in Uplink?

Cloud RAN - Network Function Virtualization

- Cloud RAN One of the early proposals in this direction
 - Predates the NFV standardization
 - Proposed by International Business Machines Corporation (IBM)
- Centralization of base band processing of base stations in Cloud/Datacenter
- Comprising of three key components
 - BBU Pool
 - Located at a centralized location like a cloud or data centres
 - Multiple BBU nodes with high computational and storage capabilities
 - Responsible for processing radio resources and assigning them to RRUs based on the network needs
 - Remote Radio Head
 - Radio Transmission/Reception Functionality
 - Fronthaul or Transport
 - Connection layer between a BBU and a set of RRUs
 - High bandwidth link to support the requirements of multiple RRUs
 - Fronthauls can be realized using
 - Optical Fiber, Cellular communication or Millimeter wave communication
 - Optical Fiber considered ideal in C-RAN
 - Provides the highest bandwidth requirement
 - Comes with high cost though
 - Cellular communication or millimeter wave communication cheaper and easy to deploy
 - Less bandwidth and More latency than optical fiber

Additional Research Proposals in the context of 5G

SDN based Architecture for Multi-RAT Networks

- One of the early works on SDN based integrated Multi-RAT Network
- Separate data plane and control plane entities
 - Separated through a programmable interface
- Base Stations & Gateways
 - Data Plane Entities
- A Virtualization Layer over the Data Plane
- Logically Centralized Controller for end-to-end Multi-RAT Network control
 - Enables a unified view of the network
- Usage of Network Slice
 - Achieves control plane scalability
 - Service differentiation

Source: Abhay Karandikar, Pranav Jha, Akshatha Nayak, *"Methods and Systems for Controlling an SDN based multi-RAT Communication Network" US Patent Publication No 20170238362.*

5G-EmPOWER

- SDN based multi-RAT Controller
- The solution provides a framework to control and manage LTE and WLAN with the help of a Unified Controller
- Aligned with three plane SDN based architecture
- Application Plane Management Applications, e.g.. SON Applications
 - The management functionality running over the 5G-EmPOWER operating system
- Control Plane
 - An Operating System (OS) known as 5G-EmPOWER
 - Behaves as the Controller, Responsible for
 - Allocating data plane resources for Users (Slices)
 - Providing isolation between users (Slices)
 - RAT-agnostic view of resources to management by abstracting network resource details
- Data Plane
 - RAN Node
 - 5G-EmPOWER agent placed on every RAN node To be configured by the OS
- OpenEmpower
 - A New Management Protocol

5G-EmPOWER

- Supports RAN slicing for LTE network
- The proposed slicing mechanism places
 - A Hypervisor over the Physical Layer
- The hypervisor abstracts the physical resource grid
 - Virtual Physical Resource Blocks (PRBs)
 - Grouped into virtual PRB groups for use
- A Slice Resource Manager placed at the MAC Layer above the hypervisor used for managing the Slice lifecycle
- Multiple slices with independent schedulers can be created
- Virtual PRB groups created with the help of the hypervisor
 - Allocated to be used by Slice Specific Schedulers
- However, authors do not provide details on how slicing could be performed over WLAN

Source:

SDN, NFV and Standardization for 5G

3GPP 5G Standardization – SDN and NFV

- 3GPP 5G explicitly leverages SDN and NFV
- Network Function Virtualization
 - Specifies Components as Network Functions and not Network Entities/Nodes
 - Compare AMF & SMF with MME
- Software Defined Networking
 - SDN based Hierarchical Architecture
 - Core and RAN
 - Separate Data and Control Plane Functions
 - Both in Core and Radio Access Network (RAN)
 - Independent Scalability and Evolution
 - Flexible Deployment
 - Centralized location or Distributed Location
 - C-RAN or Distributed RAN Nodes
 - Data Plane and Control Plane Functions separated thru standardized interface
- Only partially used in 4G and earlier systems

3GPP 5G Network Architecture – Impact of SDN and NFV

3GPP 5G Network Architecture

- Control Plane Functions in Core Network (CN)
 - Access & Mobility Management Function (AMF)
 - Session Management Function (SMF)
- Data (User) Plane Function in Core Network
 User Plane Function (UPF)
 - Support for Network Slicing

...

- Resources decoupled from each other
 - Supports "stateless" Network Functions
- Converged Core Network with a common AN CN interface
 - Integration of different Access Types, e.g., 3GPP and non-3GPP access
 - Centralized Core Network Control Plane RAT independent Control
- Service-based Interactions between Control Plane Functions
- Modular Function Design
 - To enable flexible and efficient network slicing

3GPP Core Network – Key Functions

- Access and Mobility Management Function Essentially a UE Control Entity
 - Termination of RAN Control Plane interface
 - Termination of UE Non-Access Stratum Procedures
 - UE Registration & Connection management
 - UE Mobility Management
 - Enable Transport for SM messages between UE/RAN and SMF
 - UE Access Control Authentication and Authorization
- Session Management Function Network Controller for Core
 - Session Management Session Establishment, Modification and Release
 - UE IP Address Allocation & Management
 - Traffic Configuration at UPF to route traffic to proper destination
 - Termination of Interfaces towards Policy control functions
 - Charging Control
- User Plane Function
 - Anchor point for Intra-/Inter-RAT mobility
 - External PDU Session point of interconnect to Data Network
 - QoS handling for user plane, e.g. UL/DL rate enforcement, Reflective QoS marking in DL
 - Packet Routing & Forwarding
 - Packet inspection Application detection based on service data flow template
 - Policy Rule Enforcement, e.g., Gating, Redirection, Traffic steering
 - Traffic Usage Reporting
 - Transport level packet marking in the uplink and downlink

3GPP 5G Protocols for SDN

- PFCP
 - Node Related Procedures
 - Heartbeat Procedure
 - Load Control
 - Session Management Procedures
 - Session Establishment
 - Session Modification
 - Session Deletion
 - Session Reporting

- NGAP
 - Protocol for Hierarchical SDN based Control between RAN and Core
 - Interface Specific Procedures
 - Interface Management
 - AMF Load Management
 - UE Specific Procedures
 - UE NAS Transport
 - UE Context Management
 - UE Session Management
 - UE Mobility Management

AMF

3GPP 5G Network Architecture – Unified Core

3GPP System Architecture: Courtesy TS 23.501

3GPP 5G RAN Architecture – Compatibility with SDN

Data Plane

Control Plane

Control + Data

3GPP 5G RAN Architecture : Courtesy 3GPP TS 38.401

3GPP 5G RAN Interfaces for SDN

- F1 Interface Supports
 - Control Plane and Data Plane Separation
- F1 Control Interface
 - System Information Broadcast
 - UE Context Management
 - UE RRC Message Transfer
 - Warning and Paging Message Transfer
- F1 Data Interface
 - Transfer of User Data
 - Flow Control

F1 Control Plane Stack

3GPP 5G RAN Interfaces for SDN

- E1 Interface
 - Control Data Plane
 Interface
 - Interface Management
 Procedures
 - Interface Setup/Reset Procedure
 - UE Specific Procedures
 - Bearer Setup
 - Bearer Release
 - Bearer Modification

E1 Control Plane Stack

3GPP LTE Architecture – Release 14 Enhancements

- SDN related enhancements in 4G Core
 - Control and User Plane Separation (CUPS) of EPC Nodes
 - Separation of Control and Data Plane in SGW and PGW
 - SGW/PGW Control Plane
 - Terminating Control Plane Protocols: GTP-C, Diameter
 - Interfacing
 - UE Mobility Anchoring
 - UE IP address Management
 - Session (Bearer) Management
 - SGW/PGW Data(User) Plane
 - Packet Forwarding
 - Marking
 - Rate Enforcement
- 4G RAN
 - No Change

*Courtesy: 3GPP TS 23.214, "*Architecture enhancements for control and user plane separation of EPC nodes" *3GPP TS 29.244, "*Interface between the Control Plane and the User Plane Nodes"

O-RAN Architecture for 5G

- A standard currently under development within recently formed O-RAN alliance
- O-RAN alliance
 - A Consortium of Cellular Network Operators
- Development of an SDN based smart RAN with open interfaces for
 - Enabling Vendor Inter-operability
 - Usage of artificial intelligence/machine learning algorithms for optimised network decisions
- APIs and Interfaces defined using 3GPP specifications as the base
- To reduce CAPEX, promotes usage of
 - Open-source software
 - Off-the-shelf hardware
- Based on the time scale of operation, Radio Interface Control functions divided into
 - Non-Real Time (RT) (> 1s)
 - Near-RT (< 1s)
- Non-RT Radio Interface Controller (RIC) is responsible for longer time-scale decisions
 - Policy management
 - Configuration
 - Training of learning models from the collected data etc.
- Near-RT RIC Interfaces Provides RRM related functionality
 - Mobility Management
 - Quality of Service (QoS) Management

Source: O-RAN Alliance: O-RAN: Towards an Open and Smart RAN (2018). [Online]. Available: https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf

O-RAN Architecture for 5G

- Enables Third-party Applications to be incorporated into the network
- Supports 4G LTE and 5G NR RATs at present
- As in 3GPP 5G specs, the radio protocol stack split into CU and DUs
- Interfaces defined by 3GPP being extended for use in O-RAN standard
 - E1 (between gNB-CU CP and gNB-CU UP) and F1 (between CU and DU)
- The first release of O-RAN codenamed `Amber' is expected to be released at the end of November 2019.
- O-RAN is built as an extension to 3GPP and hence does not provide any specific guidelines for slicing the RAN.
- It is intended that the mechanisms defined by 3GPP would be used as is unless explicitly mentioned within the O-RAN specifications [24]
- As a result, it is inferred that slicing within O-RAN is also implementation dependent

Source: O-RAN Alliance: O-RAN: Towards an Open and Smart RAN (2018). [Online]. Available: https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf

Additional Standardization Efforts - 5G

Existing Public WiFi Networks – Compatibility with SDN?

- Management and control of Access Points
 - Not compatible with SDN
- Access Controller
 - Typically Integrated control and data plane node
 - Similar to PGW/SGW in LTE
- Separation between the Control and Data Plane
 - Neither open nor standardized

Proposed Solution - P1930.1 Standard - Key Points

- SDN based architecture for RAN
 - With separate control and data plane functions
- Introduce a new layer between the Controller and the Radio Nodes (APs) to facilitate Vendor Interoperability
 - SDN Middleware
- "All problems in computer science can be solved by another level of indirection", David Wheeler

Proposed Solution - P1930.1 Standard contd.

- Replacement of Access Controllers with two new entities
 - SDN Controller
 - SDN Middleware
- Segregation of Control and Data @SDN Middleware wherever required
- SDN Controller responsible for Control of Access Network
 - Logically centralized control plane
- Interface as exposed by RAN nodes abstracted at SDN Middleware
- SDN Middleware acts as the AC to the APs
- Standard and Open Interface between SDN Middleware and SDN Controller
- Vendor independent management and control of radio access network by the SDN Controller
 - Interoperability across network elements from different equipment vendors
- AAA for UE Authentication can be reached either via SDN Middleware or via SDN Controller

IEEE P1930.1 – What else does it Achieve?

- Core Network Moving towards a unified Core
 - 3GPP 5G Core -Supports LTE, Wifi and 5G NR RAN
- However RAN is
 - Fragmented Controlled and
 Managed
 Independently
 - Each 5G NR gNB has a Control function in gNB CU
 - Each LTE eNB has its own control function
 - WiFi Access Points typically managed by an Access Controller
- IEEE P1930.1 can address this RAN Fragmentation

IEEE P1930.1 - Unified Control and Management

- Goal
 - Unified Control and Management of Multi-RAT Heterogeneous Access Networks
- SDN Middleware to facilitate
 - unified control of multiple RATs, e.g., IEEE 802.11 WLAN, IEEE 802.22 WRAN
 - Seamless integration of IEEE radio access technologies with non-IEEE technologies within SDN framework
- RAN can be thought of comprising of multiple functions
- Radio Tx/Rx Function
 - May include Physical Layer, MAC Layer etc.
 - BS can support this function
- Security Function
 - Encryption and Integrity Protection
 - Can be a part of the BS also
- Interworking Function
 - Interworking with Core
 - Interfacing towards Core in case of 5G it may comprise of N2/N3 Interface Functions
-
- The Functions may be managed/controlled by the Controller

IEEE P1930.1 - Unified Control and Management

- There may be additional RAN Functions, not shown here
- Connectivity to 5G Core Network (other networks) may or may not be through the virtual functions
- Virtual Functions may be used for only control and management purposes by the unified Multi-RAT Controller

IEEE P1930.1 – Proposed Multi-RAT RAN Architecture

IEEE P1930.1 - Key Architectural Components

- SDN Middleware
 - Presents an Abstract Information Model of the underlying RAN
 - Through Virtual Network Entities
 - Virtual Base Stations(vBS) for Base Stations (BS) and APs
 - Other functions, e.g., for 3GPP 5G Core Interworking Function (N3IWF)
 - Enables features like Network Slicing in RAN
 - Northbound Interface of the Middleware
 - Interface between the virtual entities and the Controller
 - From the Controller perspective, it appears as if it is interfacing directly with the physical BSs
 - NETCONF for Management and Openflow for Control
 - Southbound Interface of the Middleware
 - Interface between the physical infrastructure, e.g., AP, BS and the Middleware
 - Can be based on vendor specific or standard protocols, e.g., LWAP, CAPWAP, TR-069, SNMP
 - Middleware maps the Southbound Interface with the Northbound Interface
- SDN Controller
 - Responsible for Control and Management of the Access Network
- Management and Orchestration Entity
 - To orchestrate and manage the SDN Middleware (the virtualized network entities) over the RAN Infrastructure
- Radio Access Network Infrastructure
 - Access Points, Base Stations, Network Interworking Functions

IEEE P1930.1 – WLAN Interworking with 5G Core

P1930.1 and Dual Connectivity Support

- One of the UEs connected to two Base Stations
- Traffic From Core
 - Via the same Interworking and Security and Flow Control Function
- Delivered through different BSs via BS specific Adaptation
- SDN Controller sets up Data path through the Middleware/BS
- Dual Connectivity across RATs supported with ease
 - LWA/LWIP/LTE DC/MR-DC (All DC variants)

P1930.1 based Architecture - Network Slice support

Radio Resource Management and a Few Other Use cases

SDN based Load Balancing in WiFi Networks – Odin (1/2)

- WiFi Network uneven load across APs is an issue
- Odin A Software Defined Framework for Enterprise WLANs
- Concept of virtual APs
 - One virtual AP for each client (UE)
 - Instantiated on physical AP and associated with Client
- Virtual AP moved across physical APs along with the movement of Client
 - Under the control of the Controller
 - Reduced handover overheads
- Enables centralized control of load balancing and mobility

Courtesy: J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Huhn, and R. Merz, "Programmatic Orchestration of WiFi Networks," USENIX Annual Technical Conference, 2014

SDN based Load Balancing in WiFi Networks – Odin – 2/2

- How Does it Work?
 - Explain
- Can a similar mechanism be used in LTE/5G based networks
 - eNB/gNB?
 - What will be required?
- Advantages
 - User-centric Design
 - Probably the first example of user centric design
- Is SDN required for User Centric Design

Courtesy: J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Huhn, and R. Merz, "Programmatic Orchestration of WiFi Networks," USENIX Annual Technical Conference, 2014

SDN based Interference Management for WLAN - OpenRF

- Interference an issue for WLANs
 - Clients may receive interfering signals from neighbouring APs
- OpenRF
 - SDN based scheme for Interference Management
 - Controller manages APs
 - MIMO based scheme for Interference Management
 - Interference Nulling
 - Interference Alignment
 - APs on the same channel cancel their interference at other's clients
- Controller AP Interface
 - Protocol modeled on OpenFlow
 - interference control information supplied to APs

Courtesy: S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, "Bringing Cross-Layer MIMO to Today's Wireless LANs," ACM SIGCOMM Computer Communication Review, 2013.

Optimal Radio Access Technology Selection Algorithm for LTE-WiFi Network

- Optimal Association Policy Algorithm in LTE-WiFi HetNet
- SDN based RAN Architecture
 - Logically Centralized Multi-RAT RAN Controller
 - Possesses a Global view of the Network Resources
 - RAT selection and offloading decisions taken by the Controller
- Voice and data users arrive or depart at any point in time
- Data user may be offloaded from one RAT to another at the time of association or departure of a user
- Problem Formulated within the MDP framework
- Addresses the inherent trade-off between
 - Total System Throughput and Blocking Probability of Voice Users
- Maximizes the total system throughput
 - subject to a constraint on the voice user blocking probability, using CMDP
- Threshold structures of optimal policies established
- Algorithms based on the Threshold Structures of Optimal Policies

Integrated Access & Backhaul – Rural Broadband Use case (Under Development)

Multi-Access Edge Computing and NFV

- MEC An Important Use case of 5G
 - Content caching
 - Optimized Video
 Delivery
 - IoT
 - Augmented Reality
 Service
 - Connected cars
- NFV Plays a very Important Role in MEC Deployment

SDN based Wireless Network Architectures – Key Takeaways

- Effective Interference Management

 OpenRF
- Better Mobility Management & Load Balancing – Odin, OpenRoads
- Efficient Radio Network Utilization

 OpenRoads, SoftRAN, Radiovisor for Cellular Networks
- Unified Control and Management
 - Reduced Signaling Overheads and Efficient E2E Network Utilization
 - 5G-EmPOWER, MobileFlow, IEEE P1930.1
- May bring additional advantages
 - Independent Evolution of Control and Data Plane

References

- Ericsson Mobility Report June 2019
- <u>https://www.mckinsey.com/industries/telecommunications/our-insights/the-road-to-5g-the-inevitable-growth-of-infrastructure-cost</u>
- Nick McKeown et al. "OpenFlow: Enabling Innovation in Campus Networks",
- Open Networking Foundation "OpenFlow Switch Specification"
- R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, and C. Cavazzoni, "Comprehensive Survey on T-SDN: Software-Defined Networking for Transport Networks," IEEE Communications Surveys & Tutorials, 2017.
- I. T. Haque and N. Abu-Ghazaleh, "Wireless Software Defined Networking: A Survey and Taxonomy," IEEE Communications Surveys & Tutorials , 2016.
- S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, "Bringing Cross-Layer MIMO to Today's Wireless LANs," ACM SIGCOMM Computer Communication Review, 2013.
- J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Huhn, and R. Merz, "Programmatic Orchestration of WiFi Networks," USENIX Annual Technical Conference, 2014.
- A. Gudipati, D. Perry, L. E. Li, and S. Katti, "SoftRAN: Software Defined Radio Access Network," ACM SIGCOMM workshop on Hot topics in software defined networking, 2013.
- Katti, S., Li, L.E.: Radiovisor: A Slicing Plane for Radio Access Networks. Presented as part of the Open Networking Summit 2014.
- Foukas, X., Nikaein, N., et. al. .: FlexRAN: A Flexible and Programmable Platform for Software Defined Radio Access Networks
- Li Erran Li, Z. Morley Mao, Jennifer Rexford, "Toward Software-Defined Cellular Networks"
- Xin Jiny, Li Erran Li, Laurent Vanbevery, and Jennifer Rexford, SoftCell: Scalable and Flexible Cellular Core Network Architecture
- V. G. Nguyen, A. Brunstrom, K. J. Grinnemo, and J. Taheri, "SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey," IEEE Communications Surveys and Tutorials, 2017.

References

- K. Pentikousis, Y. Wang, and W. Hu, "Mobileflow: Toward software-defined mobile networks," IEEE Communications Magazine, 2013.
- I. F. Akyildiz, P. Wang, and S. C. Lin, "SoftAir: A software defined networking architecture for 5G wireless systems," IEEE Computer Networks, 2015.
- Abhay Karandikar, Pranav Jha, and Akshatha Nayak et el., "Methods and Systems for Controlling an SDN based multi-RAT Communication Network" US Patent Publication No 20170238362
- Guanding Yu, Rui Liu, Qimei Chen, and Zhenzhou Tang, "A Hierarchical SDN Architecture for Ultra-Dense Millimeter-Wave Cellular Networks"
- A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, "Cloud RAN for Mobile Networks A Technology Overview," IEEE Communications Surveys and Tutorials, 2015.
- P. Yang , N. Zhang , B. Yuanguo , L. Yu ,X. S. Shen, "Catalyzing cloud-fog interoperation in 5G wireless networks: An SDN approach", IEEE Networks ,2017.
- Yasir Zaki, Liang Zhao, Carmelita Goerg; "LTE Wireless Virtualization and Spectrum Management"
- A. Roy, P. Chaporkar, and A. Karandikar, "Optimal radio access technology selection algorithm for Ite-wifi network," IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6446–6460, 2018.
- Pradnya Kiri Taksande, Pranav Jha, Abhay Karandikar, " Dual Connectivity Support in 5G Networks: An SDN based approach". Accepted for publication in IEEE WCNC 2019.
- Coronado, E., Khan, S.N., Riggio, R.: 5G-EmPOWER: A Software-Defined Networking Platform for 5G Radio Access Networks. IEEE Transactions on Network and Service Management (2019)
- 3GPP TS 36.300, "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,"
- 3GPP TS 23.501, "System Architecture for the 5G System,"
- <u>O-RAN: Towards an Open and Smart RAN (2018). [Online]. Available: https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf</u>
- <u>https://standards.ieee.org/develop/project/1930.1.html</u>

Questions ??

Thank you