Challenges for Broadband Access Infrastructure: Bridging Digital Divide

Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology-Bombay Mumbai 400076- India

Abhay Karandikar

Outline

- Broadband deployment scenario in India
- Next Generation Access Technologies
- Optimal Access Architecture
- Technology Development at IIT Bombay

Challenges to bridge Digital (Information !) Divide

Affordability

- Access devices.
- <u>Connectivity.</u>

Human Capital (Digital skills and capacity)

- General cognitive sense and skills necessary to make sense of online information.
- Basic reading and writing skills required
 - Most web information available only in text form.
 - Need audio/video interface.
- Access Interface
 - Needs to be more intuitive, simple.
- Language Skills
 - Need for multi-lingual information access

Affordability

- In US, service provider can earn revenues to the extent of US\$ 360 per year per household for 90% household.
- In India, 90% households may not afford more than US\$ 100.
- In India, minimum data rate of 256 Kbps is considered as broadband.

Broadband Scenario in India and other Asian countries

- Number of Households
 - → Korea- 14.3 M
 - China-333M
 - India-192 M

Broadband Connections (Year 2005 end)

- → Korea- 11M
- → China- 64.3 M
- India- 0.9 M (current numbers about 2 M)
- Indian Target
 - → 9M (2006)
 - → 30M (2007)
 - → 50 M (2010)

Source-

- Telecom Regulatory Authority of India, "Broadband India: Recommendations on Accelerating Growth of Internet and Broadband Penetration", April 2004. <u>http://www.trai.gov.in/Recommendations_content.asp?id=21</u>
- + China Internet Network Information Center, "17th Statistical Survey Report on the Internet Development in China", January 2006. http://www.cnnic.net.cn/download/2006/17threport-en.pdf
- Ministry of Information and Communication, National Internet Development Agency of Korea, "Survey on the Computer and Internet Usage [2005.12]", March 2006. <u>http://isis.nida.or.kr/eng_report_down/upload/user_sum_eng_200512.pdf</u>

Problems for Service Providers

Challenges

- Poor Infrastructure
- Diverse demographics
- High Capital costs
- Technologies in use
 - TDM Model
 - DSLAM Model
 - Cable TV and Local Service Provider Model

Enterprise TDM Model

RAS: Remote Access Server CO: Central Office ADM: Add-Drop Multiplexer SDH: Synchronous Digital Hierarchy DXC: Digital Cross Connect TDM: Time Domain Multiplexing CPE: Customer Premises Equipment PBX: Private Branch Exchange STM: Synchronous Transport Mode

Issues

Advantages

- Offers Guaranteed Quality of Service
- Fast protection and restoration
- Reliability

Bottlenecks

- No flexibility to scale with the needs of the customer
- High cost of installation and slow provisioning
- Bandwidth does not grow linearly with customer demands
- Low bandwidth

DSLAM Model

ATM: Asynchronous Transfer Mode ADM: Add-Drop Multiplexer SDH: Synchronous Digital Hierarchy B-RAS: Broadband Remote Access Server ADSL: Asymmetric Digital Subscriber Line CPE: Customer Premises Equipment DSLAM: DSL Access Multiplexer CAT5 UTP: Category 5 Unshielded Twisted Pair

Bottlenecks

 Of 40 Million copper lines owned by state-owned Telco in India, only about 7 millions are technically fit for carrying DSL signals.

(Source-Telecom Regulatory Authority of India, "Broadband Policy 2004". http://www.trai.gov.in/broadbandpolicy.asp)

- The Broadband policy required these incumbent telcos to provide 1.5 M by end 2005.
 - Only 0.35 M could be provided by November 2005.
- Local loop unbundling has hardly happened.
- High cost of network elements in SDH and ATM backhaul network.

Cable TV and Local Service Provider Model

ADM: Add-Drop Multiplexer SDH: Synchronous Digital Hierarchy B-RAS: Broadband Remote Access Server CMTS: Cable Modern Termination System DOCSIS: Data Over Cable Service Interface Specification CPE: Customer Premises Equipment Coax: Television grade Coaxial Cable CES: Consumer grade Ethemet Switch CAT5 UTP: Category 5 Unshielded Twisted Pair

Bottlenecks

- Deployment and maintenance operationally challenging
- Cable infrastructure in most cities does not have bi-directional support
- In local service provider model, enterprise grade switch is used
 - No security or user isolation.
 - No proactive network management
 - No traffic policing or rate shaping
 - No Quality of Service Guarantees
 - No built-in-redundancy

Next Generation Access Technologies

Next Generation SDH

Optical Ethernet or Ethernet over Fiber

Next Gen SDH

- Very popular in those carriers who already have installed base of SDH rings.
- Good choice of deployment when the predominant traffic is circuit switched.
- May be inefficient if the predominant traffic is bursty packet switched data.
 - Ethernet over Fiber and Copper is the solution.

Ethernet in Access

Reduces the cost of per user provisioning

- Relative technical simplicity
- Due to large installed base

Efficient and Flexible transport

→ Can offer a wide range of speeds from 128 Kbps to 10 Gbps.

Ease of Interworking

Plug and play feature

Ubiquitous adoption

 Ethernet is the dominant technology of choice in enterprise and campus LAN

Ethernet Deployment in Access

Hub and Spoke Configuration

- Dedicated fiber/wavelength/copper is used for connectivity.
- Gigabit Ethernet Ring
- Fully meshed architecture

But what are the limitations with native mode Ethernet ?

How to identify different customers?

- Notion of Ethernet virtual circuit like ATM VC that connects two or more UNI.
- How to enforce QoS?
 - → Guaranteed SLA and QoS Attributes
 - Committed Information Rate (CIR)
 - Committed Burst Size (CBS)
 - Peak Information Rate (PIR)
 - Maximum Burst Size (MBS)
- Protection Mechanism
- In-service performance monitoring
- How to scale the number of customers?

Ethernet as Transport Mechanism in native mode

VLAN Tagging

- Point to point VLAN can be used to establish virtual circuit
- VLAN Stacking
 - An already tagged frame can be tagged again to create a hierarchy.
 - → 802.1Q in 802.1Q (Q-in-Q)

Protection and Restoration

- Spanning Tree and Rapid Spanning Tree protocol (IEEE 802.1s)
- QoS
 - → Using 802.1p priority mechanism
- OAM
 - → IEEE 802.1ag

Challenges with an All Ethernet Access

Scalability

Limited VLAN tag space allows only 4096 VC to be set up

Traffic Engineering bottlenecks

 Spanning Tree allows only one loop free path which can result in uneven load distribution

Service Provisioning

- VLAN assignment and provisioning
- Limited protection and restoration available only through rapid spanning tree
 - ✤ 50 ms resiliency not possible.
- TDM voice over Ethernet

- MPLS can address the limitations of VLAN space, scaling with spanning tree, carrying VLAN information within network.
- Hybrid L2 Ethernet in access and IP/MPLS based core network is proposed for deploying Ethernet services.

MPLS as the transport mechanism in Core

- Scalability in terms of aggregation
- End to End QoS
 - Guaranteed Bandwidth LSP
- Offers circuit setup and traffic engineering capabilities
- Protection and Restoration
 - MPLS-TE (Backup LSP/LSP Preemption, Fast Reroute Option)
- Support of TDM voice
 - Circuit emulation

Towards An Optimal Access Architecture

BNG: Broadband Network Gateway

xDSL: Any Digital Subscriber Line AMS: Access Multiplexer/Switch CPE: Customer Premises Equipment MES: Metro Ethemet Switch MTU: Multi-Tenant Unit CAT5 UTP: Category 5 Unshielded Twisted Pair

Optimal Access architectures

MES architecture

- → MES with carrier class features and fiber uplink.
- Suffers from low port-fill rate leading to higher cost per port.
- While fiber to every building is ultimate goal, deployment scenarios in the field are very complex.

MTU architecture

- Multi-tenant unit
 - First level of aggregation.
 - 4-8 port for optimal utilization.
 - Uplink- Fiber or VDSL
- Access Multiplexer-Switch
 - Second level of aggregation.
 - Flexible Physical interfaces (VDSL, Ethernet over CAT5, Ethernet over Fiber)

Cost Comparisons

Parameter	DSLAM	LSP	MES	DSL MTU	MES MTU
Port Density	384	512	24	384	384
DSLAM Port	\$20	-	-	-	-
CPE	\$16	-	-	-	-
MTU Port	-	-	-	\$20	\$20
CES Port	-	\$2	-	-	-
MES Port	-	-	\$20	-	-
AMS Port	-	-	-	\$8	\$12
Copper Loop	\$40	-	-	\$5	-
Fiber Loop	-	-	-	-	\$8
CAT5 cabling	\$2	\$40	\$30	\$20	\$20
Fiber Uplink	\$2	\$2	\$10	\$2	\$2
Total per port	\$80	\$44	\$60	\$55	\$62

Comparisons

LSP Model

- Least expensive
- Residential subscribers tend to overlook problems in favor of cost factor.

MES Model

- Low-port fill rate leading to higher cost per port.
- Low device port density results in higher cost for upstream devices.
- MES/MTU Model
 - Suits best for providing affordable access in countries like India.

Technology Development

- Eisodus Networks company incubated at IIT
 Bombay has developed solution based on MES-MTU architecture.
- www.eisodus.com

EisoAccess Architecture

The architecture has two kind of nodes

- ENode (access node)
 - ► Typically a MDU or MTU
- ESLAM (Aggregator or concentrator)
- Element Management System with NBI

Ethernet Circuit

- Statically provisioned through NMS
- Dynamic provisioning through proprietary protocol
- QoS architecture with TM features conforming to MEF standards.
- TDM voice over Ethernet

ESLAM

Conclusions

- Cost competitive access infrastructure key to bridge information divide.
- Discussed various technology options.
- Ethernet over Fiber with VDSL in last few hundred meters based MES-MTU architecture seems promising.
- We also need
 - Affordable computing platforms
 - Rich information environment
 - Content, language, interface, information retrieval

References

- Telecom Regulatory Authority of India, "Broadband Policy 2004", 2004. (<u>http://www.trai.gov.in/broadbandpolicy.asp</u>)
- A. Jhunjhunwala, "Drivers of Telecom in India", IETE Technical Review, Vol 20, No 4, July-August 2003.
- http://www.broadband.gc.ca/pub/program/NBTF/recommendations.html#definitions
- Telecom Regulatory Authority of India, "The Indian Telecom Services Performance Indicators October - December 2005", April 2006. http://www.trai.gov.in/Reports_content.asp?id=24
- Telecom Regulatory Authority of India, "Broadband India: Recommendations on Accelerating Growth of Internet and Broadband Penetration", April 2004. <u>http://www.trai.gov.in/Recommendations_content.asp?id=21</u>
- China Internet Network Information Center, "17th Statistical Survey Report on the Internet Development in China", January 2006. <u>http://www.cnnic.net.cn/download/2006/17threport-en.pdf</u>
- Ministry of Information and Communication, National Internet Development Agency of Korea, "Survey on the Computer and Internet Usage [2005.12]", March 2006. <u>http://isis.nida.or.kr/eng_report_down/upload/user_sum_eng_200512.pdf</u>
- Rajendra Singh, "Letter F.No.2-2/2004-CN: Broadband 2004 targets and achievement", November 2005. <u>http://www.trai.gov.in/Recommendations_content.asp?id=5</u>