

The 5Gi Story - from Academic Research to a Global Standard

Abhay Karandikar Director, Indian Institute of Technology Kanpur, Kanpur, India Former Chair, TSDSI

Agenda

- Characteristics of 5G and Standardization Landscape
- Requirements of Rural India
- Low Mobility Large Cell configuration
- TSDSI RIT- 5Gi
- Impact

Credits-Key Contributors

- IIT Madras team Prof Bhaskar Ramamurthi and Prof Radhakrishna Ganti
- IIT Hyderabad team- Prof UB Desai, Prof Kiran Kuchi and Dr Sai Dhiraj, Anirudddh Venkatakrishnan
- CEWiT Team Dr Klutto Milleth and Ms Priyanka Dey
- TSDSI Leadership: Prof Bhaskar Ramamurthi, Dr Kumar Sivarajan, Mr A K Mittal, Ms Pamela Kumar
- DoT and TEC Sr leadership up to Secretary level

5G & beyond - All Pervasive Digital Connectivity

- Human Human Communication
- Human Machine Communication
- Machine Machine Communication

- Expected to touch almost all parts of human life
- 5G has far bigger implications than earlier systems

tsds Characteristics of Communication Technology (1/2)

Innovation Driven

- Driven by Continuous Innovations
 - Rapid changes in wireless technology
 - 2G->3G->4G->5G within a few decades
 - Swift development in transport technology
 - e.g. Optical Communication Networks
- Convergence of Computing and Communication
 - Increased Softwarization
 - Commoditization of Network
 - Increased usage of Cloud, Fog/Edge based paradigms

Characteristics of Communication Technology (2/2)

tsdsi

Importance of Standards

- Global Standards Bodies drive the development of technology
 - ITU, 3GPP, IEEE, IETF
 - Membership Equipment Manufacturers and Operators
- Interoperable Equipment Landscape
- IPRs owned by Individual Member Companies
 - Standard Essential Patents

Few Other Factors

- Capital Intensive
- Costly Equipment & Resources (e.g. Spectrum)
- Skilled Manpower

Standardization and Innovation Play a Significant Role

Major Contributors to 5G - Standards Participation

Countries with bigger telecom manufacturing base has higher participation in telecom standard development China as a country is the biggest participant world-wide

Chart 7: Number of 5G Approved Contributions per Vendor/Operator per Year – 2015 to 2018H1

Courtesy: 3GPP

Major Contributors to 5G - Patents

Asia has gradually been increasing its share of Standard Essential Patents in Mobile Technology

Asian Countries, especially China owns a much larger % of Standard Essential Patents in 5G Technology than US & Europe

Huawei is the biggest holder of 5G Patents among global Telecom Giants

Standards Driven Research & Innovation

- Reliance on Communication Services Increasing
 - 5G & beyond to touch almost all aspects of our lives
 - IPR ownership in Wireless/ICT technologies may dictate Economic & National Sovereignty
 - Country(s) controlling Cyber Physical Systems, 5G+AI may control the World
- Technologies Developed & Standardized address needs of participants (Stakeholders)
- Those not Participating in Standardization forced to use not-so-suitable technologies

Far Reaching Consequences

Imperative that India whole heartedly adopts Standards Driven Research

5Gi Journey

Internet/Broadband Penetration Status: India

Sizeable Population (up to 45%) in Rural India may not have Broadband/Internet access - Much Lower in 2015

Source: TRAI, The Indian Telecom Services Performance Indicators, April, 2021

Rethinking 5G Requirements for Rural Areas

- Relatively Sparse Population
 - Every Village
 - Part of a Gram Panchayat
 - Typically 1-3 Villages in a GP
 - Almost all Villages within 10 Km radius of GP
 - >90% Villages within 6 Km radius
 - >60% Villages within 3 km radius
- Low Average Revenue per user
 - ARPU for Cellular Services in the country
 - ~100 Rs/Month
 - One of the lowest in the world
 - Lower in Rural India
- Large Coverage Area Support
- High-Speed Mobility Not Required
 - Relatively small vehicular traffic
 - Slow moving vehicles

Motivations for 5Gi

• 5G Not so suitable for Rural India

Focused on

- Very higher throughput (eMBB), IoT, URLLC
- Smaller Cell-size for higher capacity
- High Speed Mobility Support
- Driven by needs of Major Stakeholders China, Europe, USA
- Original Rural eMBB Configuration of IMT-2020
 - Indian (esp. Rural) Requirements Not Well Supported

Increase Indian footprint in International ICT Standards

IMT-2020 Rural eMBB - Original Test Configuration

BS Antenna Height

Distribution

User Equipment (Device)

- Cell Radius ~1 km
- Caters to High-Speed Vehicles
 - 120 km/hour
- Mobility KPI
 - High-speed Vehicular Traffic -Up to 500 km/hour
- Essentially Models
 - Connectivity to High-speed Vehicular Traffic in Rural Areas in Economically Developed Countries
- Not Suitable for "Connecting the Unconnected"

IVIT-2020 – Original Kural – elvibb test Configuration used in 110								
Parameters	Config A	Config B						
Carrier Frequency	700 MHz	4GHz						
Inter-Site Distance (ISD)	1732 meters	1732 meters						
Bandwidth	20 MHz (DL+UL)	Up to 200 MHz (DL+UL)						
BS Tx power	49 dBm							

Uniform User distribution

AND Test Configuration used in IT

50% outdoor vehicles (120km/h) and 50% indoor (3km/h)

500 km/h for evaluation of mobility in high-speed cases

35 meters

LMLC - Augmenting IMT-2020 for Rural Broadband

- Utilizes BHARATNET Infrastructure
 - BharatNet deploying Fiber in Rural India
 - A Fiber POP terminates at GP Office
- Cellular Connectivity around a Fiber PoP
 - Large Coverage Area
 - Focus on Low Mobility Users
 - A new Channel Model
 - Takes Indian-rural needs into consideration
 - Also needs of other similar geographies

IMT-2020 – LMLC Test Configuration for Rural Broadband								
Parameters	Config A (Original)	LMLC - Config C						
Carrier Frequency	700 MHz	700 MHz						
Inter-Site Distance (ISD)	1732 meters	6000 meters						
User Equipment (Device) Distribution	50% indoor, 50% outdoor (in-car) Randomly and uniformly distributed	40% indoor, 40% outdoor (pedestrian), 20% outdoor (in-car) Randomly and uniformly distributed						
BS Tx power	49 dBm							
BS Antenna Height	35 meters							
User Equipment (Device) Speeds of interest	50% outdoor vehicles (120km/h) and 50% indoor (3km/h) 500 km/h for evaluation of mobility in high-speed cases	Indoor users: 3 km/h; Outdoor users (pedestrian): 3 km/h; Outdoor users (in-car): 30 km/h						

LMLC Requirement Accepted @ ITU

	eMBB		MMTC		URLLC		
Indoor Hotspot eMBB	Dense Urban eMBB	Rural eMBB	Urban Macro MMTC		Urban Macro URLLC		
 Config A 4GHz Config B 30GHz Config C 70GHz 	 Config A 4GHz (1 layer) Config B 30GHz (1 layer) Config C 4/30GHz (2 layers) 	 Config A 700MHz ISD 1.732 km 120/500 Km/h Config B 4GHz ISD 1.732 km 120/500 Km/h 	 Config A ISD 500m Config B ISD 1.732 Km In addition, environment value should the LMLC events 	, f , the me	 Config A 4 GHz Config B 700 MHz or the Rural-eNe average spectral spectra spectral spectral spectral spectral spectral spectral spectra	MBB test I efficiency values for	
		• LMLC 700 MHz ISD 6Km 30 Km/h	of 6 Km and with ISD of 1	of 6 Km and evaluation configuration A with ISD of 1.732 Km			

Low Mobility Large Cell Requirement accepted as Mandatory IM2020 Usage Scenario (M.2083) @ WP5D Mtg# 28 Oct '17

5Gi Journey: Requirement -> Innovation -> Standard

5Gi Journey

5Gi

- TSDSI Radio Interface Technology (RIT)
- Based on 3GPP 5G technology
 - Enhancements over 3GPP Release 15
- Provides larger coverage as compared to the 3GPP base specifications

Supports

- ITU Low Mobility Large Cell (LMLC) Test Configuration
- Improved building penetration for NB-IoT

5Gi Solution - Pi/2 BPSK

Uplink Transmission Limits define Cell Coverage Area

- UE Tx Power in uplink limited to 23 dBm
 - Hardware Limitations
 - Battery size, PA sizing, Thermal limits and Cost Considerations
- Uplink design crucial in enabling large coverage area cells

Pi/2-BPSK Waveform

- New waveform to increase Uplink Coverage
 - Valid for a cell radius of 6 km
- Both for uplink Data (PUSCH) & Control (PUCCH) Channel
- Salient Properties of Pi/2-BPSK Waveform
 - Low Peak-to-Average Power Ratio (PAPR)
 - Resilient to Non-Linearities of Power Amplifier (PA)
 - Low-order Modulation Scheme, Tolerant to Distortions

Incorporation of 5Gi Solution into the Standard

Benefits of 5Gi and Impact on Ecosystem

BENEFITS

• Rural coverage (exceeding ITU requirements)

- Affordable
 - Improved performance only with primarily software changes
 - Globally inter-operable and compatible
- Improved building penetration for NB-IoT: Important for smart cities mission
- Increases the number of supported users, the spectral efficiency and reduces signalling overhead

Device

- Software changes
- Some vendors might change PA
 - Even then, high volumes in India should maintain price
- Fully interoperable (roaming)

Infrastructure

• Only software

• Inter-operable

with devices

minus Indian

enhancements

changes

ECOSYSTEM IMPACT

Testing

- One-time investment for additional testing
- Test equipment manufacturers to incorporate Indian enhancements
- Impact on cost of network or equipment negligible

Long-term benefits outweigh the initial work and one-time cost

References

- "A Case for Large Cells for Affordable Rural Cellular Coverage", Saidhiraj Amuru, Radha Krishna Ganti, Kiran Kuchi, J Kluto Mileth, Bhaskar Ramamurthi, Journal of the Indian Institute of Sciences, April 2020
- R1-1701180, "Comparison of π/2 BPSK with and without frequency domain pulse shaping results: with PA model", IITH et.al., 3GPP TSG-RAN WG1 Ad-Hoc NR Meeting, Spokane, WA, USA, Jan 16–20, 2017, IITH et.al.
- R1-1813086, "Low PAPR reference signals", IITH et.al.., 3GPP TSGRAN WG1 Meeting # 95 , Spokane, USA, November 12–16 2018
- R1-1900215, "Low PAPR reference signals", IITH et.al.., 3GPP TSG RAN WG1 Ad-Hoc Meeting # 1901, Taipei, Taiwan, 21–25 Jan 2019
- Report ITU-R M.2412-0, "Guidelines for evaluation of radio interface technologies for IMT-2020", (11/2017)
- Report ITU-R M.2150-0, "Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-2020 (IMT-2020)", (02/2021)

THANK YOU

{director, karandi}@iitk.ac.in