Harnessing Communication Technology for Public Protection (Safety) & Disaster Relief

October 2019

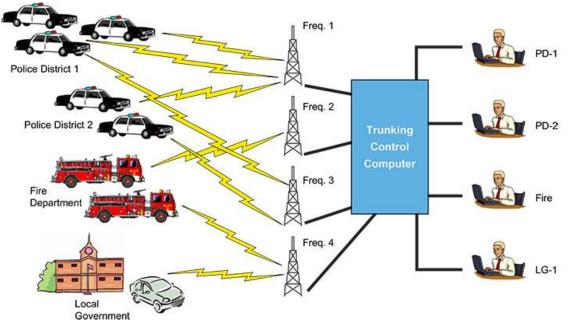
Abhay Karandikar

Director & Professor, IIT Kanpur, India <u>director@iitk.ac.in</u> karandi@iitk.ac.in

Public Safety Challenges - Terror Attacks, LWE, Unrest

Public Safety Challenges – Disasters

Public Safety Challenges – Public Events, Gatherings


Can Technology help?

- Usage of Technology Improves
 - Intelligence Gathering
 - Crime Detection
 - Law Enforcement
- Technology for Homeland Security
 - An upcoming focus research area
- Some Research Centres/Conferences on Homeland Security Technology
 - IEEE International Symposium on Technologies for Homeland security
 - Department of Homeland Security, Govt. of USA
 - Centers of Excellence
 - Public Safety Communications Research Division, National Institute of Standards & Technology, USA
 - National Center of Excellence in Technology for Internal Security, IIT Bombay

Public Protection and Disaster Relief (PPDR) Communication or Public Safety Communication

What is Public Safety Communication?

- Communication used by
 - Law enforcement agencies, Fire, Medical Emergency teams etc
- Emergency Warning or Public Warning Systems
- Public Safety and Disaster Recovery
- Critical Communication

Public Safety Communication - Uniqueness

- Mission Critical
 - Reliable, resilient and secure
- Challenging Working environment
 - Robustness
- Immediate connectivity
 - No congestion/blocking
- Group Communication
- Push-to-talk
- Direct mode peer to peer communications
- Situational Awareness
 - Positioning, Maps & Location
- Security

Currently used PPDR Communication Systems

- Technologies in use today in India
 - Analog Radios
 - Digital Radios
 - TETRA
 - APCO

Limitations

- Narrowband Operation Cannot transmit Video/Files
- Spectrally Inefficient Lower bps/Hz
- Legacy Technology Vendor lock-in
- Not Interoperable No inter-agency communication

Stuck with expensive equipment, which is unable to provide enough Situational Awareness

Requirements of PPDR Communication

- BB-PPDR : Broadband Communication System for Public Safety
 - Multiple traffic flows at mission critical performance
- Enhanced Situational Awareness
 - Voice + Data + Video
 - If Real-time video surveillance was available during 26/11!
- Interoperability across solution from different vendors
- Compatibility with Civilian Communication Networks

 Harnessing commercial networks during disasters
- Rapidly Deployable System for targeted operations
- Device to Device/Peer to Peer Communication
- IoT Wearables

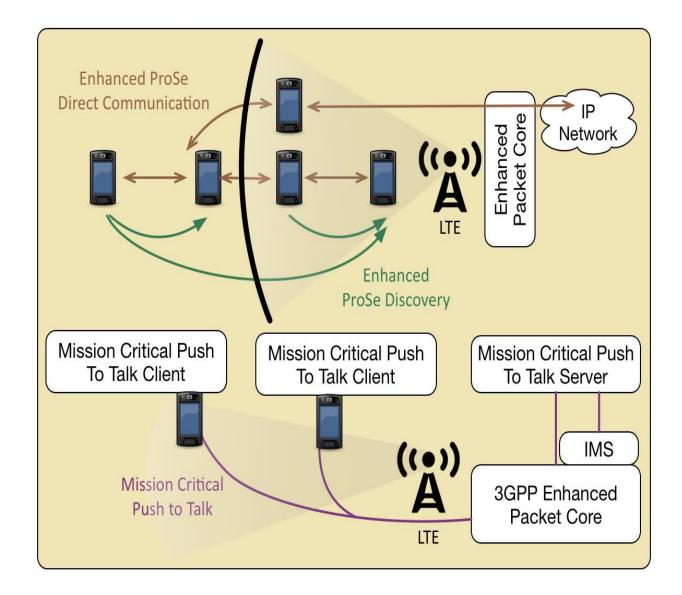
Commercial LTE – Is it good enough for BB-PPDR?

• Advantages

- Evolving Broadband Technology Voice, Video, Data
- Spectrally more efficient
- Based on international Standards
- More secure
- Most commonly used Mobile Broadband Technology worldwide
- Limitations
 - Powerful But Not PSDR grade rugged
 - Audio Communication But No Push-to-talk
 - Video Communication But through Base Station ONLY
 - Infrastructure Mode Only No Ad Hoc mode operation
- Good but not Good enough, how do we resolve this?

PS-LTE – LTE for Public Safety Communication

LTE capability, reach and costs attractive to Public Safety

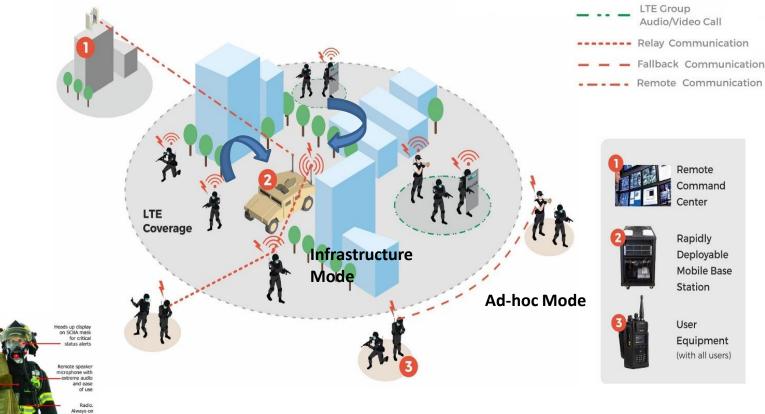

users National Public Safety **TETRA** and Critical **ETSI** Technical Telecommunications Communications **Committee on TETRA** Council Association ETS TC TETR NPSTC A GLOBAL INITIATIVE

Maximize commonality between commercial and public safety aspects

Enhancements in LTE Specs for Public Safety

- Release 12 (2013-15):
 - Proximity services (ProSe) and Device-2-Device (Direct Mode)
 - Group Communication System enablers
 - Baked in to LTE or Application servers based
 - QoS for Mission Critical Services
- Release 13 (2014-17):
 - Proximity Services Direct Discovery, UE Relay
 - Mission Critical Push To Talk (MCPTT)
- Release 14 (2016-):
 - Mission Critical Video & Mission Critical Data Application

Mission Critical Push-to-Talk over PS-LTE


PS-LTE - Summary

- Additions to 3GPP 4G/LTE Standard to make it PS grade
 - Ad-hoc mode of operation
 - Mission Critical Push-to-talk
 - Mission Critical Video
 - Mission Critical Data
 - Prioritized data transfer, QoS guarantee
 - Sophisticated Group Communication
 - Floor Control
 - Higher level of security than LTE
 - Compatible with Commercial LTE Network

PS-LTE based Rapidly Deployable BB-PPDR System

status of firefighter Indoor location tracking

borative

erable

Helmet mounted

Environmental sen detects hazardous

materials

Bio monitor measures he

camera for live

video stre

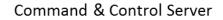
Spectrum for BB-PPDR in India - NFAP 2018

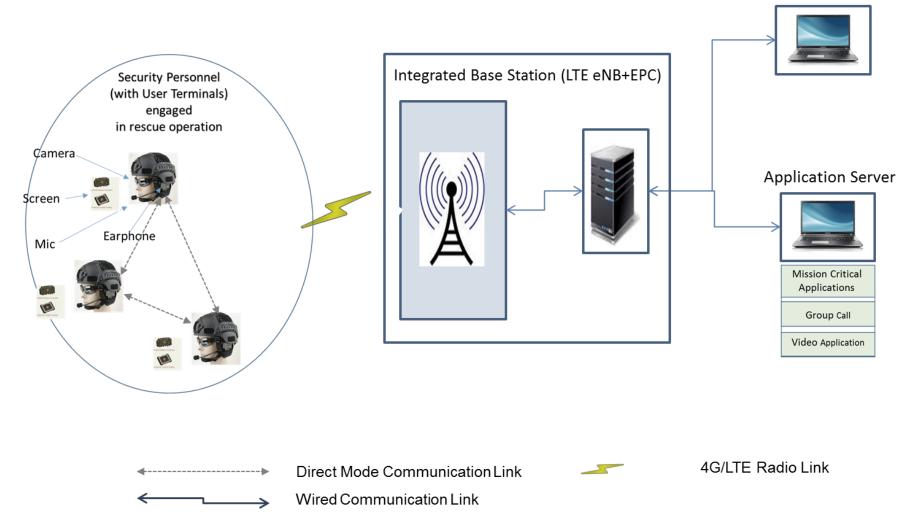
- PPDR Frequency Ranges as proposed by NFAP 2018
 - 380-387.5 MHz & 390-397.5 MHz
 - 410-417.5 MHz & 420-427.5 MHz
 - Part of 440-470 MHz
 - 806-811 MHz & 851-856 MHz
 - 4940-4990 MHz
- Broadband PPDR especially encouraged in 410-430 MHz
- Use channel arrangements to promote harmonization
- ITU Resolution 646 for Region 3
 - Frequency ranges 406.1-430 MHz, 440-470 MHz, and 4940-4990 MHz harmonized for PPDR applications

TRAI Recommendations for BB-PPDR

- Pan-India BB-PPDR Communication Network
 - Based on 3GPP PS-LTE technology
- Hybrid model
 - Dedicated network in certain areas
 - Metros, Border areas, Disaster prone areas
 - Existing commercial network to be leveraged in other regions
- Dedicated spectrum for BB-PPDR Network
- Special Purpose Vehicle under MHA
 To Plan, Coordinate and Steer the National BB-PPDR Network
- Phase out existing Analog Networks in PPDR

TSDSI Report - BB-PPDR Systems in India

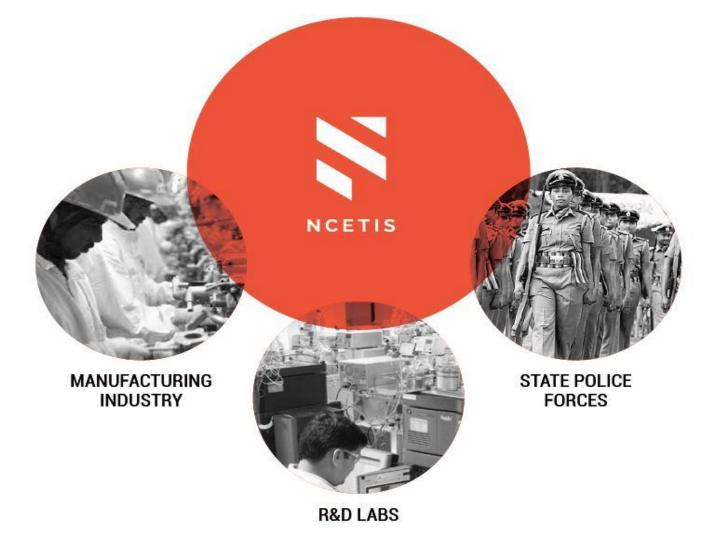

- One size doesn't fit all
 - Different PPDR agencies may have different procedures, solutions
- Diversity of Deployment
 - Agencies to leverage an appropriate technology
- Connectivity to Existing in-use Technologies
 - e.g., Gateway to TETRA
- Device Ecosystem
 - Device ecosystem unavailable for TRAI recommended Band
 26
 - Provision PPDR services across the country
 - Over existing commercial mobile networks
 - on commercial spectrum in SubGHz


Broadband-PPDR@IIT Bombay

BB-PPDR - Project Scope

- To design and develop a high-speed broadband wireless system in sub-GHz (400 MHz) spectrum with public safety and emergency features
 - User terminals capable of conventional (via Network) as well as direct mode communication (Infrastructure-less mode)
 - Support for Real-time voice as well as Real-time data transfer including video
 - Support for Mission-Critical Applications, e.g., Group Call (Push-to-Talk)
 - Support for Isolated Operation
 - Readily deployable system
- Investigate protocols & algorithms for group communication (e.g., Mission Critical Push-to-Talk, Mission Critical Video Service) and Proximity Service (direct-mode communication)

BB-PPDR - Rapidly Deployable System - Architecture

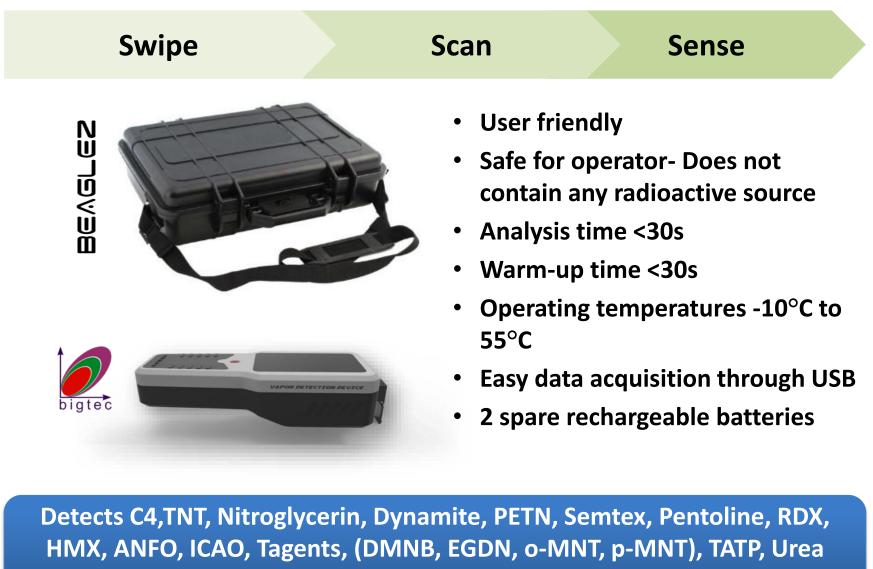

BB-PPDR@IIT Bombay – Achievements (1/2)

- Indigenously built PS-LTE system
- Portable and Rapidly Deployable System
- Design & development of Mission Critical Communication Components
- Multiple Patents filed and granted by USPTO
- Contribution to 3GPP International Standards on "Push-To-Talk" Service
- Educate and inform PPDR agencies

BB-PPDR@IIT Bombay – Achievements (2/2)

- Successful Participation in ETSI's "Plugtest" Event
 - Global Interoperability Testing Event
 - Validation of Mission Critical Push-To-Talk Service
 - IITB Team participated in Year 2018 & 2019
 - Face-to-Face Participation in Finland in 2019
 - Push-to-Talk Server developed by IITB successfully verified against PS-LTE devices from multiple global vendors
- Incubation of a start-up
 - Startup won the "Innovations For Defence Excellence (iDEX)"
 Challenge instituted by the Defence Ministry, Gol

National Center of Excellence in Technology for Internal Security – IIT Bombay

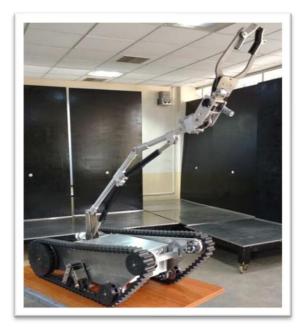

Scope of the Center

- National Center focusing on the needs of internal security
- Coordinate with other institutes and labs in the country
- Engagement with industry
- Target towards self sufficiency in the area of ESDM for strategic sector

Focus Areas of the Center

- Wireless Communications System
- Social Networking and Internet
- Video Surveillance and Analysis
- Ground Penetrative Radar (GPR) for Landmine Detection
- Unmanned Vehicles
- Cyber and Data Security
- Biometric Applications
- Sensors and Detectors for Explosives, Landmines, Chemical and Biological Warfare
- Thermal Imaging
- Product Design, Product Interaction Design and Prototyping

Handheld Explosives Detector for Trace Detection

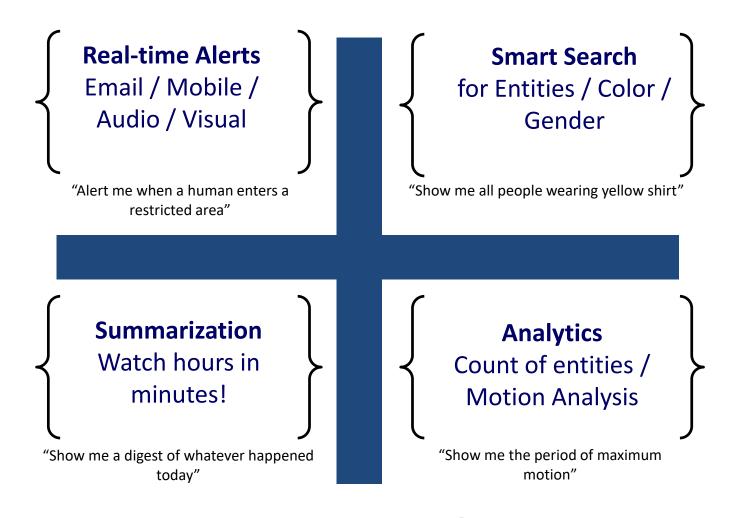


nitrate & Ammonium Nitrate.

Remotely Operated Vehicle

Design Specification for Medium Duty Rover: 140 kg

- Workspace : 1000 x 500 mm
- Object Handling:
 10 kg : 300 x 300 x 300 mm
- 500 m Live video feedback
- 3 hour battery operation



Design Specifications for Light Duty Backback Rover: 70 kg

- Workspace : 1000 x 400 mm
- Object handling :
 3 kg 200 x 200 x 200 mm
- 500 m Live video feedback
- 3 hour battery operation

Video Analytics for Internal Security

First-Aid Redefined

Thank you