QoS and Resource Allocation in Wireless Networks

Abhay Karandikar

Department of Electrical Engineering, Indina Institute of Technolgy Bombay, Powai, Mumbai, India 400076.

(karandi@ee.iitb.ac.in)

Indo-US Symposium on Frontiers of Engineering March 01-03, 2006

Outline

- Introduction
 - Quality of Service (QoS)
- Wireless Networks
 - Fluid Fair Queuing
 - Challenges in Wireless Networks
 - Scheduling Algorithms for 802.11 based WLAN
- 3 Cross Layer Approach
 - Thoughput Optimal Scheduling
 - Delay Constrained Scheduling
 - Energy Efficient Resource Allocation for Single User case
 - Conclusions

QoS

- QoS Attributes
 - Throughput
 - Delay and Delay Jitter
 - Loss
 - Fairness
- QoS Classes
 - CBR
 - Constant bandwidth allocation
 - Real time VBR
 - Bound on Maximum delay
 - Specific bandwidth requirement
 - Non real time VBR
 - Minimum bandwidth allocation
 - ABR
 - Available bandwidth is allocated.

QoS Components

Admission Control

Packet Scheduling

Mobility Management

We focus on packet scheduling in wireless networks

Fair Scheduling in Wireline Networks

- Frame based scheduling
 - Time is split into frames.
 - Reservations are made in terms of the maximum amount of traffic that the session is allowed to transmit during a frame.
- Sorted priority based scheduling
 - Global variable is associated with link being scheduled.
 - It is updated on packet arrival/departure.
 - Packet is time stamped with a value which is a function of this variable.
 - Packets are sorted based on their timestamps.

Fluid Flow Fair Queuing (FFQ)[1]

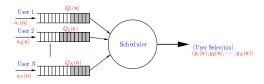


Figure: Scheduler Model

- Traffic is considered fluid.
- FFQ serves each backlogged flow at every instant with a minimum rate equal to its reserved rate.
- Excess bandwidth is distributed among backlogged flows in proportion to their reservations.
- Wighted Fair Queuing(WFQ), a packetized version of FFQ.

Challenges in Wireless Networks

- Channel errors are location dependent and bursty.
- Channel is time varying.
- Mobile host- limited battery life.
- Mobility introduces problem for time stamping.

Wireless Fair Scheduler Components

- An error free service model.
 - Service to session with error free channel.
- Lead/Lag counter
 - Indicates lead/lag of the service with respect to error free model.
- Compensation model
 - Lagging sessions may be compensated.
- Monitoring and predicting the channel state.

Fair Scheduling for Wireless Networks [2] [3],[4]

- Idealized Wireless Fair Queuing
 - Error free service simulated by WFQ.
 - Lagging flow have lowest service tag values.
 - Bounds are set in the lead/lag value.
- Channel Condition Independent fair Queuing
 - A parameter α is used to control the rate at which leading session gives up its lead.
- Server Based Fairness approach
 - Reserves a fraction of bandwidth for compensation.
 - Uses reserved bandwidth for compensation rather than swapping.

Scheduling Algorithms for 802.11 based WLAN [5], [6]

- 802.11 based on CSMA/CA.
- The collision avoidance
 - Inter Frame Space (IFS)
 - Wait time for MS after it senses the idle channel and enters the transmission.
 - Back-off algorithm
 - If the channel is busy, a back-off interval is randomly selected between minimum and maximum contention window (CW_{min}, CW_{max}).

Fair Scheduling in 802.11 WLAN

- Distributed Weighted Fair Queuing
 - All flows of all MS's are constrained to have the same ratio
 L_i = \frac{R_i}{W_i}\$, where R_i is the thoughput and W_i is the weight for user i.
 - WFQ algorithm is used for scheduling.
- Distributed Deficit Round Robin
 - Based on the concept of DRR.
 - Deficit counter
 - accumulated quanta
 - Deficit counter value is mapped to appropriate IFS value.
 - A large deficit counter results in smaller IFS value.

Cross Layer Approach for Scheduling

- Channel varies with time randomly and asynchronously for different users.
 - Due to different interference levels.
 - Due to fast fading.
- Need to develop resource allocation by taking into account physical channel characteristics.

System Model

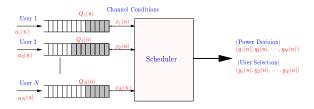


Figure: Single hop system model

We assume

- Cellular slotted TDMA system.
- Users connect to a base station to receive and transmit data.
- Scheduler has perfect channel state information

Thoughput Optimal Scheduling (Andrews et al)

- A scheduling algorithm is throughput optimal if it is able to keep 'queues' stable (if it is feasible).
- $D_j(t)$ = Head of line packet delay for queue j. $r_j(t)$ =channel capacity for flow j.
- Scheduling rule is thoughput optimal-
 - Schedule the user for which $\gamma_i D_i(t) r_i(t)$ is maximum.
 - γ_j is some constant.
- Choice of γ_j can control packet delay distribution for different users.
- This is called "Modified Largest Weighted Delay First" algorithm.

Delay Constrained Packet Scheduling-Our Approach

- Design a scheduler that maximizes the throughput.
- The scheduler satisfies the delay guarantees.

Formulation as an Optimization Problem Variables

Let

- $y_i(n)$ be an indicator variable for user i in time slot n.
- $a_i(n)$ number of arrivals for user i in time slot n.
- $r_i(n)$ be the rate for user i in time slot n.
- $Q_i(n)$ be the queue length for user i in time slot n.
- Let there be N users in the system.

We want to maximize the average throughput given by,

$$T_{av}(N, \overline{D}) = \liminf_{M \to \infty} \frac{1}{M} \sum_{n=1}^{M} \sum_{i=1}^{N} y_i(n) r_i(n)$$
 (1)

Formulation as an Optimization Problem Constraints

• Using Little's law, we convert the delay constraints \overline{D} into queue length constraints \overline{Q} .

We want to satisfy the constraints given by,

$$\limsup_{M \to \infty} \frac{1}{M} \sum_{n=1}^{M} Q_i(n) \le \overline{Q}_i \quad i = 1, \dots, N$$
 (2)

Formulation as an Optimization Problem

The unconstrained problem

• Introduce Lagrange Multipliers (LMs), hence the problem becomes, maximize $L(\pi, \lambda)$, given by,

$$L(\pi,\lambda) = \liminf_{M \to \infty} \frac{1}{M} \sum_{n=1}^{M} \sum_{i=1}^{N} [y_i(n)r_i(n) - \lambda_i Q_i(n)]$$
 (3)

where π is the policy.

- The objective is to find the saddle point of this Lagrangian function.
- π forms the primal variable while λ forms the dual variable.
- We use primal-dual approaches for solving the problem.

Solution Methodologies

- The problem stated above is a Markov Decision Problem.
- Finding the optimal policy using value iteration has very high computational complexity.
- We suggest heuristic policies to solve the problem.

Heuristic Policy

- Intuitively, some weighted combination of queue length and channel rate should decide the user who is scheduled.
- We suggest policies of the type, Schedule a user j such that

$$j = \arg\max_{i} \{ Q_i + \theta_i r_i \}$$
 (4)

An approach based on parameterized policy iterations

- We try to find out the best policy from within a subset of policies described by a parameter θ .
- The transition probabilities and reward functions are dependent on parameter θ .
- Start with an initial policy based on some initial value of θ .
- Improve the policy by improving the value of θ in the direction of gradient of the reward function.
- At the same time, adjust the LMs so that the resultant policy is constraint satisfying.

Energy Efficiency

- Energy efficiency is a primary concern dealing with wireless devices.
- Two approaches for saving energy
 - Convex Power-rate relationship
 - Choose the rate at various stages in transmission in appropriate fashion.
 - Time varying nature of channel
 - defer transmission of packets during "bad" channel to "good" channel state.
- Leads to energy-delay trade off.

Optimal Resource Allocation for Single User Case

• The queue length dynamics is given in terms of packet departure r_n and arrivals a_n .

$$Q_{n+1} = Q_n - r_n + a_{n+1}$$

Average Delay

$$D = \limsup_{M \to \infty} \frac{1}{M} \mathbf{E} \left[\sum_{n=1}^{M} \mathbf{Q}_n \right]$$

Average Power

$$P = \limsup_{M \to \infty} \frac{1}{M} \mathbf{E} \left[\sum_{n=1}^{M} x_n \mathbf{E}(r_n) \right]$$

where x_n denotes the channel fade process.

 Determine a scheduling policy that minimizes P subject to a constraint on D.

Optimal Policy Characterization (Berry-Gallager)

- Trade-off between average delay and average power for transmission.
- Trade-off is studied in the region of asymptotically large delays for i.i.d. channel and arrival process. Few results to state are:
 - P D region achieved by all the possible schedulers is a convex region.
 - $P^*(D)$ is a non increasing convex function of D.
 - Average power with average transmission rate constraint approaches to delay optimal power as $\Theta(\frac{1}{D^2})$, asymptotically as $D \to \infty$.

Optimal Policy Structural results -Our Work

- For Markov packet arrival process and i.i.d. channel fade, optimal stationary policy is
 - increasing in buffer occupancy.
 - increasing in number of packet arrivals in previous slot.
 - decreasing in level of channel fade.
- For Markov packet arrival process and Markov channel fade, optimal stationary policy is
 - increasing in buffer occupancy.
 - increasing in number of packet arrivals.
 - nothing can be said about the nature of optimal policy with respect to channel fade.

► Multiuser Optimal Solution

Conclusions

- Providing QoS is one of the requirements for emerging multimedia applications over wireless networks.
- QoS in wireless network is very challenging
 - Location dependent errors
 - Time varying channel
 - Limited battery life
- In this talk, we have looked at various mechanisms that can provide
 - Fairness.
 - Delay bounded throuput guarantees.
 - Delay bouned energy efficieny.
- These are going to be important constituent of Base station scheduler for next generation wireless systems.

References(Our work) I

- [1] M. Agarwal, V. S. Borkar, and A. Karandikar, "Structural properties of optimal transmission policies over a randomly varying channel," submitted to IEEE Transactions on Control Systems.
- [2] A. Bhorkar, A. Karandikar, and V. Borkar, "Power optimal opportunistic scheduling," work in progress.
- [3] N. Salodkar, A. Karandikar, and V. Borkar, "Efficient scheduling in fading channels," work in progress.

Other References I

- A. Parekh and R. Gallager, "A generalized processor sharing approach to flow control, the single node case," in IEEE INFOCOM, May 1992.
- [2] T. Nandagopal, S. Lu, and V. Bharghavan, "A unified architecture for the design and evaluation of wireless fair queueing algorithms," in Mobile Computing and Networking, pp. 132–142, 1999.
- [3] M. A. Arad and A. Leon-Garcia, "A generalized processor sharing approach to time scheduling in hybrid cdma/tdma.," in INFOCOM, pp. 1164–1171, 1998.
- [4] S. Lu, V. Bharghavan, and R. Srikant, "Fair scheduling in wireless packet networks," *IEEE/ACM Transactions on Networking*, vol. 7, no. 4, pp. 473–489, 1999.
- [5] N. Vaidya, P. Bahl, and S. Gupta, "Distributed fair scheduling in a wireless lan," in Sixth Annual International Conference on Mobile Computing and Networking, Boston, August 2000.
- [6] W. Pattara-atikom, S. Banergee, and P. Krishnamurthy, "Starvation prevention and quality of service in wireless lans," in Proceedings of the IEEE 5th Intl. Symposium on Wireless Personal Multimedia Communications (WPMC), Oct 2002.

Thank you.

Energy Efficient Scheduling for Multiuser system

- Design an energy efficient, opportunistic scheduler.
- The scheduler satisfies the rate guarantees
- Minimize average power

Minimize
$$\limsup_{M\to\infty} \frac{1}{M} \sum_{n=1}^{M} q(n)$$
,

Subject to average rate constraints C_i

$$\lim_{M\to\infty} \inf \frac{1}{M} \sum_{n=1}^{M} \sum_{i=1}^{N} U_i(q_i(n), x_i(n))) \geq C_i \quad \forall i,$$

$$q(n) \geq 0, \sum_{i=1}^{N} y_i(n) \leq 1 \quad \forall n$$

• U is concave differentiable function of x_i , q_i

$$U = \log(1 + x_i q_i)$$

Multiuser Optimal Solution

Theorem

Optimal Policy for multiple users is to select k^{th} user and transmit with power $q_i^* = \left(\lambda_i - \frac{1}{x_i}\right)^+$.

Proof.

Sketch of Proof

- Use ergodicity of $x_i(n)$.
- Consider Lagrangian associated with (5).
- Minimize w.r.t. q first, then w.r.t. y.

Multiuser Optimal Solution

Proof.

Cont'd..

Optimal power for single user,

$$q_i^* = \left(\lambda_i - \frac{1}{\mathsf{x}_i}\right)^+$$
 , where λ is the Lagrange multiplier.

Minimizing w.r.t. y,

$$k = \arg\min_i \left(q_i^* - \lambda_i \left[\log(1 + q_i^* x_i) - C_i \right] \right)$$

Stochastic Approximation based Online Algorithm

• Estimate λ_i online

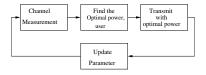


Figure: Block diagram for on-line policy

Update Equation

$$\lambda_{i}(n+1) = \left\{\lambda_{i}(n) - \epsilon(n)\left[y_{i}(n)\log\left(1 + \left(\lambda_{i}(n) - \frac{1}{x_{i}(n)}\right)^{+} x_{i}(n)\right)\right] - C_{i}\right\}^{+} \quad \forall i, \quad (5)$$

Simulations

ullet Rayleigh fading channel with parameter γ

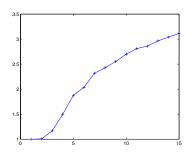


Figure: Gain of the optimal policy over variable power round robin policy, C=0.6, $\gamma=0.7$

