

SDN for 5G Wireless Networks:

 Research and Standardization DirectionsGlobecom 2019

Abhay Karandikar

Director
Indian Institute of Technology Kanpur, India director@iitk.ac.in karandi@ee.iitb.ac.in

Pranav Jha

Senior Research Scientist
Indian Institute of Technology Bombay, India
pranavjha@ee.iitb.ac.in

Agenda

- Mobile Networks - Moving towards 5G
- Issues with existing mobile Networks - LTE and Public Wi-Fi Networks
- Expectations from 5G Mobile Networks
- Introduction to Software Defined Networking
- SDN Architecture and Protocols
- ONF, RFC 7426
- OpenFlow, OF-Config, NETCONF
- Introduction to Network Function Virtualization
- Using SDN in Mobile Networks
- Research Proposals
- Using NFV in Mobile Networks
- Research Proposals
- 5G Standards and Protocols
- 3GPP 5G Architecture and SDN \& NFV (RAN and Core network)
- 3GPP SDN Interfaces and Protocols - F1, E1, PFCP, NGAP
- IEEE Standards - IEEE P1930.1
- Radio Resource Management and a Few Other Use cases

Mobile Networks - Moving Towards 5G

Mobile Network Landscape

- Increased Network Densification
- Heterogeneous Networks
- Coexistence of Small and Large Cells
- Multi-RAT Networks
- Different Radio Access Technologies exist together
- LTE, WLAN, and 5 G in near future
- RAN - Fragmented Decision Making
- LTE eNBs, WLAN Access Points and Controllers and gNBs take decisions independently

- Increased Complexity
- Dual Connectivity - Complex Procedure
- Suboptimal Resource Utilization
- Load Balancing
-

Dual Connectivity - An Example

- Heterogeneous Network (HetNet)
- Macro cells overlaid with small cells
- A solution to handle the increasing mobile data traffic
- Large no. of small cells in HetNet
- Increase in no of handovers and handover failures
- Dual Connectivity
- UE simultaneously connected to small \& macro cells
- Data transfer over both cells
- Small as well as Macro cell
- Control plane communication through Macro cell only
- Reduces Handover Signaling and Handover Failures in Hetnet
- Improves per-user throughput and system capacity

LTE Dual Connectivity Architectures

Courtesy : 3GPP TS 36.300 and TR 36.842

- LTE - LTE Dual Connectivity
- A UE utilises Radio Resources provided by two eNBs
- Master and Secondary eNBs
- eNBs connected via a non-ideal backhaul over the X2 interface
- Control plane Communication
- Through the Master Node
- RRC located at MeNB
- SRBs (SRB1 and SRB2) use the radio resources of the MeNB only
- S1-MME located at MeNB
- User plane handled by MN, SN or both
- LTE-WLAN aggregation (LWA)
- A Connected UE can utilize radio resources of LTE \& WLAN both
- configured by the eNB
- Similar to LTE DC
- Control plane Communication through eNB
- SRBs use the radio resources of the eNB only
- S1-MME located at the eNB
- User plane handled by eNB and WLAN both
- Two Schemes for data transfer
- Split Bearer
- Switched Bearer (similar to SCG bearer in LTE DC)
- One more variant - LWIP

5G Multi-Radio DC Architecture

- Generalization of the LTE DC to Multi-Radio Scenario
- UE utilises resources provided by two different RAN nodes
- One providing NR access
- Other one providing either E-UTRA or NR access
- Connected via ideal/nonideal backhaul
- Connected to either 4G or 5G Core
- Through MN
- Three types of SRBs
- SRB1 and SRB2 can be split across both MN and SN
- SRB3 is through SN
- Initial signalling through MN only

Dual Connectivity Issues with the Existing Architecture

- Disparate DC Mechanisms
- Each DC mechanism is different from the others
- LTE DC allows for SRB setup between MN and UE only
- MR-DC allows for an additional SRB between SN and UE
- Subtle differences in DC mechanism across RATs - Brings higher complexity
- Complex Control Plane Interaction
- Radio Resources in each BS under the control of RRC at each eNB/gNB
- Extensive coordination between MN and SN
- MN and SN exchanges control plane information
- to be shared with UE/CN
- Not all combinations of DC supported
- DC between 5G NR and WLAN not yet supported
- Multiple mechanisms for WLAN interworking with 3GPP Network
- WLAN Interworking with 5G Core through a new interworking function - N3IWF, TNGF
- LTE WLAN Aggregation - Another mechanism for interworking
- WLAN Interworking with 4G Core - through evolved Packet Data Gateway (ePDG)

Load Balancing - Suboptimal Utilization of Resources

- Distributed scheme across eNBs (gNBs)
- Load Information shared over X2/Xn
- No Load Information in the absence of X2/Xn
- No entity with a unified/global view of RAN resources
- Load Balancing may not be very effective
- Load balancing across RATs even more difficult
- Wi-Fi and eNB/gNB
- (Though 3GPP is trying to build some mechanism)

WLAN Deployments Today

- Significant change in WLAN Deployment Landscape
- Earlier WLAN deployments catered to enterprise networks
- A single vendor enough to provide access to all users
- Now large scale deployment of IEEE WLANs
- Public Wi-Fi Networks being deployed by Operators
- Typically Multi-vendor Networks
- Centralized architectures for Public Wi-Fi Networks
- Most commonly used architecture
- Centralized Controller, typically called Access Controller (AC)
- Wireless nodes, Access Points (APs)
- APs together with the AC support the IEEE 802.11 functions
- Offers better manageability and control of the underlying RAN

Public Wi-Fi Network Architecture

Public Wi-Fi Network Architecture

- ACs manage, control, and configure the APs
- Typically terminates the control and management traffic received from APs
- AC may also be an aggregation point for the data plane
- AC may lie in the data path between the UE/AP and the external data networks, e.g., Internet
- All types of traffic, i.e., control, management and data traffic from different APs may be aggregated at the AC
- AC could be connected to the AP
- Over Layer 3 (Internet Protocol) or Layer 2 (Ethernet) interface
- Multiple ACs may be present in a network to support
- Redundancy
- Load balancing
- The distribution of functions/services across AP and AC may vary
- AC and AP Communication
- Typically based on the CAPWAP or other similar protocols
- CAPWAP - Control And Provisioning of Wireless Access Points Protocol
- IETF RFC 5415 and RFC 5416

Public Wi-Fi Network Architecture

- AC forwards the UL data (from the UE) to Broadband Network Gateway
- Further sent by BNG towards Internet/External Data Network
- DL data destined for a UE is received by the AC from the BNG
- Forwarded towards the UE via the associated AP
- AC can be collocated with BNG
- AC communicates with AAA for subscriber authentication
- Either directly or via the BNG
- Public Wi-Fi network may be connected to the cellular core networks
- BNG connected to the existing 4G Core Network
- Via the evolved Packet Data Gateway (ePDG)
- AAA server in Public Wi-Fi network connected to 4G Core AAA server
- For 3GPP based authentication of the subscribers
- Wi-Fi Network may be integrated with 3GPP 5G Core Network too
- Non-3GPP Interworking Function
- Trusted non-3GPP Gateway Function
- Being defined as part of 3GPP's 5G specifications

Public W-Fi Network Architecture - Issues/Challenges

- Vendor Interoperability
- No universally acceptable interface between AC and AP
- or at least acceptable to a majority of the vendors
- APs and ACs from different vendors do not interwork
- Non-interoperability of equipment slows down
- Network Deployment
- Network Upgrades
- Introduction of new services
- No clear separation between control plane and data plane
- Another Key Issue
- AC not only a control plane entity, an aggregation point for data plane as well
- Increased complexity of the Node
- Independent evolution of Data Plane and Control Plane not possible
- Throttles innovation, delays introduction of new services
- Such Centralized Architectures also RAT specific
- Typically catering to IEEE 802.11 based networks only
- No centralized RAN controller for, e.g., 3GPP LTE
- RAN control functionality is embedded in individual eNBs
- Though Management function may be centralized in an EMS/NMS System
- No unified architectural framework to describe Multi-RAT RAN
- comprising of different RATs, e.g., IEEE 802.11, IEEE 802.22, 3GPP 4G-LTE, 3GPP-5G

Mobile Networks - Where is it headed?

- Huge Growth in Mobile Usage
- 7.9 billion mobile subscriptions world-wide
- 6 billion mobile broadband subscriptions
- Year-on-year growth of 15\%
- Growth primarily in

Data Vs Voice (Exabytes/month)

- Lower ARPU

> Mobile Network Evolution - From Voice to Data

What does growth in data traffic mean?

Application/Usage Diversity - A key need for 5G

Usage Diversity and Network Capabilities

- Application/Usage Diversity
- Variety of Business Customers
- Automotive, Manufacturing, Public Safety, e-Commerce, Healthcare...
- Flexibility
- Enhanced Network Capability over 4G
- Higher throughput (peak as well as user experienced)
- Lower Latency
- High Connection Density

- Enhanced Mobility
- Efficiency and Cost Reduction
- Provide enhanced capabilities w/o increasing
- Energy Consumption, Network Equipment Cost, Deployment Cost
- Efficient Control and Management
- Improved Performance

How do you address these Challenges?

A Short Detour

Software Defined Networking and Network Function Virtualization

Software Defined Networking (SDN)

- Network divided into two set of functions
- Control Function
- Programs forwarding elements
- Forwarding Function
- Responsible for Data Forwarding
- Functions separated through an open programmable Interface

Traditional Networks vs Software Defined Networks

- Traditional Networks
- Tightly coupled control and forwarding function
- Proprietary Interfaces

Traditional Network

- Vendor Monopoly and Lack of Interoperability
- Throttles Innovation
- Independent innovation at constituent planes not possible
- Distributed intelligence and state
- Suboptimal decisions due to fragmented view
- Software Defined Network
- Separation of control \& data planes
- Open, Standardized interfaces for the Controller to control/manage the data plane
- Distributed Data Plane
- Logically Centralized Control plane

SDN based Network

- Unified Control

How does SDN help?

- Programmable Network
- Application Provides policies, decisions to the Controller
- Through North bound interface
- e.g., REST based interface
- Controller configures Forwarding Elements
- Through South bound interface
- e.g., OpenFlow, NETCONF
- Better utilization of network resources due to a unified global view of the network
- Intelligence - logically centralized
- Easy introduction of new services, e.g., Dual Connectivity
- Independent evolution of all three planes
- Reduced cost of the network elements

SDN Architecture - ONF

- Architectural frameworks for SDN defined on similar lines by
- Open Networking Foundation (ONF) and Internet Engineering Task Force (IETF)
- ONF Architecture
- Management Plane
- Responsible for allocating resources and configuring the policy decisions for a particular client or application
- Application Plane
- Consists of SDN applications that request certain services from the controller plane
- Controller or Control Plane
- A Group of SDN controllers
- Configures the data forwarding and processing rules
- Data Plane
- Responsible for the actual data processing and forwarding of data/packets
- Two sets of APIs are defined
- Using the controller plane as the reference
- The Interface between Application and Controller Plane
- A-CPI or North Bound Interface (NBI)
- The Interface between the Controller and the Data plane
- D-CPI or South Bound Interface (SBI)
- OpenFlow - A widely used protocol for the D-CPI

SDN Architecture - ONF

Some SDN Protocols - OpenFlow

- Goal
- Creation of Virtualized Programmable Networks
- Facilitate research and experimentation in campus networks
- Flow-tables
- Most forwarding entities in Networks (switches/routers) has a flow-table
- Identifies individual traffic flows
- Helps in Routing, NATing, QoS, Firewall, Statistics Collection
- OpenFlow
- A protocol between the Controller and the Forwarding Elements (Switches) in the Network
- Enables a Controller to manipulate the flow-table in the switch

OpenFlow Switch

- The Switch performs actions, e.g.,
- Forward the packets through a port
- Drop packets
- Forward Packets to the Controller for analysis and flow table configuration
- Supports OpenFlow Protocol
- Enables exchange of commands and packets between a controller and the switch
- an open and standard way for a controller to communicate with a switch
- Uses a secure communication channel
- Has a Flow Table
- Identifies individual flows with an action associated with each flow
- Tells the switch how to process a particular flow

OpenFlow Switch

- A Flow Table entry has three fields
- A packet header that defines the flow, e.g.,
- Packets belonging to a TCP connection
- Packets for a particular MAC address or IP address
- Packets matching a specific header
- An associated action, i.e., how the switch should process the flow packets
- Output Action
- Forward a packet to a specified OpenFlow port for egress processing
- Group
- Process the packet through the specified group
- The exact interpretation depends on the type of group
- Drop
- Packets whose action sets have no output/group action are dropped
- Counters/Statistics
- No of Bytes/Packets exchanged for the flow
- Time since the flow is active/not active

OpenFlow Controller

- An entity interacting with the switch using the OpenFlow protocol
- Typically controls many OpenFlow Switches
- Adds, Modifies, and Deletes flow entries in flow tables of Switches
- Both Reactive and Proactive Establishment of Flows
- Reactive Flow Establishment
- A Switch forwards packets of a new flow to the Controller encapsulated in an OpenFlow message
- Controller analyses the packets and decides to setup a new flow entry in the flow tables of the switches
- Proactive Flow Establishment
- Controller adds flow entries in the flow tables before the packets of a flow are received by the switches
- Static as well as Dynamic Flow Establishment
- May also configure the switch ports and other switch resources
- Possibly through OpenFlow Management And Configuration Protocol
- One can also use a protocol like NETCONF

SDN and OpenFlow - Network Slicing

- Usage of flow-space as the network resource
- Facilitates virtualization of the network
- Virtualization over Flow Space
- Can be divided into sub-spaces with each sub-space representing a virtual network
- The Switch can support virtualization through flow space splitting
- Partition traffic into different sets of flows
- Each set of flows - A separate Logical Network (Network Slice)
- Network Slice
- Different Treatment, e.g., QoS
- Each Network Slice can be controlled separately

SDN and OpenFlow - Recursive Architecture

- SDN Controllers may be placed
- In a recursive fashion for better scalability
- Recursion allows for
- Applications to provide finer-grained services by combining multiple applications
- Higher level controller, e.g., at level " $n+1$ " appears to the lower level controller " n " as an Application
- The controller at level " $\mathrm{n}-1$ " appears as Data Plane to Controller at level " n "
- Open Flow and Recursion
- Division of flow-space into smaller sub-spaces can also lead to Recursive Network Architecture
- A Lower-level Controller
- Divides the flow-space into sub-spaces
- Maps these individual sub-spaces to independent virtual networks
- These virtual networks (sub-spaces) may be controlled by separate higher-level controllers
- Virtual network controllers can manipulate the corresponding virtual networks through OpenFlow protocol

OF-CONFIG and NETCONF

- A Companion Protocol to OpenFlow
- OpenFlow Protocol assumes
- OpenFlow switch already configured with relevant parameters
- OF-CONFIG - Configuration and Management Protocol of
- An Operational context containing an OpenFlow Logical Switch
- OpenFlow Logical Switch - An abstract OpenFlow Switch
- OF-CONFIG Configures an OpenFlow Logical Switch
- Enables control of the OpenFlow Logical switch by a Controller thru OpenFlow protocol
- Typically operates on a slower time scale than OpenFlow - Being a Configuration protocol
- Uses Yang

OF-CONFIG and NETCONF

- OpenFlow Capable Switch
- An Operating Context for one or more OpenFlow Logical Switches
- Equivalent to an actual physical or virtual network element (e.g. an Ethernet switch)
- Hosts one or more OpenFlow Logical Switches by partitioning a set of OpenFlow resources, e.g., ports and queues
- OF-CONFIG enables
- Dynamic association of the OpenFlow related resources OpenFlow Controller of an OpenFlow Capable Switch with specific OpenFlow Logical Switches
- Each OpenFlow Logical Switch can assume full control over the resources assigned to it

OpenFlow Configuration Point

OF CONFIG

OF-CONFIG and NETCONF

- OF-CONFIG uses NETCONF as the underlying Transport
- NETCONF
- IETF RFC 6241
- Provides mechanism to Install, Manipulate, and Delete the configuration of network devices
- Uses an XML-based data encoding for the configuration data as well as the protocol messages
- YANG Modelling Language
- IETF RFC 6020
- For specifying NETCONF data models and protocol operations
- Operates on top of Remote Procedure Call based messaging layer

Network Functions Virtualisation

- Network Function (NF)
- A Functional block within a network infrastructure
- well-defined external interfaces
- well-defined functional behaviour
- Typically a network node or a physical appliance : eNB/gNB, MME/AMF, SMF, UPF/PGW
- What is Network Functions Virtualisation (NFV)?
- Separation of Network Functions from the Hardware
- Through virtual hardware abstraction
- Network Functions are typically implemented using software
- Few actual hardware dependencies
- Decouples Network Functions from the underlying Hardware
- Decouples software implementations of Network Functions from the computation, storage, and networking resources
- Virtualisation insulates the Network Functions from those resources through a virtualisation layer

Network Functions Virtualisation

Courtesy : ETSI

Why NFV?

- Today's Operator Networks - Issues
- Networks contain a variety of proprietary hardware equipment
- Launch of a new service may require a new type of hardware - leading to an undesirable situation
- Finding the space and power to accommodate these hardware
- Increasing cost of energy, capital investment
- Lack of skills to design, integrate and operate the complex equipment set
- Hardware-based equipment reach end of life in a few years
- Repeat Procure-design-integrate-deploy cycle

NFV - Management and Orchestration

- Orchestration of Resources (Physical and/or Software) supporting
- Infrastructure Virtualisation
- Lifecycle Management of VNFs
- Why do you need this?
- Network functions are decoupled from the Infrastructure
- You need an infrastructure manager to manage and assign resources to the Network Functions
- Similar to the job of Operating System (Linux) on a Machine
- Focuses on all virtualisation-specific management tasks
- Not responsible for regular Network Management functions
- Responsibility of NMS, EMS

Why NFV? - Benefits

- Reduced Equipment Cost
- Reduced Cost of Development
- Reduced Power Consumption
- Reduced Time to Market through minimisation of the development cycle
- Multi-tenancy support
- Usage of a single platform for different applications and users
- Operators to share resources across services and different customer bases
- Rapid scaling up/down of services and targeted delivery
- Based on geography or customer groups
- Brings openness, encourages innovation
- Easy to introduce new services at much lower risk
- Opens the virtual appliance/equipment market
- Pure Software companies, Small Players, Academic Institutions

SDN and NFV - Relationship

- What do you think?
- Typically complementary and not dependent
- Network Functions can be virtualised and deployed without SDN being required and vice-versa, though
- SDN can facilitate NFV - through virtualization of networks
- NFV can facilitate SDN by, say, running SDN Controller as a VNF
- Combining them together may lead to development of some interesting use cases
- These use cases can be supported w/o SDN \& NFV also
- But SDN \& NFV provides a more elegant/easier approach towards their implementation

Applying SDN and NFV to Mobile Networks

The Need for SDN in Mobile Networks

- Tightly coupled Control and Data Planes
- Proprietary Interfaces, Vendor Lock-in
- Distributed Intelligence
- Existence of multiple Radio Access Technologies
- Fragmented Control and Management of RATs
- User Association and Mobility
- Signal strength based User Association to Network
- Change in user association due to Mobility
- Uneven load across network elements
- Dual/Multi Connectivity

3GPP LTE Architecture - Compatibility with SDN?

Courtesy: 3GPP TS 36.300, "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,"

3GPP LTE Architecture - Compatibility with SDN?

- RAN
- Control plane consists of
- Radio Resource Control, Radio Resource Management etc.
- Data plane consists of
- Radio Interface Stack consisting of PDCP, RLC, MAC, PHY layers
- S1-U/X2-U Interfaces comprising of GTP-U/UDP/IP layers etc.
- Packet Forwarding, Ciphering, Rate Enforcement
- Core
- MME - Control Plane Entity
- UE Authentication and Control signaling
- Bearer Management
- SGW/PGW - Both data and control plane functionality
- Terminating Control Plane Protocols: GTP-C, Diameter
- UE Mobility Anchoring
- UE IP address Management
- Session (Bearer) Management
- Packet Forwarding and Filtering
- Issues
- Separation between the Control and Data Plane
- neither open nor standardized
- Distributed Intelligence in RAN
- Control and User Plane Separation (CUPS) in LTE Core has been taken up in 3GPP Release 14 to make it compatible with SDN
- Both SGW and PGW have been separated into SGW-C/PGW-C and SGW-U/PGW-U

Questions to think

- How to apply SDN to Mobile Networks
- SDN originated in wired/IP based networks
- The concepts, which are important in SDN based wired networks, are they useful in Mobile networks also?
- Concept of flows are quite commonly used in SDN based wired networks
- OpenFlow protocol is based on the abstraction of flows
- Is the concept of Flows useful for SDN based Mobile Networks?
- Typically Mobile Networks comprise of two parts
- Radio Access Network
- Core Network
- SDN for Core Network and SDN for RANs - Are the issues same or different?
- SDN related Issues
- Scalability in SDN based Mobile Networks
- Timing Constraints and SDN based Architecture
- Hierarchical Architecture - Does it help?
- Mobility handling and SDN
- Interference Management and SDN
- NFV
- How do we apply NFV to Mobile Networks?
- How does it help?

Let us look at some Research Proposals first

OpenRoads - An OpenFlow based Platform

- An SDN based platform for wireless networks
- Supports Control of Mobile network comprising WiFi APs and WiMax BS
- Goal - to verify and validate
- Mobility Solutions, e.g., HO Algorithms
- Routing Protocols
- Comprises of
- A Controller
- Data Path elements - WiFi APs, OpenFlow Switches, WiMax BS
- Provides control of the network
- Datapath Control with the help of OpenFlow - Forwarding Control
- Control of the device configuration through SNMP
- SNMP enables
- Configuration of the switches and wireless access points
- Parameters, e.g., transmit power - Impacts the performance
- Reporting of events to Controllers
- such as a Station joining a WiFi AP
- OpenFlow enables
- Redirection of Flows and therefore the Mobility
- Mobility Algorithms can be tested over the platform

OpenRoads - Network Slicing

- Supports Network Slicing through Flowvisor
- Divide the flow-space in sub-spaces - Network Slices

Network Slice \#1 Controller

Courtesy: Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Nikhil Handigol, Te-Yuan Huang, Michael Chan, and Nick McKeown, "OpenRoads: Empowering Research in Mobile Networks" ACM Sigcomm 2009

OpenRoads - Discussion Points

- IEEE 802.11 MAC layer has many similarities to Ethernet MAC
- Possible to view WLAN APs (with 802.11 MAC) as Ethernet switches
- OpenFlow protocol can be used to control APs
- Using Flow level abstraction as interface between the control plane and the data plane in mobile networks
- Allocation of Radio Resources, e.g., Bandwidth to each of the Network Slices (flow-space)
- Hidden from the SDN Controller
- Responsibility of the data plane entities (APs) instead
- However APs unaware of the network slices
- Flowvisor responsible for creating the slices
- Over the flow-space manifested by APs (sub-spaces)
- APs unable to maintain slice specific separation over radio resources
- Allocation of radio resources to different slices may vary over time
- Due to the time and user specific variation in radio channels

OpenRoads - Discussion Points

- Support for Cellular Networks BSs - LTE/5G NR ??
- LTE and 5G-NR follow a much more complex radio protocol structure than IEEE 802.11 WLANs
- Concept of Tunnels/Bearers
- Movement of Flows during UE Mobility
- UEs may have multiple Flows
- How to associate a Flow to a UE
- A UE may be accessing Multiple Slices simultaneously

SDN for Cellular RAN - SoftRAN

- Proposed to harness the dense deployments of base stations
- Dense Deployments with Frequency Reuse One
- Users spend more time @cell boundaries
- Distributed Control may have issues
- SoftRAN
- Control functionality of multiple base stations abstracted as a large base station : Controller
- Physical base stations

- Radio elements with data plane and some control function (for localized decision making)
- Controller - A global view of the network
- Network state maintained in a Database - RAN Information Base
- Interference Map, Flow Records, Operator Preferences
- Decisions affecting other BS made at Controller
- Handover
- Transmit Power Control
- UL RB Allocation
- Decisions not affecting neighbours or shorter time scale made locally at physical BS
- DL RB Allocation

SoftRAN - Discussion Points

- Hierarchical Control of RAN
- Global Controller
- Managing a large number of Base Stations
- Local Controllers
- At Individual Base Stations
- Focused towards Dense LTE Networks and Frequency Reuse One Scenario
- Proposed Architecture similar to
- Centralized RRM/SON architecture
- Base Station Controller ~ Centralized RRM or Centralized SON Server
- No Change on the User Equipment side
- How the LTE RAN looks like in terms of protocol Stacks
- Not clear

SoftRAN and Radiovisor

- Radivisor - A Solution for LTE RAN Slicing
- Tries to address some of the Issues with OpenFlow based Slicing
- Based on SoftRAN Architecture
- Interference - one of the key issues in Wireless Networks
- Additional factor for slice creation and management
- Spectrum Resources allocated for each slice
- Must be isolated
- Not Interfere with one another
- Provides mechanisms for Slice splitting, Merging
- Supports inclusion of per-slice Controller and Applications
- Flexible and Independent Deployment of per slice configuration
- MAC Scheduling
- Physical layer Configuration
- Though has some of the same Issues as SoftRAN

FlexRAN

- Software defined RAN for cellular networks
- Designed and implemented for LTE networks
- Possibly extensible for future RATs
- some of the necessary steps for the same described
- Hierarchical architecture
- A centralized master controller
- A FlexRAN agent (local controller) at every eNodeB
- Control functionality within RRC, PDCP, RLC and MAC
- Moved to the Master Controller
- Master controller performs
- radio resource scheduling decisions centrally for eNodeBs under its control
- Provides flexibility to use FlexRAN in bandwidth constrained environments
- Introduces control modules known as Virtual Subsystem Functions (VSFs) within the FlexRAN agent

- scheduling policies and resource configurations
- Allows for localized operation at eNodeBs
- Suitability of FlexRAN for
- Interference management
- Network slicing
- User centric networks

SDN for LTE - CelISDN, SoftCell

- Related Proposals
- Utilizes SDN to address issues with LTE Network
- Challenges of LTE Network
- P-GW centralizes certain data-plane functions
- Monitoring
- Access control
- Quality-of-service
- All traffic is tunnelled and goes through P-GW
- Difficult to host popular content inside cellular network
- Scalability and Cost of Equipment (P-GW)
- Vendor-specific configuration interfaces
- Large Number of Tunable Parameters
- Difficult for Operators to manage
- Distributed Control - Multiple Control Plane Entities

CellSDN - Proposed Architecture

- Existing LTE Network entities are modified/replaced
- SDN Controller
- Logically Centralized Control
- Applies Subscriber Specific Policies
- Common Control Protocol - OpenFlow
- BSs across different RATS, though focus on LTE
- SDN Switches
- OVS type Switches, Packet Forwarding functionality
- May support DPI etc.
- Middleboxes
- Content adaptation, Optimization
- eNB RRMs are centralized - part of the SDN Controller

CellSDN - Features

- Express Policy in terms of Subscriber Attributes
- CellOS translates subscriber specific policies into switch specific rules, say, IP address based rule
- Local Control Agent at each switch
- Simple Control Plane actions, e.g., changing the weight/priority of a queue when traffic exceeds a threshold
- Control Plane Scalability
- Switches - Flexible Data-plane Functionality
- Deep Packet Inspection, Header Compression
- Reduction in the no. of Middleboxes
- Granular Packet Classification and Flexible Routing
- Lesser load on Middleboxes
- Seamless Mobility Support - Proactive Flow Creation

CellSDN - Discussion Points

- Influenced by OpenRoads Architecture
- Extended to LTE Cellular Network
- Virtualization of BSs
- FlowVisor to be extended to virtualize/slice BS resources
- to create virtual Base Stations
- Virtualization of Resources - Time-slots, Subcarriers, and Power
- How to support BS Virtualization
- w/o modifying the physical-layer protocol
- Controller can convey high-level information, e.g., id of virtual provider through the control plane to the UE
- w/o physical broadcasting of the provider information
- Allows UE to display the virtual provider
- Does it mean changes in the LTE SIBs and the RRC protocol?
- The idea sketched at a high level
- How Mobility is supported?
- Are GTP tunnels used? OpenFlow does not support GTP tunnelling
- Hierarchical SDN Control to an extent
- Some state maintained at Local Control Agent

SoftCell - Proposed Architecture

- SDN based Architecture for LTE Core Network
- Similar to Data Centre architectures
- Enhancement of the CellSDN Architecture - Focus on Core Network
- Three types of components
- SDN Controller
- Middleboxes
- Switches
- Access Switches
- Core Switches
- No specialized Core network forwarding elements
- No S-GWs and P-GWs
- No GTP-Tunnels
- Controller
- Implements high-level service policies
- Installs switch-level rules to direct traffic through middleboxes
- To compute the paths, accesses Subscriber specific Attributes and Application specific Policies

SoftCell - Proposed Architecture

SoftCell - Discussion Points

- UEs
- No Modifications in UE, similar to the existing LTE network
- IP address allocated to UE does not change as it moves across base stations
- Changes in the cellular core network not visible to the UEs
- Middleboxes
- e.g., firewall, cache server
- Stateful middleboxes - all packets of a connection to traverse the same instance
- Switches
- OVS type Switches, perform packet forwarding function
- Base stations
- Uses existing protocols to connect to UE
- No GTP-Tunnels
- Mobility support through a separate location dependent IP address for routing within the Core Network and Internet
- Access switches perform the address translation

SoftCell - Discussion Points

- Focus on LTE Core Network
- Based on the CellSDN Architecture
- Complementary to approaches focussed on SDN based RAN
- SoftRAN
- Enables usage of Middleboxes in the Core as well as the Edge
- In a way, tries to utilize the concept of service function chaining in core
- Incremental Deployment in existing cellular networks
- Thru deployment of CN proxies at BSs
- Proxies serve as the GTP tunnel end-points
- The Core network between BSs and the Internet is an IP core
- Managed by the SoftCell SDN Controller
- Interworking with LTE networks
- For interworking, SoftCell controller needs to communicate with eNodeBs and MMEs using standard LTE protocols
- Hierarchical Control
- Handling Controller Failure
- Controller Replication
- Querying Local Agents

MobileFlow - SDN based end-to-end Architecture

- Mobile Network is treated as an Overlay Network
- Comprises of forwarding elements and a Controller
- MobileFlow Controller(MFC)
- MobileFlow Forwarding Engine (MFFE)
- Mobile Flow Controller and Applications used to steer traffic thru MFFEs
- Backward compatible with 4G core networks
- SDN based network architecture
- Tries to address the integration issue between SDN-based Mobile networks and legacy mobile networks, e.g., 4G LTE
- Focussed on separation of Control plane and data plane in Core
- Not clear how SDN concepts is applied in RAN

MobileFlow - SDN based end-to-end Architecture

SDN based Architecture for Ultra Dense Networks

- SDN Architecture for Ultra Dense Networks
- Microwave base stations (BSs),
- Dense Microwave small cell base stations (SBSs)
- ultra-dense mmWave Access Points
- MM-Wave Access Points (AP)
- Primary data transmission point for users
- Microwave cells are for
- Network control, Information Measurement, Control Signal transmission
- Hierarchical SDN Architecture
- SDN Controllers classified into two levels
- Centralized superior SDN controller
- Localized subordinate SDN controller

SDN based Architecture for Ultra Dense Networks contd.

- Subordinate (Localized) SDN Controller
- Resource allocation and traffic scheduling
- Reduced computational complexity and network delay
- Each subordinate SDN Controller has a service area
- Comprising microwave Small cell BSs and mmWave APs
- Users in a service area served by subordinate SDN Controller
- User Association, Load Balancing, and Resource Allocation within its service area
- Each user is associated with a
- Small Cell BS for signalling
- mmWave AP for data transmission
- The service areas of different subordinate SDN Controller are non-overlapping
- Ensures each user served by only one subordinate SDN
- Superior SDN Controller
- Load Balancing and Energy Efficiency
- Subordinate Control and Management
- Change in Service Area configuration
- Addition/deletion of free mmWave Access Points
- Exchanges of mmWave Access Points among subordinate SDNs
- Similar to other hierarchical SDN based architectures

NFV based Approaches

Using Network Function Virtualization in RAN

- NFV aims to
- Utilize Industry Standard Infrastructure
- High capacity Servers, Switches and High volume Storage
- Instantiate different Network equipment types over the shared infrastructure
- Leveraging standard virtualization techniques
- The equipment could be located in
- Data centres
- Network Nodes
- End-user Premises
- Packet Core of the Mobile Network Utilizing NFV
- Challenges in using NFV in RAN
- Execution of RAN functionality on COTS hardware and software platform
- RAN lower layer (PHY and MAC) function are time-critical

Virtualization of LTE RAN

- Multiple virtual eNodeBs over a physical eNodeB platform
- Hypervisor-based Scheme
- Network Function Virtualization
- Focus on Air Interface Virtualization
- LTE Hypervisor responsible for virtualizing the eNodeB Into multiple virtual eNodeBs
- Each virtual eNodeB may be used by a different operator

Virtualization of LTE RAN

- Physical Resources scheduled among different virtual eNodeBs
- Similar to XEN hypervisor
- Focus on Radio Resource Scheduling
- LTE uses OFDMA in the downlink
- OFDMA sub-carriers (PRBs) are scheduled between virtual eNodeBs
- Essentially splitting the frequency spectrum between them
- Hypervisor collects information from the individual virtual eNodeBs
- User channel conditions
- Load
- Priorities \& QoS Requirements
- Contract of each of the operators
- Hypervisor uses the collected information to schedule the PRBs across virtual eNodeBs

Virtualization of LTE RAN - Discussion Points

- NFV Based Scheme
- Though predates NFV standardization
- It is not entirely clear how the radio resources of a cell/eNB is shared across these virtual eNBs
- In terms of standard PRB bandwidths (6, 15, 25, 50, 75 PRBs) or a more flexible scheme?
- Does the PRB allocation change over time?
- How control channel resources (PDCCH etc.) are allocated to virtual eNodeBs?
- eNodeB Data Plane Virtualization
- Apparently the virtual eNodeBs do not contain the control plane functionality
- How eNodeB control plane works in this scheme?
- Do the virtual eNBs broadcast their system information individually over the air?
- Do the UEs perceive these virtual eNBs as individual eNBs?
- How would this scheme work in Uplink?

Cloud RAN - Network Function Virtualization

- Cloud RAN - One of the early proposals in this direction
- Predates the NFV standardization
- Proposed by International Business Machines Corporation (IBM)
- Centralization of base band processing of base stations in Cloud/Datacenter
- Comprising of three key components
- BBU Pool
- Located at a centralized location like a cloud or data centres
- Multiple BBU nodes with high computational and storage capabilities
- Responsible for processing radio resources and assigning them to RRUs based on the network needs
- Remote Radio Head
- Radio Transmission/Reception Functionality
- Fronthaul or Transport
- Connection layer between a BBU and a set of RRUs
- High bandwidth link to support the requirements of multiple RRUs
- Fronthauls can be realized using
- Optical Fiber, Cellular communication or Millimeter wave communication
- Optical Fiber considered ideal in C-RAN
- Provides the highest bandwidth requirement
- Comes with high cost though
- Cellular communication or millimeter wave communication cheaper and easy to deploy
- Less bandwidth and More latency than optical fiber

Additional Research Proposals in the context of 5G

SDN based Architecture for Multi-RAT Networks

- One of the early works on SDN based integrated Multi-RAT Network
- Separate data plane and control plane entities
- Separated through a programmable interface
- Base Stations \& Gateways
- Data Plane Entities
- A Virtualization Layer over the Data Plane
- Logically Centralized Controller for end-to-end Multi-RAT Network control
- Enables a unified view of the network
- Usage of Network Slice
- Achieves control plane scalability
- Service differentiation

5G-EmPOWER

- SDN based multi-RAT Controller
- The solution provides a framework to control and manage LTE and WLAN with the help of a Unified Controller
- Aligned with three plane SDN based architecture
- Application Plane - Management Applications, e.g.. SON Applications
- The management functionality running over the 5G-EmPOWER operating system
- Control Plane
- An Operating System (OS) known as 5G-EmPOWER
- Behaves as the Controller, Responsible for
- Allocating data plane resources for Users (Slices)
- Providing isolation between users (Slices)
- RAT-agnostic view of resources to management by abstracting network resource details
- Data Plane
- RAN Node
- 5G-EmPOWER agent placed on every RAN node - To be configured by the OS
- OpenEmpower
- A New Management Protocol

5G-EmPOWER

- Supports RAN slicing for LTE network
- The proposed slicing mechanism places
- A Hypervisor over the Physical Layer
- The hypervisor abstracts the physical resource grid
- Virtual Physical Resource Blocks (PRBs)
- Grouped into virtual PRB groups for use
- A Slice Resource Manager placed at the MAC Layer above the hypervisor used for managing the Slice lifecycle
- Multiple slices with independent schedulers can be created
- Virtual PRB groups created with the help of the hypervisor
- Allocated to be used by Slice Specific Schedulers
- However, authors do not provide details on how slicing could be performed over WLAN

Management Plane (Application)

Other SON
Applications
Northbound Interface

5G-EmPOWER Operating System

 (Control Plane)Southbound Interface

```
5G-EmPOWER
    Agent
```


5G-NR

5G-EmPOWER Agent

WLAN

5G-EmPOWER
Agent

LTE

SDN, NFV and Standardization for 5G

3GPP 5G Standardization - SDN and NFV

- 3GPP 5G explicitly leverages SDN and NFV
- Network Function Virtualization
- Specifies Components as Network Functions and not Network Entities/Nodes
- Compare AMF \& SMF with MME
- Software Defined Networking
- SDN based Hierarchical Architecture
- Core and RAN
- Separate Data and Control Plane Functions
- Both in Core and Radio Access Network (RAN)
- Independent Scalability and Evolution
- Flexible Deployment
- Centralized location or Distributed Location
- C-RAN or Distributed RAN Nodes
- Data Plane and Control Plane Functions separated thru standardized interface
- Only partially used in 4G and earlier systems

3GPP 5G Network Architecture - Impact of SDN and NFV

3GPP 5G Network Architecture

- Control Plane Functions in Core Network (CN)
- Access \& Mobility Management Function (AMF)
- Session Management Function (SMF)
- ...
- Data (User) Plane Function in Core Network
- User Plane Function (UPF)
- Support for Network Slicing
- Resources decoupled from each other
- Supports "stateless" Network Functions
- Converged Core Network with a common AN - CN interface
- Integration of different Access Types, e.g., 3GPP and non-3GPP access
- Centralized Core Network Control Plane - RAT independent Control
- Service-based Interactions between Control Plane Functions
- Modular Function Design
- To enable flexible and efficient network slicing

3GPP Core Network - Key Functions

- Access and Mobility Management Function - Essentially a UE Control Entity
- Termination of RAN Control Plane interface
- Termination of UE Non-Access Stratum Procedures
- UE Registration \& Connection management
- UE Mobility Management
- Enable Transport for SM messages between UE/RAN and SMF
- UE Access Control - Authentication and Authorization
- Session Management Function - Network Controller for Core
- Session Management - Session Establishment, Modification and Release
- UE IP Address Allocation \& Management
- Traffic Configuration at UPF to route traffic to proper destination
- Termination of Interfaces towards Policy control functions
- Charging Control
- User Plane Function
- Anchor point for Intra-/Inter-RAT mobility
- External PDU Session point of interconnect to Data Network
- QoS handling for user plane, e.g. UL/DL rate enforcement, Reflective QoS marking in DL
- Packet Routing \& Forwarding
- Packet inspection - Application detection based on service data flow template
- Policy Rule Enforcement, e.g., Gating, Redirection, Traffic steering
- Traffic Usage Reporting
- Transport level packet marking in the uplink and downlink

3GPP 5G Protocols for SDN

- PFCP
- Node Related Procedures
- Heartbeat Procedure
- Load Control
- Session Management Procedures
- Session Establishment
- Session Modification
- Session Deletion
- Session Reporting
- NGAP
- Protocol for Hierarchical SDN based Control between RAN and Core
- Interface Specific Procedures
- Interface Management
- AMF Load Management
- UE Specific Procedures
- UE NAS Transport
- UE Context Management
- UE Session Management
- UE Mobility Management

PFCP			PFCP
UDP			UDP
IP			IP
L2			L2
L1			L1
CP function			UP function

Sx and N4 reference point

RAN
AMF

3GPP 5G Network Architecture - Unified Core

3GPP 5G RAN Architecture - Compatibility with SDN

3GPP 5G RAN Interfaces for SDN

- F1 Interface Supports
- Control Plane and Data Plane Separation
- F1 Control Interface
- System Information Broadcast
- UE Context Management
- UE RRC Message Transfer
- Warning and Paging Message Transfer
- F1 Data Interface
- Transfer of User Data
- Flow Control

Control Plane

F1 Control Plane Stack

User Plane

3GPP 5G RAN Interfaces for SDN

- E1 Interface
- Control - Data Plane Interface
- Interface Management Procedures
- Interface Setup/Reset Procedure
- UE Specific Procedures
- Bearer Setup
- Bearer Release
- Bearer Modification

3GPP LTE Architecture - Release 14 Enhancements

- SDN related enhancements in 4G Core
- Control and User Plane Separation (CUPS) of EPC Nodes
- Separation of Control and Data Plane in SGW and PGW
- SGW/PGW Control Plane
- Terminating Control Plane Protocols: GTP-C, Diameter
- Interfacing
- UE Mobility Anchoring
- UE IP address Management
- Session (Bearer) Management
- SGW/PGW Data(User) Plane
- Packet Forwarding
- Marking
- Rate Enforcement
- 4G RAN
- No Change

O-RAN Architecture for 5G

- A standard currently under development within recently formed O-RAN alliance
- O-RAN alliance
- A Consortium of Cellular Network Operators
- Development of an SDN based smart RAN with open interfaces for
- Enabling Vendor Inter-operability
- Usage of artificial intelligence/machine learning algorithms for optimised network decisions
- APIs and Interfaces defined using 3GPP specifications as the base
- To reduce CAPEX, promotes usage of
- Open-source software
- Off-the-shelf hardware
- Based on the time scale of operation, Radio Interface Control functions divided into
- Non-Real Time (RT) (> 1s)
- Near-RT (<1s)
- Non-RT Radio Interface Controller (RIC) is responsible for longer time-scale decisions
- Policy management
- Configuration
- Training of learning models from the collected data etc.
- Near-RT RIC Interfaces Provides RRM related functionality
- Mobility Management
- Quality of Service (QoS) Management

O-RAN Architecture for 5G

- Enables Third-party Applications to be incorporated into the network
- Supports 4G LTE and 5G NR RATs at present
- As in 3GPP 5G specs, the radio protocol stack split into CU and DUs
- Interfaces defined by 3GPP being extended for use in O-RAN standard
- E1 (between gNB-CU CP and gNB-CU UP) and F1 (between CU and DU)
- The first release of O-RAN codenamed 'Amber' is expected to be released at the end of November 2019.
- O-RAN is built as an extension to 3GPP and hence does not provide any specific guidelines for slicing the RAN.
- It is intended that the mechanisms defined by 3GPP would be used as is unless explicitly mentioned within the O-RAN specifications [24]
- As a result, it is inferred that slicing within O-RAN is also implementation dependent

Additional Standardization Efforts - 5G

Existing Public WiFi Networks - Compatibility with SDN?

- Management and control of Access Points
- Not compatible with SDN
- Access Controller
- Typically Integrated control and data plane node
- Similar to PGW/SGW in LTE
- Separation between the Control and Data Plane
- Neither open nor standardized

Proposed Solution - P1930.1 Standard - Key Points

- SDN based architecture for RAN
- With separate control and data plane functions
- Introduce a new layer between the Controller and the Radio Nodes (APs) to facilitate Vendor Interoperability
- SDN Middleware
- "All problems in
computer science can be solved by another level
of indirection", David
Wheeler

Proposed Solution - P1930.1 Standard contd.

- Replacement of Access Controllers with two new entities
- SDN Controller
- SDN Middleware
- Segregation of Control and Data @SDN Middleware wherever required
- SDN Controller responsible for Control of Access Network
- Logically centralized control plane
- Interface as exposed by RAN nodes abstracted at SDN Middleware
- SDN Middleware acts as the AC to the APs
- Standard and Open Interface between SDN Middleware and SDN Controller
- Vendor independent management and control of radio access network by the SDN Controller
- Interoperability across network elements from different equipment vendors
- AAA for UE Authentication can be reached either via SDN Middleware or via SDN Controller

IEEE P1930.1 - What else does it Achieve?

- Core Network - Moving towards a unified Core
- 3GPP 5G Core Supports LTE, Wifi and 5G NR RAN
- However RAN is
- Fragmented Controlled and Managed Independently
- Each 5G NR - gNB has a Control function in gNB CU
- Each LTE - eNB has its own control function
- WiFi Access Points typically managed by an Access Controller
- IEEE P1930.1 can address this RAN Fragmentation
Unified Multi-RAT Control

IEEE P1930.1 - Unified Control and Management

- Goal
- Unified Control and Management of Multi-RAT Heterogeneous Access Networks
- SDN Middleware to facilitate
- unified control of multiple RATs, e.g., IEEE 802.11 WLAN, IEEE 802.22 WRAN
- Seamless integration of IEEE radio access technologies with non-IEEE technologies within SDN framework
- RAN can be thought of comprising of multiple functions
- Radio Tx/Rx Function
- May include Physical Layer, MAC Layer etc.
- BS can support this function
- Security Function
- Encryption and Integrity Protection
- Can be a part of the BS also
- Interworking Function
- Interworking with Core
- Interfacing towards Core - in case of 5G it may comprise of N2/N3 Interface Functions
.
- The Functions may be managed/controlled by the Controller

IEEE P1930.1 - Unified Control and Management

- There may be additional RAN Functions, not shown here
- Connectivity to 5G Core Network (other networks) may or may not be through the virtual functions
- Virtual Functions may be used for only control and management purposes by the unified Multi-RAT Controller

IEEE P1930.1 - Proposed Multi-RAT RAN Architecture

IEEE P1930.1 - Key Architectural Components

- SDN Middleware
- Presents an Abstract Information Model of the underlying RAN
- Through Virtual Network Entities
- Virtual Base Stations(vBS) for Base Stations (BS) and APs
- Other functions, e.g., for 3GPP 5G Core Interworking Function (N3IWF)
- Enables features like Network Slicing in RAN
- Northbound Interface of the Middleware
- Interface between the virtual entities and the Controller
- From the Controller perspective, it appears as if it is interfacing directly with the physical BSs
- NETCONF for Management and Openflow for Control
- Southbound Interface of the Middleware
- Interface between the physical infrastructure, e.g., AP, BS and the Middleware
- Can be based on vendor specific or standard protocols, e.g., LWAP, CAPWAP, TR-069, SNMP
- Middleware maps the Southbound Interface with the Northbound Interface
- SDN Controller
- Responsible for Control and Management of the Access Network
- Management and Orchestration Entity
- To orchestrate and manage the SDN Middleware (the virtualized network entities) over the RAN Infrastructure
- Radio Access Network Infrastructure
- Access Points, Base Stations, Network Interworking Functions

IEEE P1930.1 - WLAN Interworking with 5G Core

P1930.1 and Dual Connectivity Support

- One of the UEs connected to two Base Stations
- Traffic From Core
- Via the same Interworking and Security and Flow Control Function
- Delivered through different BSs via BS specific Adaptation
- SDN Controller sets up Data path through the Middleware/BS
- Dual Connectivity across RATs supported with ease
- LWA/LWIP/LTE DC/MR-DC (All DC variants)

P1930.1 based Architecture - Network Slice support

Radio Resource Management and a Few Other Use cases

SDN based Load Balancing in WiFi Networks - Odin (1/2)

- WiFi Network - uneven load across APs is an issue
- Odin - A Software Defined Framework for Enterprise WLANs
- Concept of virtual APs
- One virtual AP for each client (UE)
- Instantiated on physical AP and associated with Client
- Virtual AP moved across physical APs along with the movement of Client
- Under the control of the Controller
- Reduced handover overheads
- Enables centralized control of load balancing and mobility

SDN based Load Balancing in WiFi Networks - Odin - 2/2

- How Does it Work?
- Explain
- Can a similar mechanism be used in LTE/5G based networks
- eNB/gNB?
- What will be required?
- Advantages
- User-centric Design
- Probably the first example of user centric design
- Is SDN required for User Centric Design

SDN based Interference Management for WLAN - OpenRF

- Interference an issue for WLANs
- Clients may receive interfering signals from neighbouring APs
- OpenRF
- SDN based scheme for Interference Management
- Controller manages APs
- MIMO based scheme for Interference Management
- Interference Nulling
- Interference Alignment
- APs on the same channel cancel their interference at other's clients
- Controller - AP Interface
- Protocol modeled on OpenFlow
- interference control information supplied to APs

Optimal Radio Access Technology Selection Algorithm for LTE-

 WiFi Network- Optimal Association Policy Algorithm in LTE-WiFi HetNet
- SDN based RAN Architecture
- Logically Centralized Multi-RAT RAN Controller
- Possesses a Global view of the Network Resources
- RAT selection and offloading decisions taken by the Controller
- Voice and data users arrive or depart at any point in time
- Data user may be offloaded from one RAT to another at the time of association or departure of a user
- Problem Formulated within the MDP framework
- Addresses the inherent trade-off between
- Total System Throughput and Blocking Probability of Voice Users
- Maximizes the total system throughput
- subject to a constraint on the voice user blocking probability, using CMDP
- Threshold structures of optimal policies established
- Algorithms based on the Threshold Structures of Optimal Policies

Integrated Access \& Backhaul - Rural Broadband Use case (Under Development)

Integrated Access \& Wireless Backhaul (Middle-Mile)

Usage of Virtual Network Functions
To make the system cost-effective

Multi-Access Edge Computing and NFV

- MEC - An Important

Use case of 5G

- Content caching
- Optimized Video Delivery
- IoT
- Augmented Reality Service
- Connected cars
- ...
- NFV - Plays a very Important Role in MEC Deployment

SDN based Wireless Network Architectures - Key

Takeaways

- Effective Interference Management
- OpenRF
- Better Mobility Management \& Load Balancing
- Odin, OpenRoads
- Efficient Radio Network Utilization
- OpenRoads, SoftRAN, Radiovisor for Cellular Networks
- Unified Control and Management
- Reduced Signaling Overheads and Efficient E2E Network Utilization
- 5G-EmPOWER, MobileFlow, IEEE P1930.1
- May bring additional advantages
- Independent Evolution of Control and Data Plane

References

- Ericsson Mobility Report June 2019
- https://www.mckinsey.com/industries/telecommunications/our-insights/the-road-to-5g-the-inevitable-growth-of-infrastructure-cost
- Nick McKeown et al. "OpenFlow: Enabling Innovation in Campus Networks",
- Open Networking Foundation "OpenFlow Switch Specification"
- R. Alvizu, G. Maier, N. Kukreja, A. Pattavina, R. Morro, A. Capello, and C. Cavazzoni, "Comprehensive Survey on T-SDN: Software-Defined Networking for Transport Networks," IEEE Communications Surveys \& Tutorials, 2017.
- I. T. Haque and N. Abu-Ghazaleh, "Wireless Software Defined Networking: A Survey and Taxonomy," IEEE Communications Surveys \& Tutorials , 2016.
- S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, "Bringing Cross-Layer MIMO to Today's Wireless LANs," ACM SIGCOMM Computer Communication Review, 2013.
- J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Huhn, and R. Merz, "Programmatic Orchestration of WiFi Networks," USENIX Annual Technical Conference, 2014.
- A. Gudipati, D. Perry, L. E. Li, and S. Katti, "SoftRAN: Software Defined Radio Access Network," ACM SIGCOMM workshop on Hot topics in software defined networking, 2013.
- Katti, S., Li, L.E.: Radiovisor: A Slicing Plane for Radio Access Networks. Presented as part of the Open Networking Summit 2014.
- Foukas, X., Nikaein, N., et. al. .: FlexRAN: A Flexible and Programmable Platform for Software Defined Radio Access Networks
- Li Erran Li, Z. Morley Mao, Jennifer Rexford, "Toward Software-Defined Cellular Networks"
- Xin Jiny, Li Erran Li, Laurent Vanbevery, and Jennifer Rexford, SoftCell: Scalable and Flexible Cellular Core Network Architecture
- V. G. Nguyen, A. Brunstrom, K. J. Grinnemo, and J. Taheri, "SDN/NFV-Based Mobile Packet Core Network Architectures: A Survey," IEEE Communications Surveys and Tutorials, 2017.

References

- K. Pentikousis, Y. Wang, and W. Hu, "Mobileflow: Toward software-defined mobile networks," IEEE Communications Magazine, 2013.
- I. F. Akyildiz, P. Wang, and S. C. Lin, "SoftAir: A software defined networking architecture for 5G wireless systems," IEEE Computer Networks, 2015.
- Abhay Karandikar, Pranav Jha, and Akshatha Nayak et el., "Methods and Systems for Controlling an SDN based multi-RAT Communication Network" US Patent Publication No 20170238362
- Guanding Yu, Rui Liu, Qimei Chen, and Zhenzhou Tang, "A Hierarchical SDN Architecture for Ultra-Dense Millimeter-Wave Cellular Networks"
- A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, "Cloud RAN for Mobile Networks - A Technology Overview," IEEE Communications Surveys and Tutorials, 2015.
- P. Yang , N. Zhang , B. Yuanguo , L. Yu ,X. S. Shen, "Catalyzing cloud-fog interoperation in 5G wireless networks: An SDN approach", IEEE Networks ,2017.
- Yasir Zaki, Liang Zhao, Carmelita Goerg; "LTE Wireless Virtualization and Spectrum Management"
- A. Roy, P. Chaporkar, and A. Karandikar, "Optimal radio access technology selection algorithm for Ite-wifi network," IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6446-6460, 2018.
- Pradnya Kiri Taksande, Pranav Jha, Abhay Karandikar, " Dual Connectivity Support in 5G Networks: An SDN based approach". Accepted for publication in IEEE WCNC 2019.
- Coronado, E., Khan, S.N., Riggio, R.: 5G-EmPOWER: A Software-Defined Networking Platform for 5G Radio Access Networks. IEEE Transactions on Network and Service Management (2019)
- 3GPP TS 36.300, "Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,"
- 3GPP TS 23.501, "System Architecture for the 5G System,"
- O-RAN: Towards an Open and Smart RAN (2018). [Online]. Available: https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
- https://standards.ieee.org/develop/project/1930.1.html

Questions ??

Thank you

