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Abstract

The Third Generation Partnership Project (3GPP) has proposed the concept of heteroge-

neous cellular networks to meet the increasing demands of cellular users. These networks

consist of small cells like micro, pico and femto cell in addition to the already existing

macro cell. The small cells achieve an increase in system capacity by installation of base

stations close to the user location. Another major benefit that small cells are expected

to bring is improvement in energy efficiency. Proximity of the base station with the user

equipment implies lesser power requirement for transmitting information between the

two. However, installing a large number of new base stations for the small cells can also

lead to an increase in the total energy consumption of the system. Thus, novel approaches

for saving energy are required in heterogeneous networks. One of the mechanisms that

have been proposed towards this is switching OFF these base stations at times of low

load. These mechanisms make use of the variability in the total user demand at different

times of the day.

In this work, we consider a heterogeneous network with a macrocell overlaying an

area in which pico base stations have also been installed. At times of low load, the

pico base stations can be switched OFF to save energy. We study the optimal switch

OFF policies for pico base stations. For any given traffic conditions, we determine the

maximum fraction of base stations that can be switched OFF while maintaining quality

of service (in terms of the average waiting time). Using tools of Multimodularity, we

determine the optimal ON-OFF policy for each base station and the optimal association

policy between users and base stations.

In the second part of the work, we consider a stand-alone pico base station and focus on

its ON-OFF switching depending on the number of users in the coverage region. We find

the optimal policy which minimizes a sum of two costs - cost due to power consumption

of base station and cost associated with user’s Quality of Service.

i
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Chapter 1

Introduction

1.1 Motivation

The number of mobile subscriptions in the world is increasing at an exponential rate.

From 6 billion at the end of 2011, the number is expected to go to 7 billion at the end

of 2014 (which is almost 96% of the world’s population) [1]. The massive increase in

popularity of smart phones and tablets have amounted to huge data traffic in cellular

networks. Mobile broadband is expected to be the fastest growing market segment in

2014 [1]. Today, over 79% of the total Internet users access it from their mobile phones

[2].

This increase in the number of mobile subscriptions and in the demand of data traf-

fic has led to an enormous increase in the required capacity of cellular systems. New

technologies are being proposed to meet this demand. One of the prominent ones is

the use of small cells. It has been known that smaller cell sizes typically lead to better

system capacities as compared to larger cells. Small cells like femto cells are also ideal

for providing high data rates in concentrated regions. Accordingly, the Third Generation

Partnership Project (3GPP) standards have introduced the possibility of heterogeneous

cellular networks [3].

These increased demands have also led to increased consumption of resources espe-

cially the energy resources. Information and Communication Technology (ICT) sector

is currently responsible for 2% of the world’s total carbon emissions [4]. Even today,

a significant portion of the base stations in developing nations are powered by diesel

generators which leads to further depletion of already scarce fossil fuels. Further, the

1
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energy costs amount to as much as half of the mobile operator’s total expenses. Thus,

improving energy efficiency of cellular networks has become important both from the

operator’s profitability point of view as well as to mitigate environmental effects that are

being caused. Hence, the current situation requires us to deploy systems with increased

capacities and higher energy efficiency.

The energy efficiency of cellular networks can be improved at various levels [4].

Improvements in efficiency of hardware components like power amplifiers lead to lesser

power dissipation. Using new technologies like cognitive radio and cooperative relays are

also expected to be a step towards green communication. Using sleep-wake up mechanism

for base stations reduces power consumption of the network at times of low traffic. We

focus on this energy-saving mechanism in this thesis.

1.2 Sleep-Wake Up Mechanisms

A breakdown of the power consumption of a wireless network indicates that base stations

consume about 80% of the total energy [5]. Though the energy consumption of the base

station varies with the load, there is a major portion which does not depend on the load.

Notably, a fixed proportion of energy is consumed even when the base station is serving

very few or no users leading to an inefficient system. Thus, there is a scope for making

significant energy savings by switching OFF some base stations at the times of low traffic.

Numerous sleep-wake up mechanisms [5, 6, 7, 8, 9, 10, 11, 12] have been proposed in the

recent years.

These mechanisms take advantage of the conservative deployment of the base sta-

tions because base station deployment is typically done to be able to cater to the peak

load. Thus, there are large periods of time having less load and which provide scope for

switching OFF some base stations.

Sleep-wake up mechanisms become more crucial in heterogeneous networks. In these

networks, in addition to the already existing macrocells, there are micro, pico or femto

cells as well. As the number of users in any area varies significantly during the day

[10], these small cells become redundant at some times. Since the same area is covered

by possibly two types of base stations (e.g., macro and a femto base station), one can

use both the base stations during peak loads while one (mostly macro base station) is
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sufficient for low load periods. Thus, the sleep wake mechanism becomes important in

the context of small cell/heterogeneous networks.

1.2.1 Review of Proposed Sleep-Wake Up Mechanisms

In the recent years, a number of sleep-wake up mechanisms have been proposed. Different

works focus on different aspects of the mechanism - coverage issues when base stations are

switched OFF, understanding trade-offs between energy and QoS parameters, compati-

bility of the mechanism with the current infrastructure and cellular network protocols,

etc.

[10] proposes a virtual grid based algorithm. Here, cells which can substitute each

other (in terms of the coverage area) are put together in one virtual grid. In each grid, only

those many base stations are switched ON as are required for serving the instantaneous

traffic. An estimate of the expected traffic in any hour is made using information about

the traffic in the previous hour and the traffic at the same time in the previous day. The

authors also propose a mechanism for smooth transition between the base stations which

are ON in the idle hour and the ones which are gradually turned ON as we approach

the peak hours. This algorithm deviates from the optimal algorithm as it ignores the

possibility of coordination between base stations belonging to different grids.

In [11], the authors propose a greedy algorithm for switching OFF base stations

whenever the traffic load goes below 10% of the peak load. The nearest neighbours of

an active base station are sequentially switched OFF while ensuring that the coverage is

maintained in 95% of the original coverage area.

[6] proposes a variant of the sleep-wake up concept - cell zooming. In this, cells vary

their sizes for achieving load balancing and energy efficiency. If a cell has light load, then

it will zoom in and its neighboring cells will simultaneously zoom out to ensure coverage.

But the algorithm does not specify the exact condition when a cell should zoom in, it

only emphasizes on when the cell can be put in sleep mode. Also, it is unclear if only

zooming in and out of cells (without putting them in sleep mode) would make the system

more energy efficient.

In [7], the authors suggest switching OFF base stations for which the average traffic is

less than a predefined threshold. But this does not incorporate any co-operation among

the base stations to share their load. Each base station is evaluated on the basis of total
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traffic and not just the traffic which cannot be covered by other base stations.

All the above algorithms focus on a homogeneous network setting i.e. a network

consisting of only macro-cells. The system dynamics would change due to the introduction

of small cells. Some algorithms which are applicable to a heterogeneous setting are

described below.

[12] studies the effect of putting base stations in sleep mode on the blocking rate

and Quality of Service (QoS) when both 2G and 3G users are present. The authors

recommend usage of sleep mode only during the low traffic hours to keep the degradation

of QoS to a minimum.

In [8], the authors study wake up mechanisms keeping in mind the features compatible

with the hardware of a small cell. Three approaches have been proposed for waking up

a small cell in sleep mode - controlled by (1) small cell, (2) core network and (3) user

equipment. By default, the small cells are put into sleep mode and are alerted as per the

above algorithms. However, the authors do not emphasize on if the small cell should be

switched ON whenever there is any user in the vicinity or only if there are users whose

demands cannot be met by other base stations which are ON. This can make a significant

difference in the energy savings obtained.

In [5], the problem of switching ON and OFF femto base stations is formulated within

Markov Decision Process (MDP) framework. The optimal policy that maximises a func-

tion of the QoS minus a function of the energy consumed is formulated as a solution

to the MDP and can be evaluated using numerical methods. Here, the situations with

complete, partial and delayed traffic information are considered separately. In [13], the

authors also consider other practical issues like activation time and ping-pong effect which

are encountered while deploying sleep-wake up mechanisms. Though the above schemes

provide a general solution applicable in many situations, obtaining the MDP solution

might not be feasible in real time due to its complexity.

In [9], a system having linearly placed base stations with unidirectional antenna has

been considered. For a fixed fraction (η) of base stations to be switched OFF or for each

base station to be switched OFF for atleast a given fraction of time (η), the optimal

ON-OFF base station policy has been derived. These correspond to two different types

of control - centralized and decentralized. Using tools of Multimodularity, it has been

shown that the optimal policy in both the cases is a bracket sequence which depends only
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on the conservation factor (η). This bracket sequence has a very simple form and can be

computed easily.

We consider a similar linear deployment of base stations but in a heterogeneous setting

containing picocells and a macrocell, with bidirectional antenna and obtain the optimal

ON-OFF policy for a given switch-OFF ratio. Further, presence of bidirectional antenna

in the pico cells and a macro cell gives users the opportunity to choose among various

active base stations. Thus, we focus on the policy that each user should use to choose

which base station to connect to.

More importantly we study the finer structural properties of the optimal (bracket)

policy and using this study we obtain the optimal fraction to be switched OFF while

maintaining QoS given the load conditions. Using the structural properties so obtained,

we have a closed form expression for the average waiting time with the bracket (optimal)

ON-OFF policy. In totality, given the load conditions and the QoS constraints, we obtain

the optimal operational policies.

1.3 Objective

Any cellular network aims at providing good quality of service (QoS) to the users. For

ensuring good service, for example, it might want to maintain the average waiting time

of customers or the call blocking probability below a certain limit. Typically the QoS

measures depend both upon the load factor (which depends upon the arrival rate and

average work size) of the users as well as the number of available base stations to serve

them. As the network also aims to minimize the energy consumption, depending on the

traffic, we can optimize on the number of base stations to be operated which would meet

the QoS requirements and consume only the minimum required amount of energy.

In the first model, we have considered an area covered by a macro base station, with

a major street, carrying significant traffic. Pico base stations (PBSs) have been installed

along this street to meet the demands of the users. The aim of the work is to find the

maximum fraction of PBSs that can be switched OFF while maintaining the QoS. We also

aim to understand which base stations should be switched OFF and among the multiple

PBSs and the MBS, which base station should a user connect to. For this a) we first

consider the design of optimal ON-OFF and user-base station association policies for the
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series of PBSs in such a heterogeneous network, given that a fraction η of them need to

be switched OFF; b) and then, we evaluate the optimal η to meet the QoS requirements.

Towards this, we compute an expression for the desired QoS parameter both in terms of

the load factor and the number of active servers (base stations), using queuing theoretic

analysis.

In the second model, we consider a single PBS. We aim to find the switch ON-OFF

policy of this PBS to minimize the cost of power consumption and a cost related to user

inconvenience.

1.4 Organization

The rest of this thesis is organized as follows. In Chapters 2 and 3, we consider the

linear deployment scenario of pico base stations and derive the optimal policies (optimal

activation policy and optimal user-base station association policy in Chapter 2, optimal

switch OFF ratio in Chapter 3). In Chapter 4, we consider decentralized switching policies

and derive the optimal activation policy for a pico base station. Proofs of all theorems

and lemmas have been provided at the end of the respective chapters.



Chapter 2

Optimal Policies with given Switch

OFF Ratio

2.1 System Model

When a cellular network has to be designed in a particular area, its major infrastructural

layout is often known which can be exploited to achieve a better deployment. Here

one such scenario has been considered, where a busy road passes through a macro cell.

Heavy traffic is usually generated on such roads, which can burden the macro base station

(MBS). This situation is appropriate for deployment of a heterogeneous network so that

the load of the MBS can be shared by a series of PBSs placed along the road. A similar

situation arises when a metro line passes through a macro cell. Base stations will need to

be installed at various intermediate points along the metro line to cater to the demands of

the large number of users who are travelling in the metro. (This linear PBS deployment

model has also been considered in works like [14], [15] etc.)

The traffic on the road is generally time varying. For example, the road might carry

very heavy traffic during the peak hours in morning and evening while the traffic at

mid-day would be much lower. At times of low traffic, some of the base stations can

be switched OFF to reduce the energy consumption of the network (This is especially

beneficial as picocells might be battery operated). Simultaneously, the network needs to

maintain its QoS above a certain acceptable level, irrespective of the traffic conditions.

For example, it might want to maintain the average waiting time of a customer within

a certain limit, or maintain the call blocking probability for impatient customers below

7
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Figure 2.1: System under consideration

a certain limit and so on. The QoS measures depend both upon the arrival rate (load

factor) of the users as well the number of available base stations to serve them. We

first consider the design of optimal ON-OFF policies for the series of PBSs in such a

heterogeneous network, given that a fraction η of these need to be switched OFF. Using

queuing theory analysis, the fraction η of the base stations that can be switched OFF at

a given time, is obtained by computing an expression for the desired QoS both in terms

of the load factor and the number of servers (base stations) and then solving by equating

the QoS with the desired/acceptable QoS level.

In our system model, PBSs are placed uniformly (at points 0, d, 2d, · · · ) along the

street/metro line 1 (which lies in the area covered by the macro cell). Note that the

street/line can have curvatures, bends etc as in Figure 2.1. But this can be transformed

into a straight line via a homomorphism, as in most of the cases the street is straight

locally. Thus, further analysis is done assuming the street to be a straight line.

We assume that users are arriving independently. Also, the rate of arrivals is uniform

throughout the line as can be expected on a highway or a metro line.

The analysis here has been done for a constant arrival rate of users and the optimal

policies depend on the user arrival rate (λ). Note, however, that for any region, λ varies

throughout the day and hence the optimal policies need to be computed once for durations

of almost constant λ.

1Throughout the below text, ’street’ would refer to both metro line and a busy street.
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Pico Base Stations

PBSs have been deployed distance d apart from each other. A length of d
2

on each side

of the PBS is referred to as its cell. Thus, cell of each PBS is of total length d.

Macro Base Station

Pico base stations are required in regions of high load conditions, more so when the MBS

is sufficiently far. As the MBS is far from the street, its distance from various points on

the street is almost the same. Thus, the rate provided by the MBS to any user depends

mainly on the shadowing and fading.

Service Rates

The maximum rate (capacity) at which a BS can serve a user at a distance l ( in the

absence of any interference) is

θ̂(l) = B log

(
1 +

Pt
σ2

(
1{l≤l0} + 1{l>l0}

(
l

l0

)−β)
ψ|α|2

)
,

where B is the bandwidth, Pt is the transmitted power, σ2 is the noise variance, β is the

pathloss factor, l0 is the lossless distance, α is a random variable to account for multipath

fading and ψ is a random variable to account for shadowing. We assume that there is no

inter or intra-cell interference.

Let the set of rates, that the base stations in this network can support, be {r1, r2, · · · , rK}.

Thus, the rate at which a user at a distance l from the serving BS will be served is

θ =
K∑
i=1

ri1{ri≤θ̂(l)<ri+1}.

The above gives the rate at which the user is served, which is random because of the

fading and shadowing factors.

When served by a PBS, the random rate also depends upon the number of neighbour-

ing PBSs, that are switched OFF as this determines the distance from the serving PBS

and hence the transfer rate.

We assume that the shadowing and fading random variables are independent and

identically distributed for all users on the street. We define the transfer rate for users in

cell n for n ≤ 0 to be θ0 where θ0 is the (random) rate obtained when a user is being
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served by a PBS in its own cell. Note that θ0 has same distribution irrespective of the

cell number, because of uniform arrivals and identical fading and shadowing distributions

in all the cells. That is:

θ0 =
K∑
i=1

ri1{ri≤θ̂(L0)<ri+1},

where L0 is uniformly distributed between [0, d/2]. Similarly, we define θk to be the

random rate when the serving PBS is k cells away. Here again the distribution depends

only upon k and

θk =
K∑
i=1

ri1{ri≤θ̂(Lk)<ri+1},

where Lk is uniformly distributed between [(2k−1)d
2
, (2k+1)d

2
]. Note that one can rewrite

Lk = (2k − 1)d
2

+ 2L0. As fading and shadowing remain identical, we conclude that

θ0 ≥ θk almost surely, for all k ≥ 1.

Based on similar reasoning, we observe

θk ≥ θk+1 almost surely, for all k ≥ 0. (2.1)

Similarly, θM is defined to be the random rate at which the MBS serves any user

on the street. Note that, the distance of different users on the street from the MBS is

assumed to be the same. Thus, for different users, the difference in θM is only due to

different realisations of shadowing and fading.

2.2 Control Policies

We want to determine the maximum throughput that can be achieved by the users when

a given fraction of the base station needs to be switched OFF. There are two control

policies relevant to this purpose: a) The PBS activation policy which determines which

PBSs are OFF b) Given an activation policy, a user-base station association policy which

specifies the base station to which a user should connect to.

User-Base Station Association Policy

Each user can connect to any PBS which is ON or the MBS. If the PBS of its own cell

is ON, the user obtains service at best rate from its PBS. When this PBS is OFF, an

association decision has to be made.
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Among all active BSs, a user gets connected to the one from which the received signal

strength is the maximum. With high probability, this is the nearest ON PBS or an MBS

if all the ‘significant’ neighbouring PBSs are OFF. Thus we make the following natural

choice of parametrized association policies referred to as J-association policy : Connect

to the MBS if all the J neighbouring PBSs are OFF and if one or more of the J neighbours

are ON, then connect to the nearest ON PBS.

To be more precise, we fix a number J and define the association order of the user

among the base stations as - PBS at its own position > the two PBSs at distance d >

the two PBSs at distance 2d · · · > the two PBSs at distance Jd > macro base station.

The user connects to the first active (ON) base station based on this order.

With this association policy, all users in a cell get served by the same base station.

Thus, we model the users in a cell as a queue of users getting service from a fixed base

station.

PBS can also serve multiple queues of users simultaneously. We assume that the

resources (like channel bandwidth) of the OFF PBSs are appropriately reallocated among

the ON PBSs. Thus, if a PBS is serving multiple queues, its resources increase propor-

tionately so that the rates of the users are not affected by the fact that the PBS is also

serving other queues. As the power consumption of the PBS does not vary significantly

with load [11], we assume that the power consumption does not change much with this

increase in the number of users it is serving.

2.3 System Performance

In this section, we understand the system performance when the activation vector a

(described below) and J-association policy are used. The PBSs are indexed starting

from 0. Let the activation vector a ∈ {0, 1}N represent the status of the base stations -

ai = 1 if the ith PBS is OFF and it is 0 if the PBS is ON. We assume that the 0th PBS

is always ON. With large N 2 , this restriction does not alter the performance. Here,

bold letters like a represent an N length sequence while a partial sequence is defined by

akj := [aj, aj+1, · · · , ak].

2The major streets or metro lines run over kilometers and the pico cells are usually separated by few

hundreds of meters and hence N can be large.
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Figure 2.2: Example of an Activation Vector

Performance at n-th point

The users in the n-th cell are served by the PBS sn cells away where

sn = inf
k:|n−k|≤J

{|n− k| : ak = 0} .

If ak = 1 ∀ k : |n− k| ≤ J , then they are served by the MBS and sn := M .

Note that the system performance can be controlled only via service rates offered to

users in cell n for n ≥ 1 (as the system consists of PBSs starting from location 0 and the

PBS at 0 is always ON).

The queue of users in each cell among (0, d, 2d, · · ·Nd) is served by a BS (PBS or

MBS depending upon (a, J)) independent of users in other cells. Thus, we can model

each cell as containing an independent queue with Poisson arrivals at rate λ. We assume

that the amount of information S, each user has to transmit is exponentially distributed

with mean s. Given the activation vector a and J-association policy, a user who arrives

in the n-th cell, is served at (random) rate θn(a, J) = θsn . Thus, the user occupies the

server of the serving BS for a random time, S/θn(a, J) and hence we have an M/G/1

queue at n-th point with equivalent service times B = S/θn(a, J) .

Let w(i) represent the expected waiting time of a user in an M/G/1 queue with arrival

rate λ and service time Bi = S
θi

(recall θi is the (random) rate at which a user receives

service whose serving PBS is i cells away from it). Note that i can take any value in

[0, · · · , J ] and for notational simplicity we also allow i = M to indicate that MBS serves

the user. When the queue is not stable then the expected waiting time approaches infinity

which we approximate by a large constant H. That is ( [16]),

w(i) :=


λE[(Bi)2]

2 (1− λE[Bi])
if

1

E[Bi]
> λ

H otherwise.
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Thus, in cell n we have an M/G/1 queue with expected waiting time of a user given

by :

Wn(a, J) = w(sn(a, J)). (2.2)

By independence, we have

E[Bi] = E[S]E

[
1

θi

]
= E[S]

K∑
k=1

1

rk
1{rk≤θ̂(Li)<rk+1}.

Using this and (2.1), we get (for i, i− 1 6= M)

E[Bi] > E[Bi−1] and E[(Bi)2] > E[(Bi−1)2].

Hence, we have w(i) > w(i− 1).

Expected Waiting Time of a Typical User

The expected waiting time of a typical user is obtained by first conditioning on its position

of arrival and then taking average over the arrival positions. As expected waiting time of

all users in a queue is the same, conditioning over arrival position is same as conditioning

over the cell in which the user has arrived. By our assumption, a user is equally likely to

arrive in any cell. Thus, the expected waiting time of a typical user equals :

1

N

N∑
n=0

Wn(a, J).

We are considering a long street and hence assume that N is sufficiently large. Thus, the

expected waiting time of a typical user is well approximated by the limit3:

W (a, J) = lim sup
N→∞

1

N

N∑
n=1

Wn(a, J).

(Note W0(., .) = w(0) is fixed.)

The Optimization Problem

A network is usually designed to maintain certain desired QoS level throughout the day,

irrespective of the time varying load conditions. We take the average of the individual

3As the limit may not exist for every activation vector a, we take an upper bound given by the limit

superior. We will show that the optimal sequence is periodic, which in turn makes the optimal {Wn}

periodic and then the limit superior equals the limit.
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expected waiting times over all the users (referred to as the customer average) as the

QoS metric which needs to be maintained below WQoS. The analysis would go through

for any other QoS metric that satisfies certain monotonicity properties discussed in the

remark of the previous section.

For any load, there exists a range of switch OFF ratios (η), which meets this QoS

requirement. On the other hand, higher η implies higher fraction of PBSs which are

switched OFF and thus, lower energy consumption. Thus, we aim to find the maximum

fraction of PBSs that can be switched OFF while being able to meet the QoS constraint

i.e. the following optimization problem -

sup
a,J

η subject to (2.3)

W (a, J) ≤ WQoS and lim inf
N→∞

1

N

N∑
n=1

an ≥ η.

We solve the above problem in the following manner -

1) For a given switch OFF ratio η, determine the pair (a∗(η), J∗(η))4 which minimizes

W (a, J) i.e.

min
a,J

lim sup
N→∞

1

N

N∑
n=1

Wn(a, J)

subject to lim inf
N→∞

1

N

N∑
n=1

an ≥ η. (2.4)

2) Obtain the closed form expression for the minimum average waiting time for every η

i.e., W (a∗(η), J∗(η)).

3) Determine the maximum η′ satisfying the QoS, i.e., W (a∗(η′), J∗(η′)) ≤ WQoS and

show that η′ solves (2.3).

2.4 Optimal Activation Vector

As outlined in the previous section, we first consider a fixed switch OFF ratio η and find

the activation vector and J-association policy which minimize the customer average of

the expected waiting time.

Let J̄ represent the distance of the farthest PBS from which the expected waiting

4With N →∞, a now is in {0, 1}∞.



2.4. OPTIMAL ACTIVATION VECTOR 15

time is better than that provided by the MBS, i.e.

J̄ := max
k
{k : w(k) > w(M)} .

We begin with the derivation of the optimal activation policy given the J-association

policy and the condition that at least η fraction of the PBSs needs to be switched OFF.

Towards this, we first consider the following optimization for any fixed J ≤ J̄ :

min
a

lim sup
N→∞

1

N

N∑
n=1

Wn(a, J)

subject to lim inf
N→∞

1

N

N∑
n=1

an ≥ η, (2.5)

and show that the optimizer satisfies the constraint with equality.

The solution to this problem is obtained, using concepts of multimodularity. A brief

overview of multimodular functions has been presented in Appendix A.

Theorem 1. For J ≤ J̄ , the function fn(an1 ) := Wn−J(a, J) is multimodular for every

n. �

Corollary. Any function whose value monotonically increases with the distance between

the user and its serving PBS can be shown to be multimodular. Thus, the analysis in

this work will also hold for other QoS measures which satisfy this monotonicity condition.

Theorem 2. For J ≤ J̄ , the solution of (2.5) is given by a bracket sequence a∗(η) for

some β ∈ [0, 1) where

a∗(η) := {an}n≥1 ; an = bnη + βc − b(n− 1)η + βc. �

In this text, b.c and d.e represent the floor and ceil functions respectively.

For the bracket sequence a∗(η), every β defines an optimal policy. Without loss of

generality, we consider the policy with β = 0 for all further discussions.

The bracket sequence a∗(η) in fact, satisfies (2.5) with an equality (Lemma 5.1 in

[17]). Thus, the bracket policy is also optimal if the inequality in (2.5) is replaced by an

equality.

It is easy to see that if η is rational (η = k1/k2), then the bracket sequence is periodic

with period k2. Since rational numbers are dense in R, we indeed assume a rational η in

all our discussions below. Thus, when the optimal policy is used, the ON-OFF pattern

of the PBSs will be periodic.
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Table 2.1: Example of bracket sequences

η Periodic sequence in a∗(η)

0.2 0 0 0 0 1

0.3 0 0 0 1 0 0 1 0 0 1

0.6 0 1 0 1 1

0.7 0 1 1 0 1 1 0 1 1 1

Further, it should be noted that this optimal bracket policy depends only upon η and

is not influenced by other parameters, like J , fading and shadowing distributions etc.

This policy also has a very simple and regular form which permits easy calculation.

2.5 Optimal User-Base Station Association Policy

We expect that in the optimal case, the user should connect to the PBS or MBS depending

on whichever is able to serve it with less waiting time. As seen in the previous section

for any J ≤ J̄ , once the switch OFF ratio η is fixed, the optimal activation policy is

independent of J . We now obtain the optimal J with the following theorem.

Theorem 3. (a∗(η), J̄) is the minimizer of the optimization problem (2.4) i.e. W (a, J) ≥

W (a∗(η), J̄) ∀ J and for all activation vectors a in which the fraction of base stations

that are switched OFF is η. �

Thus given η, the fraction of PBSs to be switched OFF and the policies minimizing

the average waiting time are a∗(η) and J̄ respectively. Regarding the optimal J , via the

above theorem we prove our intuitions correct: for any η it is optimal to connect to the

PBSs as long as they provide better service, in terms of the expected waiting time than

the MBS (with high probability).

In the next chapter, we find the maximum η (among rational numbers) which satisfies

the QoS requirement for any given traffic/load conditions (λ and s). The load conditions

are reflected via the term w(i) of (2.2).
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2.6 Proofs of Theorems and Lemmas

Proof of Theorem 1. All the sequences in this proof are n length vectors and also J is

fixed. Hence, we use the shorthand notation a in place of an1 for all the vectors and θn(a)

in place of θn(a, J). We need to show

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v) (2.6)

∀ a ∈ {0, 1}n and ∀ u,v ∈ F (the multimodular base) with u 6= v and such that

a + u, a + v, a + u + v ∈ {0, 1}n .

Let us define s1 = −e1 and sn+1 = en. Let v = sj and u = sl where j, l ∈ {1, n+ 1}

and l 6= j. Without loss of generality, we assume that l > j.

Consider j ∈ {2, n}. Since a + v ∈ {0, 1}n, we have aj−1 = 0 and aj = 1. Further,

(a+ v)j−1 = 1, (a+ v)j = 0 and ai = (a+ v)i ∀ i 6= j, j − 1.

Therefore, adding v to a implies that the PBS in (j − 1)-th cell which was ON is turned

OFF and the PBS in the j-th cell is turned ON.

When v = s1 = −e1, we would have

a1 = 1, (a+ v)1 = 0 and ai = (a+ v)i ∀ i 6= 1.

Similarly, when v = sn+1 = en, we would have

an = 0, (a+ v)n = 1 and ai = (a+ v)i ∀ i 6= n.

Thus, addition of −e1 switches ON the first base station and addition of en switches OFF

the last base station. All the above will also hold when v is replaced by u and j by l.

Note that the PBS in the 0th cell is always switched ON. Thus, a0 = 0 ∀ a.

Note that l cannot be equal to j + 1 i.e. l > j + 1 since u = sl implies al−1 = 0 i.e.

aj = 0 if l = j + 1. But, v = sj implies aj = 1. Hence, we have an inconsistency if

l = j + 1.

Thus, we only need to consider j ∈ [1, n], l ∈ [2, n+ 1] ∀ l > j + 1.

Let the closest active (ON) PBS on the left of a user in the(n − J)-th cell and the

closest active PBS on its right be in cells KL(a) and KR(a) respectively i.e.,

KL(a) = max
0≤k≤n−J

{ak = 0} and
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KR(a) =

n+ 1 if ai = 1 ∀ n− J ≤ i ≤ n

min
k≥n−J

{ak = 0} otherwise.

KR(a) is assigned value n+ 1 when none of the J PBSs to the right of the user are ON.

This signifies that the user will be connected either to KL(a) or the MBS. From now on,

we refer to a user in the (n− J)-th cell as the (n− J)-th user. (All the users in a cell are

served by the same BS and have the same expected waiting time, hence the notation.)

Let B(a) represent the base station to which the (n− J)-th user is connected. B(a) is

either KL(a) or KR(a) or the MBS. Unless there is a change in the base station to which

the user is connected, its expected waiting time will not change.

If n ≤ J , we will have n− J ≤ 0. By definition, θn−J(b) = θ0 for any activation vector

b. Thus, almost surely,

θn−J(a) = θn−J(a + u) = θn−J(a + v) = θn−J(a + u + v).

fn(.) represents the expected waiting time of a user in the (n − J)-th cell. The rate

offered to a user in this cell is θn−J . If θ > θ′ almost surely, then ŵ(θ) > ŵ(θ′) where

ŵ(θ) denotes the expected waiting time of a user who is being served at the random rate

θ. Similarly, θ = θ′ almost surely implies ŵ(θ) = ŵ(θ′).5

Thus, we have

fn(a + v) = fn(a + u) = fn(a) = fn(a + u + v) = w(0),

and (2.6) is satisfied. Now, we focus on n > J . If

j − 1 < l − 1 < KL(a) or KR(a) < j − 1 < l − 1 or

j − 1 < KL(a) and (l − 1) > KR(a),

then even after adding u or v or u+v to a, the nearest ON PBS to the (n− J)-th user

on both its sides remain unchanged. Thus,

fn(a + v) = fn(a + u) = fn(a) = fn(a + u + v).

Hence, (2.6) is satisfied. Now, let us divide the rest of the possibilities into three scenarios

-

5We will use this reasoning throughout without mentioning repeatedly.
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1. j − 1 < KL(a), l − 1 = KL(a) or l − 1 = KR(a)

2. j − 1 = KL(a) or j − 1 = KR(a), l − 1 > KR(a)

3. j − 1 = KL(a), l − 1 = KR(a).

Considering each of them one-by-one,

Case 1: j − 1 < KL(a), l − 1 = KL(a) or l − 1 = KR(a)

As j − 1 < KL(a) switching OFF the PBS in (j − 1)-th cell and switching ON the

PBS in j-th cell or only switching ON the PBS in cell 1 (when j = 1) will not affect the

(n− J)-th user. (j 6= KL(a) as aj = 1 and aKL(a) = 0.)

Thus, B(a) = B(a + v).

Hence, fn(a + v) = fn(a) and similarly, fn(a + u + v) = fn(a + u). Therefore, (2.6) is

satisfied for all possible values of v and u when j − 1 < KL(a), l− 1 = KL(a) or l− 1 =

KR(a).

Case 2: j − 1 = KL(a) or j − 1 = KR(a), l − 1 > KR(a)

Similar to the previous case, we will now have,

fn(a + u) = fn(a) and fn(a + v + u) = fn(a + v).

Therefore, (2.6) is satisfied for all possible values of v and u when j−1 < KL(a), l−1 =

KL(a).
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Case 3: j − 1 = KL(a), l − 1 = KR(a)

As l ≤ n+ 1, we have KR(a) ≤ n.

∴ KR(a)− (n− J) ≤ n− (n− J) (2.7)

i.e. the number of cells between the (n− J)−th user and KR(a) is less than or equal to

J which implies (n− J)-th user is connected to either the PBS at KL(a) or the PBS at

KR(a) . Thus, the user would not be connected to the MBS with this activation vector

a. As KR(a) = KR(a + v), the same arguments hold when the activation vector is a + v.

Thus, even with this activation vector , the user would not be connected to the MBS.

We know that KL(a) ≤ n − J . If KL(a) = n − J then by definition, KR(a) = n − J.

Then, l − 1 = n− J = j − 1. This is an inconsistency as l > j + 1.

Clearly, KL(a + v) = 1 + KL(a). Thus, when j − 1 = KL(a) < n − J , addition of

v switches ON a PBS closer to the user. As the expected waiting time monotonically

increases with the distance between the user and its serving PBS,

fn(a + v) ≤ fn(a).

Using the same arguments we get,

fn(a + u + v) ≤ fn(a + u). (2.8)
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Now, consider the following sub-cases -

1. KR(a)− (n− J) < (n− J)−KL(a)

Here, B(a) = KR(a). Also, KL(a + v) = 1 +KL(a) and KR(a + v) = KR(a). Thus,

KR(a + v)− (n− J) ≤ (n− J)−KL(a + v),

⇒ B(a + v) = KR(a + v) = KR(a) = B(a).

∴ fn(a + v) = fn(a). (2.9)

Adding (2.8) and (2.9), we get

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v).

2. KR(a)− (n− J) ≥ (n− J)−KL(a)

Here, B(a) = KL(a). Clearly, KL(a) = KL(a + u) and KR(a + u) ≥ KR(a). So we

have,

KR(a+u)− (n− J) ≥ (n− J)−KL(a+u),

⇒ B(a + u) = KL(a + u) = KL(a) = B(a).

∴ fn(a + u) = fn(a). (2.10)

Now, let us consider the situation when the activation vector is a + v. As KR(a) =

KR(a + v), from (2.7), we have

KR(a + v)− (n− J) ≤ n− (n− J).

Thus, even when the activation vector is a + v the user would not be connected to

the MBS but would be connected to either KR(a + v) or KL(a + v).

Using the hypothesis,

KR(a + v)− (n− J) ≥ (n− J)−KL(a + v).

Hence, the user is connected to KL(a + v). (In the case of equality in the above,

user can be connected either to KL(a + v) or KR(a + v) but this does not make a

difference to fn(a + v) as both of them are equidistant from the user. ) Therefore,

fn(a + v + u) = fn(a + v). (2.11)
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Adding (2.10) and (2.11), we get

fn(a + v) + fn(a + u) = fn(a) + fn(a + u + v).

Thus, for KL(a) = j− 1 and KR(a) = l− 1 , (2.6) is satisfied. Therefore, for all u,v ∈ F

and u 6= v, we have proved that

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v).

Hence, we conclude that fn(a) = Wn−J(a) is multimodular.

Proof of Theorem 2. As J remains constant throughout the proof, we will use a shorthand

notation of Wn(a), θn(a) instead of Wn(a, J), θn(a, J) respectively. Define

fn(an1 ) = Wn−J(a, J).

This proof is obtained using Theorem 13. We will verify the validity of its assumptions.

1) fn(an1 ) = Wn−J(a) is multimodular from Theorem 1.

2) For assumption 2, we need to prove ∀ n > 1 that

fn(a1, · · · , an) ≥ fn−1(a2, · · · , an) i.e.

Wn−J(a1, · · · , an, · · · ) ≥ W(n−1)−J(a2, · · · , an, · · · ).

If (n− J) ≤ 0, then the assumption is true because

Wn−J(a1, · · · , an, · · · ) = W(n−1)−J(a2, · · · , an, · · · ) = w(0).

Now, let us consider (n− J) > 0. Define activation vector

c = (c1, c2, · · · , cn−1, · · · ) := (a2, · · · , an, · · · ).

By our assumption, the element with the index 0 of any activation vector is 0 i.e.

c0 = a0 = 0. Recall that θn−J is the transfer rate of users in the (n − J)-th cell while

θ(n−1)−J is the rate of users in its left neighbouring cell. With the change in activation

vector, the status of the PBS originally determined by a1 is now determined by c0. Let

us call this PBS P. If a1 = 0, then no user other than users of cell 0 would have been

connected to PBS in cell 0. As c0 = 0 (by assumption),for all users in cells 1, 2, · · · there

will be no change in expected waiting time. If a1 = 1, then P was OFF and now with
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the new activation vector, it is switched ON. This cannot result in an increase in the

expected waiting time of any user in any queue. Therefore, ∀ n > 1

Wn−J(a1, · · · , an, · · · ) ≥ W(n−1)−J(a2, · · · , an, · · · ).

3) We have a0 = 0. As on adding b, bn−m represents the activation status of the PBS

which was originally represented by a0, we take b such that bn−m = 0. With such a choice

clearly,

fn(b1, · · · , bn−m, a1, · · · , am) = fm(a1, · · · , am).

4) Switching ON a PBS cannot increase a user’s expected waiting time i.e.

Wn−J(a1, · · · , ai−1, 0, ai+1, · · · , an, ·) ≤ Wn−J(a1, · · · , ai−1, 1, ai+1, · · · , an, ·) ∀ i.

Hence fn(an1 ) = Wn−J(a) is increasing in ai ∀ i. Thus, all the assumptions of Theorem

13 hold . Now,

lim sup
N→∞

1

N

N∑
n=1

fn(a1, · · · , an) = lim sup
N→∞

1

N

N∑
n=1

Wn−J(a, J),

= lim sup
N→∞

1

N

(
0∑

n=1−J

W0(a, J) +
N−J∑
n=1

Wn(a, J)

)
,

= lim sup
N→∞

1

N

N∑
n=1

Wn(a, J).

(For n− J ≤ 0,Wn−J(a) = w(0). )

Thus, using Theorem 13, the optimization problem (2.5) has the solution as the

bracket policy sequence a∗(η).

Proof of Theorem 3. When the J-association policy is being used, the user being served

in the n-th cell can be associated to 0th, 1st, · · · Jth nearest PBS or the MBS. In the

following discussion, by ‘user’, we refer to the user being served in the nth cell.

Thus, we have the following cases-

1) User is being served by a PBS:

Let the distance of this PBS from the user be l i.e.

l(a, J) := min
0≤k≤J

{an+k = 0 or an−k = 0} .

Clearly, l(a, J) = l(a, J + 1). Therefore,

Wn(a, J + 1) = Wn(a, J).
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2) User is being served by the the MBS i.e. Wn(a, J) = w(M):

Wn(a, J + 1) = w(M)1 {an+J+1 = an−J−1 = 1}

+ w(J + 1)1 {an+J+1an−J−1 = 0} ,

where 1(.) represents the indicator function. Thus,

Wn(a, J + 1) ≤ Wn(a, J) if J < J̄ and

Wn(a, J + 1) ≥ Wn(a, J) if J ≥ J̄ .

From the two cases above,

Wn(a, 1) ≥ Wn(a, 2) ≥ · · ·Wn(a, J̄) and

Wn(a, J̄) ≤ Wn(a, J̄ + 1) ≤ Wn(a, J̄ + 2) ≤ · · · .

Thus, we have

Wn(a, J) ≥ Wn(a, J̄) ∀ a, J.

Averaging over all n′s, we get W (a, J) ≥ W (a, J̄) ∀ a, J. From Theorem 2, W (a, J̄) ≥

W (a∗, J̄) for all a in which the fraction of base stations switched OFF is equal to η. Thus,

we have, W (a, J) ≥ W (a∗, J̄) ∀ J and for all a satisfying the above condition.



Chapter 3

Optimal Switch OFF Ratio

From the previous chapter, for a given η, the minimum waiting time is given byW (a∗(η), J̄).

Let W
∗
(η) := W (a∗(η), J̄) represent this optimal value for a given η. Note here, a∗(η)

depends only upon η. We obtain solution to (2.3) in two steps: a) we obtain an explicit

expression for W
∗
(η) in terms of η and show that it is monotone in η; b) we then show

that the η′, that satisfies the equation W
∗
(η′) = WQoS, is the required solution.

We study finer structural properties of the bracket policy which helps us to obtain

the expression for W
∗
(η).

W
∗
(η) depends on two factors - the rates at which users are being served in different

queues and the frequency of each such rate. As we deal with rational η, we take η = k1/k2

where k1 and k2 are integers. We know that the sequence a∗(η) is periodic with period

k2. Thus for any i,

lim sup
N→∞

1

N

N∑
n=1

Wn(a∗(η), J̄) =
1

k2

i+k2−1∑
n=i

Wn(a∗(η), J̄). (3.1)

We thus study a block of k2 consecutive queues. Users in each of these k2 queues are

served by the MBS or by a common PBS which is x cells away from it and x ∈
{

0, 1, · · · J̄
}

.

In the activation vector a∗(η), the fraction of OFF PBSs is exactly equal to η and

hence in a block of k2 PBSs, the number of OFF PBSs will be η × k2 = k1.

3.1 Analysis of the Bracket Policy

Let us analyze the activation vector a∗(η) which is expressed as a∗(η) = {an}n≥1 =

{bηnc − bη(n− 1)c}n≥1. Consider a block of k2 consecutive PBSs from n0 = mk2 to

25
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(m+ 1)k2 − 1 for any integer m. We have,

an0 = bηn0c − bη(n0 − 1)c,

= bmk1c − bmk1 −
k1

k2

c,

= mk1 − (mk1 − 1),

= 1.

Thus, the PBS in the n0 cell is switched OFF. To find the next OFF PBS, we need to

find the smallest integer s > 0 such that an0+s = 1 i.e.

bη(n0 + s)c − bη(n0 + s− 1)c = 1.

For any integer s > 0, we have bη(n0 + s− 1)c ≥ mk1. Thus, the required s is the

smallest integer s with

bη(n0 + s)c = mk1 + 1 and bη(n0 + s− 1)c = mk1.

But ⌊
η(n0 + s)

⌋
=
⌊k1

k2

(mk2 + s)
⌋

= mk1 +
⌊
s
k1

k2

⌋
.

So, we need the smallest s such that,
⌊
s
k1

k2

⌋
= 1 and we use the following result:

Lemma 1.
⌈
p
k2

k1

⌉
is the smallest s such that

⌊
s
k1

k2

⌋
= p. �

Thus, after n0, the next OFF PBS is present in n0 +
⌈k2

k1

⌉
cell.

Proceeding in the same manner, the p-th next OFF PBS can be found by solving for

the smallest s such that b(mk2 + s)k1
k2
c = mk1 + p and b(mk2 + s− 1)k1

k2
c = mk1 + p− 1.

Using Lemma 1 again, we get s = dpk2
k1
e. Thus,

Lemma 2. For n0 = mk2, where m is an integer, η = k1
k2

and i > 0,

an0+i = 1 if i =
⌈p
η

⌉
for some p ∈ {1, 2 · · · }

= 0 otherwise. �

We call a queue to be of type j if the nearest ON PBS is j cells away from it.

Let the total number of types of queues in the block be l(η). It is easy to see that if

there exists a queue of type j, then there will exist queues of types i whenever 0 ≤ i ≤ j.
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Figure 3.1: Queue of Type i

Thus, l(η) = i would mean that the set of possible distances (number of cells) between

users and their nearest ON PBS is {0, 1, · · · , i− 1} and for every distance in this set,

there will exist at least one queue of users at this distance from its nearest serving PBS.

We have the following result -

Lemma 3. l(η) = r+1 for h(r−1) < η ≤ h(r) where r is an integer and h(r) :=
2r

1 + 2r
.

�

3.2 Determining Frequency of each Type of Queue

Having found the different types of possible queues for a given η, we need to determine

the number of each type of queue in the k2 block. We obtain these frequencies and then

the final expression for W
∗
(η) in the following:

Theorem 4. When η = k1/k2 and h(r−1) < η ≤ h(r) for some r, with γ := min{r−1, J̄}

we have the following in a block of k2 consecutive PBSs:

1. (1− η) fraction of queues are of type 0.

2. 2(1− η) fraction of queues are of type i for each 1 ≤ i ≤ γ.

3. Remaining are either of type r (if r − 1 < J̄) or are connected to the MBS.

Here we present a brief sketch of the proof while the details are at the end of the

chapter. We first show that the minimum distance between any two consecutive ON

PBSs is 2r − 1. Let Si be the set containing i-th ON PBS and its r − 1 neighbours on
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each side (which are OFF). Each such set will contain a queue being served by the PBS

of its own cell and two queues being served by PBSs i cells away ∀ 1 ≤ i ≤ γ. Rest of the

PBSs (excluding ∪iSi), if any, are either connected to the MBS or are of type r. Using

this, we get equation (3.2) as the expression for minimum waiting time when η fraction

of the PBSs have to be switched OFF.

3.3 Minimum Average Waiting Time

Theorem 5. The minimum average waiting time for a fixed switch OFF ratio η is given

by

W
∗
(η) = w(x)− (1− η)

min(r−1,J̄)∑
k=0

w(k)br,k + w(x)
(
1 + 2 min(r − 1, J̄)

) with (3.2)

x =

r if r − 1 < J̄

M otherwise

br,k =

−1 if k = 0

−2 if 1 ≤ k ≤ min(r − 1, J̄)

when h(r − 1) < η ≤ h(r) with h(r) =
2r

1 + 2r
.

We have the following results regarding the continuity and monotonicity properties of

W
∗
(η).

Theorem 6. The minimum waiting time (for a fixed switch OFF ratio) W
∗
(η) is a

continuous function of η.

Theorem 7. The minimum waiting time (for a fixed switch OFF ratio) W
∗
(η) is an

increasing function of η.

3.4 Maximum Switch OFF Ratio to meet QoS Re-

quirements

We have derived an expression for W
∗
(η) i.e. the minimum average waiting time possible

for a given η. As seen from Theorem 6 and Theorem 7, W
∗
(η) is a continuous and

increasing function of η. The average waiting time will be the least, i.e. w(0), when all



3.5. FUTURE WORK 29

the PBSs are ON. It will be the maximum, i.e. w(M), when all the PBSs are OFF and

all the queues are being served by the MBS. Thus, average waiting time always takes

values between w(0) and w(M). Hence, if WQoS ≥ w(M), then all PBSs can be switched

OFF. If WQoS < w(0), then it is not possible to meet the QoS requirement with the given

system parameters.

When w(0) ≤ WQoS ≤ w(M), the fraction η′ which satisfies W
∗
(η′) = WQoS, is given

by:

η′ = 1− w(x)−WQoS

w(x)
(
1 + 2 min(r′ − 1, J̄

)
+

min(r′−1,J̄)∑
k=0

w(k)br′,k

, (3.3)

where r′ is such that W
∗
(h(r′ − 1)) < WQoS ≤ W

∗
(h(r′)).

Theorem 8. The fraction η′ is the solution to the optimization problem (2.3).

Thus, η′ is the maximum fraction of PBSs that can be switched OFF for the given load

conditions (reflected through η′s dependence on w(i)) while meeting the QoS constraint.

3.5 Future Work

We have assumed that resources are allocated for users of each PBS. It is possible that

better service is achieved if a PBS which is serving users of multiple cells uses all its

resources together for serving all the users. This analysis can also be done through

simulation studies.

If interference is taken into account, the new waiting times will not fit directly into

the same framework as before. We can look for alternate ways to extend this model to

accommodate interference in the signals.

Further, other QoS parameters like blocking probability can be studied.

3.6 Proofs of Theorems and Lemmas

Proof of Lemma 1. Let us check if s =
⌈
p
k2

k1

⌉
− 1 satisfies the equality. We have,

(
p
k2

k1

− 1

)
k1

k2

≤
(⌈
p
k2

k1

⌉
− 1

)
k1

k2

<

(
p
k2

k1

)
k1

k2

.
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∴ p− 1 ≤
(⌈
p
k2

k1

⌉
− 1

)
k1

k2

< p.

Hence,
⌊(⌈

p
k2

k1

⌉
− 1

)
k1

k2

⌋
= p− 1. As

⌊
s
k1

k2

⌋
is non-decreasing in s, it is less than p for

all s ≤
⌈
p
k2

k1

⌉
− 1.

Now, consider s =
⌈
p
k2

k1

⌉
. We have,

p
k2

k1

k1

k2

≤
⌈
p
k2

k1

⌉k1

k2

<

(
1 + p

k2

k1

)
k1

k2

.

∴ p ≤
⌈
p
k2

k1

⌉k1

k2

< p+
k1

k2

.

Hence,
⌊⌈
p
k2

k1

⌉k1

k2

⌋
= p.

Proof of Lemma 3. We want to find an expression for l(η) in terms of η. Towards this,

we proceed by proving the following:

1. {η : l(η) = r + 1} ⊂ {η ≤ h(r)}

2. {η ≤ h(r)} ⊂ {η : l(η) ≤ r + 1}

3. {h(r − 1) < η ≤ h(r)} = {η : l(η) = r + 1} .

Step 1: {η : l(η) = r + 1} ⊂ {η ≤ h(r)}

We first determine the permissible η for l(η) = i ∀ i. Define

dn(1) = inf
j>0

{
a∗n+j = 1

}
and

dn(k) = inf
j>dn(k−1)

{
a∗n+j = 1

}
.

Note that, dn(k) represents the number of cells between the PBS in the nth cell and the

kth next OFF PBS from it. Clearly, dn(k) ≥ k.

Let us consider the various possible values of l(η).

1. l(η) = 1 means all users are being served at the rate θ0. This is possible only when

all the PBSs are ON. This can happen only when η = 0.
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2. l(η) = r + 1 - This means that the distance of each user from its nearest ON

PBS is among 0, 1, · · · , r cells This will happen when the number of consecutive

PBSs which are OFF is at most 2r. This means for any OFF PBS at position

n, dn(2r) > 2r. In particular, this is true for n = n0 (recall that n0 = mk2 and

an0 = 1 i.e. the PBS located in the n0 cell is OFF). Thus, from Lemma 2 ∀ p > 2r(
n0 +

⌈
p
k2

k1

⌉)
−
(
n0 +

⌈
(p− 2r)

k2

k1

⌉)
> 2r.

∴
⌈p
η

⌉
−
⌈p− 2r

η

⌉
> 2r. (3.4)

If possible let η > h(r). Then,

−(2r + 1) < −2

η
r ≤ −2r.

∴
⌈
− 2

η
r
⌉

= −2r.

Let us take p = nk1 for some integer n. Then,⌈p
η

⌉
−
⌈p− 2r

η

⌉
= nk2 − (nk2 +

⌈
− 2r

η

⌉
) = 2r.

Thus, we have found a value of integer p for which equation (3.4) is not satisfied.

Therefore, l(η) cannot be r + 1 for η > h(r). Hence,

l(η) = r + 1 =⇒ η ≤ h(r). (3.5)

Step 2: {η ≤ h(r)} ⊂ {η : l(η) ≤ r + 1}

Now, let us consider the case when η ≤ 2r

1 + 2r
and check if it is possible to have l(η) >

r + 1.

Assume, l(η) ≥ r + 2. This implies that there exists two ON PBSs such that there

are atleast 2r + 1 consecutive OFF PBSs between them. Thus, for some q,

aq = 0, aq+1 = 1, aq+2 = 1, · · · aq+2r+1 = 1.

From Lemma 2, location of each OFF PBS can be written in the form n0 +
⌈z
η

⌉
for

some integer z. Thus, there exists a z such that,

q + 1 = n0 +
⌈z
η

⌉
, q + 2 = n0 +

⌈z + 1

η

⌉
, · · · ,
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q + 2r + 1 = n0 +
⌈z + 2r

η

⌉
.

Using the first and last equation, we get

⌈z
η

⌉
+ 2r =

⌈z + 2r

η

⌉
.

As ceiling of a number is strictly less than one more than the number,

⌈z + 2r

η

⌉
<
z

η
+ 2r + 1,

⇒ z + 2r

η
<
z

η
+ 2r + 1,

⇒ 2r

η
< 2r + 1,

⇒ η >
2r

1 + 2r
.

This is a contradiction. Thus, l(η) ≤ r + 1 for η < h(r).

Step 3: {h(r − 1) < η ≤ h(r)} = {η : l(η) = r + 1}

Now consider h(r − 1) < η ≤ h(r). We know that l(η) ≤ r + 1. We want to find out

the exact value of l(η). Assume l(η) ≤ r = (r − 1) + 1. But from equation (3.5), l(η) ≤

(r − 1) + 1 implies η ≤ h(r − 1). This is a contradiction. Thus, for h(r − 1) < η ≤ h(r),

the only possible value of l(η) is r + 1.

Proof of Theorem 4. Consider two consecutive ON PBSs. Let them be in cells q and q+p,

where p is the number of cells between the two PBSs. Thus, we have, aq = aq+p = 0.

Let h(r − 1) < η ≤ h(r) for some r. Thus, l(η) = r + 1.

Let bqηc = b(q − 1)ηc = s and b(q + p)ηc = b(q + p− 1)ηc = s+o. We have the following

result -

Lemma 4. If bqηc = b(q − 1)ηc = s and b(q + p)ηc = b(q + p− 1)ηc = s + o, then

o ≤ p− 1.
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Proof.

(q + p− 1)η = qη + (p− 1)η,

< qη + (p− 1).

∴ b(q + p− 1)ηc ≤ bqη + p− 1c,

= bqηc+ p− 1.

∴ s+ o ≤ s+ (p− 1),

⇒ o ≤ p− 1.

We have s ≤ qη − η and (q + p)η < s+ o+ 1. This implies

(q + p)η < qη − η + o+ 1,

⇒ η <
o+ 1

1 + p
,

⇒ η <
p

1 + p
(from Lemma 4).

It is easy to see that i
i+1

is an increasing function of i. We also know that h(r − 1) =

2(r−1)
1+2(r−1)

< η. Thus, p > 2(r−1) i.e. p ≥ 2r−1. Thus, the minimum distance between two

consecutive ON PBSs is 2r−1 cells. This means that there are atleast 2r−2 consecutive

OFF PBSs between any two ON PBSs. Thus, if we define Si to be the set containing

the ith ON PBS and its r − 1 neighbours on each side, then the sets Sis will be disjoint.

This means that each set contains only one ON PBS.

Further, each set will contain one queue being served at the rate θ0 (the queue in the

cell of ON PBS) and two queues being served by PBS located i cells away, 1 ≤ i ≤ γ.

Thus, number of type i queues for 1 ≤ i ≤ γ is twice the number of type 0 queues i.e.

twice the number of ON PBSs.

We know that in the activation vector a∗(η), the fraction of queues of type 0 i.e.

fraction of ON PBSs is equal to (1− η). As each ON PBS is associated to two queues of

type i for 1 ≤ i ≤ γ, the fraction of these type i queues is 2(1 − η). If γ = J̄ , then the

rest of the queues will be connected to the MBS. Whereas if γ < J̄ ,then more queues can

be connected to the PBSs. As l(η) = r+ 1, the only other type of queue possible is type

r. Thus, the remaining queues are of type r.

Proof of Theorem 5. In the activation vector a∗(η), the fraction of OFF PBSs is exactly

equal to η and hence in a block of k2 PBSs, the number of OFF PBSs will be η×k2 = k1.
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Hence, the number of ON PBSs = k2−k1. Thus if r−1 < J̄ , number of θi queues will be

2(k2− k1) for 1 ≤ i ≤ r− 1. Hence, number of θr queues is k2− (1 + 2(r− 1))(k2− k1) =

k1(2r − 1)− 2k2(r − 1).

Therefore,

W
∗
(η) =

1

k2

((k2 − k1)w(0) + 2 (k2 − k1)w(1)+

2 (k2 − k1)w(2) + · · ·+ 2 (k2 − k1)w(r − 1)+

w(r) (k1(2r − 1)− 2k2(r − 1))) ,

= (1− η)w(0) + 2 (1− η)w(1) + · · ·+

2 (1− η)w(r − 1) + w(r) (η(2r − 1)− 2(r − 1)) .

Similarly, when r− 1 ≥ J̄ , then number of type i queues will be 2(k2− k1) for 1 ≤ i ≤ J̄ .

Rest of the queues i.e. k1(2J̄+1)−2k2J̄ queues will be connected to the MBS. Combining

these two cases, we get equation (3.2) as the expression for minimum waiting time when

η fraction of the PBSs have to be switched OFF.

Proof of Theorem 6. We know that if h(r − 1) < η ≤ h(r), then

1)If r − 1 < J̄ ,

W
∗
(η) = (1− η)w(0) + 2 (1− η)w(1) + · · ·+

2 (1− η)w(J) + w(r) (η(2r − 1)− 2(r − 1)) . (3.6)

2) If r − 1 ≥ J̄ ,

W
∗
(η) = (1− η)w(0) + 2 (1− η)w(1) + · · ·+

2 (1− η)w(r − 1) + w(M)
(
η(2J̄ + 1)− 2J̄

)
. (3.7)

We need to check if the waiting time is continuous at the boundaries i.e. for η = h(r).

For this value of η, we will find the right and left limits (W r,W l). W l will be evaluated

based on the expression of W in the region h(r − 1) < η ≤ h(r) whereas W r will be

evaluated based on the expression of W in the region h(r) < η ≤ h(r + 1).

We can have 3 cases depending on relation between r and J̄ :

1. r < J̄

In this case, we will use equation (3.6) for evaluating both Wl and Wr (because
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r − 1 < J̄ and r < J̄).

W l = (1− η)w(0) + 2 (1− η)w(1) + · · ·+

2 (1− η)w(r − 1) + w(r) (η(2r − 1)− 2(r − 1)) ,

= X + w(r) (η(2r − 1)− 2(r − 1)) ,

= X +
2

1 + 2r
w(r),

where X = (1− η)w(0) + 2 (1− η)w(1) + · · ·+ 2 (1− η)w(r − 1).

W r = (1− η)w(0) + 2 (1− η)w(1) + · · ·+ 2 (1− η)w(r − 1)

+ w(r) (η(2r − 1)− 2(r − 1)) + w(θr+1) (η(2(r + 1)− 1)− 2r) ,

= X + w(r) (η(2r − 1)− 2(r − 1)) + w(r + 1) (η(2(r + 1)− 1)− 2(r)) ,

= X +
2

1 + 2r
w(r) + w(r + 1)× 0 = W l.

Thus, in this case W
∗
(η) is continuous at the boundaries.

2. r = J̄

In this case, we will use (3.6) for evaluating Wl and (3.7) for evaluating Wr (because

r − 1 < J̄ and r = J̄). As derived previously,

W l = X +
2

1 + 2r
w(r).

W r = (1− η)w(0) + 2 (1− η)w(1) + · · ·+

2 (1− η)w(J) + w(M)
(
η(2J̄ + 1)− 2J̄

)
,

= X + 2 (1− η)w(r) + w(M)
(
η(2J̄ + 1)− 2J̄

)
,

= X +
2

1 + 2r
w(r) + w(M)× 0 = W l.

Thus, in this case also W
∗
(η) is continuous at the boundaries.

3. r > J̄

In this case, we will use (3.7) for evaluating both Wl and Wr (because r − 1 ≥ J̄
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and r ≥ J̄). From (3.7),

W
∗
(η) = (1− η)w(0) + 2 (1− η)w(1) + · · ·+

2 (1− η)w(J) + w(M)
(
η(2J̄ + 1)− 2J̄

)
.

Clearly, this expression does not depend on r. Thus value of W
∗
(η) will be same

using the expressions for h(r − 1) < η ≤ h(r) and h(r) < η ≤ h(r + 1). Hence, it

will be continuous at the boundary i.e. when η = h(r) for any integer r.

Therefore, in all three cases, we obtain continuity of waiting time at the boundaries.

The continuity of waiting times at points other than the boundaries can be easily seen

from the expression of W
∗
(η).

Thus, the waiting time is a continuous fucntion of η for all η.

Proof of Theorem 7. Consider h(r−1) < η ≤ h(r) for some r. We examine the derivative

of η in this interval.

Let us consider the case when r − 1 < J̄ .

dW
∗
(η)

dη
=

r∑
k=0

w(k)br,k + w(r − 1)(1 + 2(r − 1)),

= −w(0)− 2w(1)− 2w(2) · · · 2w(r − 1) + (2r − 1)w(r),

> −w(0)− 2w(r)− 2w(r) · · · 2w(r) + (2r − 1)w(r),

= −(2(r − 1) + 1)w(r) + (2r − 1)w(r),

= 0.

Thus, the derivative is positive. Hence, W
∗
(η) is an increasing function of η in the

interval h(r − 1) < η ≤ h(r),∀ r. As W
∗
(η) is continuous at the interval boundaries i.e.

at η = h(r), we conclude that W
∗
(η) is an increasing function of η, η ∈ [0, 1].

With similar arguments, we can prove the above even when r − 1 ≥ J̄ .

Proof of Theorem 8. If possible, assume there exist η̃ > η′ and policies (a, J) such that

η̃ ≥ lim inf
N→∞

1

N

N∑
n=1

an and W (a, J) ≤ WQoS.

a∗(η̃) represents the bracket sequence with switch OFF ratio η̃. By optimality of

policies (a∗(η̃), J̄), we have

W
∗
(η̃) = W (a∗(η̃), J̄) ≤ W (a, J) ≤ WQoS.
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On the other hand, by monotonicity of W
∗
(.) we have, W

∗
(η̃) > W

∗
(η′) = WQoS. This

is a contradiction. Thus, η′ is the optimal value in (2.3) and a′ := a∗(η′) and J = J̄ are

the optimal pair of policies solving the optimization problem (2.3).



Chapter 4

Decentralized Switching Policies

In the earlier chapters of this thesis, we have considered optimal switch OFF policies for

a particular scenario - a linear deployment of pico base stations in a macro cell. In this

chapter, we consider a single (stand-alone) pico base station and focus on its switching

policies. The PBS may have been installed in areas to meet the demands of some periodic

bursts of load.

This work considers a more general solution as it does not assume any particular

deployment scenario.

4.1 System Model

We have a PBS installed in a macro cell. The PBS serves users 1 at a better rate as

compared to the MBS. But at certain times, switching OFF the PBS is appropriate

as the network QoS requirements can be met by the MBS itself. Thus, the PBS can

be switched ON-OFF depending on the current traffic conditions and ensuring that the

network QoS requirements are met.

As it is not feasible to switch ON-OFF base stations very quickly, the switching

decision is taken at intervals of duration T (where T is large). Thus, the entire timeline

is divided into slots of duration T and the switching decision is taken only once in every

slot.

A very commonly used QoS parameter in cellular networks is average waiting time of

a user. By Little’s Law, the average waiting time can be equated (with a constant) to the

1By ‘users’ we refer to users in the vicinity of PBS i.e. all users in the pico cell.

38
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average number of users waiting in the system (for a stable system). The average number

of waiting users in the system over all the slots can be found by taking the integral of the

number of waiting users present in the system and then dividing by the total duration.

Thus, the QoS metric in each slot is taken as the integral of the expected number of

users in that slot. As we assume T to be large, for a stable system, this integral is equal

to the expected number of waiting users times the length of the slot.

Here, we assume that when the PBS is ON, all users are being served by the PBS.

Also, the user arrival process is a Poisson process with rate λ and the user file sizes are

exponentially distributed. Like in the previous part, the BSs are modelled as M/G/1

queues. The service rate distribution will depend on the distribution of users within the

pico cell, fading and shadowing parameters and the rates at which the MBS and PBS

can offer service. ( We are making no assumptions about any of these.)

4.1.1 Optimization Problem

Energy is spent i.e. cost is incurred in keeping the PBS ON. In addition to this, if the PBS

is switched OFF, users might experience a poor QoS which we model as an inconvenience

cost . The total cost in any slot is given by the sum of these two. Let C be the cost of

keeping the PBS ON per unit time and Wk(ak) represent the value of the QoS metric

(user inconvenience cost) in the k-th slot with ak representing the ON/OFF status of the

PBS in the k-th slot. We define the activation vector a = (a1, a2, · · · , aN) with ai = 1(0)

signifying that the PBS is ON (OFF) in the i-th slot.

Our aim is to find the activation vector that minimizes the average cost i.e.

min
a

(
CT

1

N

N∑
k=1

ak +
1

N

N∑
k=1

Wk(ak)

)
.

We denote the average cost by J(a) when the activation vector a is used.

The system is stable when the arrival rate of users is less than the average service

rate. If the average service rates of the MBS and PBS are µm and µp respectively, then we

expect different system behaviours when λ < µm < µp , µm < λ < µp and µm < µp < λ.

In the third case, the system will not be stable for any ON-OFF policy, Thus, the number

of users in the system will keep on building up irrespective of the activation policy. Hence,

only the first two cases are of interest.
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4.2 Case when λ < µm < µp

As the arrival rate is less than the service rates of both the PBS and the MBS, the queue

would be stable in both cases - when the users are being served by the PBS and when

the users are being served by the MBS. Since the time slots are large and the queue is

stable, the inconvenience cost will be approximately equal to the stationary value of the

average number of waiting users times the duration of the slot. This value can be easily

obtained from M/G/1 queue related results.

For an M/G/1 queue, the expected number of waiting users in the system is given

by
λ2E[B2]

2 (1− λE[B])
where B represents the service time. Let Bm(Bp) denote the ran-

dom service time when a user is being served by the MBS (PBS) with mean 1
µm

(
1
µp

)
.

Then, the user inconvenience cost when MBS (PBS) is serving the users is given by
Tλ2E[(Bm)2]

2 (1− λE[Bm])

(
Tλ2E[(Bp)2]

2 (1− λE[Bp])

)
. Thus,

Wk(ak) =ak
Tλ2E[(Bp)2]

2 (1− λE[Bp])
+ (1− ak)

Tλ2E[(Bm)2]

2 (1− λE[Bm])

=
Tλ2E[(Bm)2]

2 (1− λE[Bm])
+ ak

(
Tλ2E[(Bp)2]

2 (1− λE[Bp])
− Tλ2E[(Bm)2]

2 (1− λE[Bm])

)
.

4.2.1 Fixed Arrival Rates in All Slots

We first consider the scenario with the arrival rate λ fixed for the entire duration.

Here the average cost is

J(a) = CT
1

N

N∑
k=1

ak +
1

N

N∑
k=1

Wk(ak),

=
1

N

N∑
k=1

(
CTak +

Tλ2E[(Bm)2]

2 (1− λE[Bm])
+ ak

(
Tλ2E[(Bp)2]

2 (1− λE[Bp])
− Tλ2E[(Bm)2]

2 (1− λE[Bm])

))
,

=
Tλ2E[(Bm)2]

2 (1− λE[Bm])
+

1

N

N∑
k=1

ak

(
CT +

Tλ2E[(Bp)2]

2 (1− λE[Bp])
− Tλ2E[(Bm)2]

2 (1− λE[Bm])

)
.

Note that J(a) varies monotonically with 1
N

∑N
k=1 ak. Thus, the optimal policy i.e. the

policy with minimum cost is given by

a∗k =


0 if

(
CT +

Tλ2E[(Bp)2]

2 (1− λE[Bp])
− Tλ2E[(Bm)2]

2 (1− λE[Bm])

)
> 0

1 otherwise

∀ k.
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4.2.2 Different Arrival Rates in Different Slots

It is less likely that the arrival rate of users will remain fixed during all the slots. So we

now consider the arrival rate of users to be variable i.e. λi in slot i. For cellular networks,

the traffic profile has a periodic behaviour. Thus, we assume that the arrival rates in

different slots can be estimated from previous data.

As the slot duration is large, the number of users initially present in the system will

not affect the average waiting time. Further, the ON/OFF status of the PBS in one slot

does not affect the waiting time of the users in the next slot.

MDP Formulation

We formulate this problem as a finite horizon Markov Decision Process (MDP) problem.

The horizon is finite as any day will have only finite number of slots and the traffic

patterns have generally been observed to be similar for weekdays (and another pattern

for weekends).

MDP corresponding to our system model is characterized by the following-

• The arrival rate represents the state (X) of the system i.e. state space S = (0, µP )

• There are two possible actions (Y ) - switch ON the PBS and switch OFF the PBS

represented by 1 and 0 respectively. Thus, A = {0, 1}.

• The decision epochs are the beginning of every new slot i.e. time instants {0, T, 2T, · · · }

• The transition probabilities are given by the stochastic process governing the arrival

rates (due to the fact that action taken in a slot does not affect user waiting time

in the next slot).

• The cost in each slot is given by Rak(x) = CTak +Wk(ak).

As discussed before, the switching ON/OFF action in one slot does not affect the

average number of waiting users in the next slot and hence the cost in the next slot.



42 CHAPTER 4. DECENTRALIZED SWITCHING POLICIES

Moreover, the state (arrival rate) in the next slot is unaffected by the action in the

current slot. Thus, the optimal policy would be a myopic policy i.e. minimize the cost

in each slot separately which is given by -

a∗k =


1 if CT +

Tλk
2E[(Bp)2]

2 (1− λkE[Bp])
<

Tλk
2E[(Bm)2]

2 (1− λkE[Bm])

0 otherwise.

4.3 Case when µm < λ < µp

The analysis here differs from that of the previous case because the system would not be

stable when the PBS is switched OFF and the MBS is serving users. Thus, the average

number of waiting users in the system can not be expressed by
Tλ2E[(Bp)2]

2 (1− λE[Bp])
. For

analysing this situation, we use a fluid model for the queuing system. In this model,

the arrivals and departures happen at the mean rate throughout. This model is a fair

approximation when λ and µ i.e. the arrival rate and service rate are very large. In our

system, if we consider the jobs in terms of packets, then both the arrival and departure

rates will be very high (the waiting time will then correspond to the end-to-end packet

delay). Thus, this model would be appropriate.

We study this case with constant λ in all slots.

The MDP formulation is slightly different from the previous case. Here, we define the

number of users at the beginning of the slot as the state of the system. Note that, in the

fluid model, the state can take continuous values (and not just discrete numbers). Thus,

the state space of the MDP is continuous.

In this model, the user arrival takes place at the constant rate of λ and the service

happens at the constant rate of µm(µp) when the MBS (PBS) is serving the users. Thus,

the number of users in the system increases (decreases) at the rate γm = λ − µm(γp =

λ − µp) when the MBS (PBS) is serving the user. We find the integral of the number

of users by calculating the area under this straight line. When the PBS is serving the

users, the number of users in the system keeps on decreasing. If the number of users at

the beginning of the slot is less than γPT , the number of users will fall to 0 during the

slot. After that the number of users remains at 0 as the arrival rate of users is less than

the service rate. Thus, the immediate cost Ra(x) i.e. the cost when action a is taken in

state x is given by -
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(a) a = 0 (b) a = 1, x ≥ γpT (c) a = 1, x < γpT

Figure 4.1: User Inconvenience Cost

Ra(x) =


xT + 1/2γmT

2 if a = 0

xT − 1/2γpT
2 + CT if a = 1 and γpT ≤ x

x2/(2γp) + CT if a = 1 and γpT > x,

where γp = µP − λ and γm = λ − µM . This can be understood from the area under

the curve of number of users in the system (Figure 4.1).

This cost function satisfies the following property -

Lemma 5. For X1 > X2,

RY (X1)−RY (X2)

 = T (X1 −X2) if Y = γm

≤ T (X1 −X2) otherwise

If the PBS is switched ON, then the number of users in the system decreases at the

rate (µp − λ) whereas if the PBS is switched OFF i.e. MBS is serving the users then

the number of users increases at the rate (λ−µm). Thus, the transition probabilities are

given as follows -

P (Xn+1 = y|Xn = x, an = 0) =

1 if y = x+ γmT

0 otherwise

and

P (Xn+1 = y|Xn = x, an = 1) =

1 if y = (x− γpT )+

0 otherwise.

The decision epochs and action space remain same as before.

To find the optimal activation vector, we use dynamic programming. Let V n(x)

represent the optimal total cost in slots n to N when the state in slot n is x. Thus,
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V N+1(x) := 0 ∀x and

V n(x) = min
a∈{0,1}

{
Ra(x) + V n+1(f(x, a))

}
(4.1)

where f(x, 0) = x+ γmT and f(x, 1) = (x− γpT )+.

4.3.1 Properties of V n(x)

Before we derive the optimal policies, it is useful to understand the properties of the value

function V n(x). We obtain the following results -

Theorem 9. V n(x) is monotonically increasing in x for a fixed n.

Theorem 10. V n(x) is continuous in x for a fixed n and for x′ > x

V n(x′)− V n(x) ≤ T (N − n+ 1)(x′ − x).

The proofs of these two theorems follow the proof outline in ([18]) and are given in

section 4.5.

4.3.2 Optimal policy

Let a∗k(x) represent the optimal policy in the kth slot.

The form of the optimal policy depends on the relation between the parameters

C, T, γm and γp. We begin by considering the case C < (γp+γm)T

2
and solve for V N(x), V N−1(x)

and then study the observed patterns.

As V N+1(x) = 0,

V N(x) = min
a∈{0,1}

{Ra(x)} . (4.2)

As R1(x) is defined piecewise, we have two cases -

• γpT ≤ x

V N(x) = min
{

(xT + 1/2γmT
2), (xT − 1/2γpT

2 + CT )
}
,

= xT − 1/2γpT
2 + CT.

Thus, the optimal decision at this epoch is a∗N(x) = 1 ∀ γpT ≤ x.
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• γpT > x

V N(x) = min
{

(xT + 1/2γmT
2), x2/(2γp) + CT )

}
. (4.3)

Thus, V N(x) =

xT + 1/2γmT
2 if x ≤ x∗N

x2/(2γp) + CT if x > x∗N ,

where x∗N = Tγp −
√

(T 2γ2
p − 2TγpC + γpγmT 2).

Thus, in this case a∗N(x) = 0 when x < x∗N and 1 otherwise.

Combining the above, we get

V N(x) =


xT + 1/2γmT

2 if x ≤ x∗N

x2/(2γp) + CT if x∗N ≤ x ≤ γpT

xT + 1/2γmT
2 if γpT ≤ x.

and a∗N(x) =

0 if x < x∗N

1 if x ≥ x∗N .

Thus, the optimal policy for the Nth slot is a threshold policy with threshold x∗N .

Using backward induction, we can similarly obtain the optimal policy for the (N−1)-

th slot as

a∗N−1(x) =

0 if x < x∗N−1

1 if x ≥ x∗N−1 ,

where x∗N−1 = 2γpT −
√

4γpT 2 − 2CTγp + 3γmγpT 2 and

V N−1(x) =



2Tx+ 2γmT
2 if x ≤ x∗N−1

x2/2γp + CT 2 + γmT
2 if x∗N−1 < x ≤ γpT

2Tx− 3
2
γpT

2 + γm
T 2

2
+ CT if γpT < x ≤ γpT + x∗N

T
2
(2x− γpT ) + CT + (x−γpT )2

2γp
+ CT if γpT + x∗N < x ≤ 2γpT

2Tx− 2T 2γp + 2CT if x > 2γpT .

Thus, for the (N − 1)-th slot also, the optimal policy turns to be a threshold policy.

Therefore, it is likely that the optimal policy is a threshold policy for other slots as well

when C < T
2
(γm + γp).

Let Γy(x) denote a policy with threshold y i.e.

Γy(x) =

0 if x < y

1 if x ≥ y.
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For the general case C > (2k+1)T
2
(γm+γp) with k ≥ 0 we obtain the following result

(the case of C < T
2
(γm + γp) will be covered in Theorem 12 ) :

Theorem 11. If C > (2k + 1)T
2
(γm + γp), then a∗N−j(x) = 0 ∀ x , 0 ≤ j ≤ k where

k ≥ 0.

Corollary: If C > (2N − 1)T
2
(γm + γp), then a∗k(x) = 0 ∀ x, k.

The proof of this theorem is given in section 4.5.

This result is intuitive as we would expect that if the cost of keeping the PBS ON

is very high, then it would be better to keep the PBS switched OFF throughout. The

above result gives the precise value of this cost threshold.

The previous theorem has described the optimal action for slots N,N − 1, · · ·N − k.

We need to derive the optimal actions in the slots before N − k. Towards this, we have

the following result-

Lemma 6. For k ≥ 0, if (2k − 1)T
2
(γm + γp) < C < (2k + 1)T

2
(γm + γp), then

a∗N−k(x) = Γx∗N−k
(x) where x∗N−k = (k+1)γpT−

√
γpT 2

(
(k + 1)2γp + (2k + 1)γm − 2C

T

)
<

γpT .

Finally, the optimal actions in all the slots before N−k can be given as follows (proof

in section 4.5)-

Theorem 12. If (2k− 1)T
2
(γm + γp) < C < (2k + 1)T

2
(γm + γp), then there exists x∗s for

1 ≤ s ≤ N − k such that 0 ≤ x∗s < γpT and

a∗s(x) =

Γx∗s(x) when 1 ≤ s ≤ N − k

0 when N − k < s ≤ N.

Thus, we have shown that the optimal policy in each slot is either to switch OFF the

PBS for all x or is a threshold policy with the threshold value less than γpT .

4.4 Future Work

We have derived the optimal policy when the arrival rate is fixed throughout. It would be

interesting to study the optimal policy when the arrival rates are varying. For example,

we can consider a Markov Modulated Arrival process (MMAP). For cellular networks, the

user traffic generally has cyclostationary behaviour. This means that the expected arrival
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rate in any slot can be approximated from the data of previous slots (in previous days)

but some randomness can also be expected. Thus, the effect of some random variations

in the arrival rate even within a slot can be incorporated in future study.

4.5 Proofs of Theorems and Lemmas

Proof of Lemma 5. Let S = RY (X1)−RY (X2).

1. Y = γm

S =
T

2
(2X1 + γmT )− T

2
(2X2 + γmT )

= T (X1 −X2).

2. Y = γp

(a) X1, X2 ≤ γpT

S =

(
X2

1

2γp
+ CT

)
−
(
X2

2

2γp
+ CT

)
=

(X1 −X2)(X1 +X2)

2γp
,

≤ (X1 −X2)

2γp
2γpT (∵ (X1 +X2) < 2γpT )

= (X1 −X2)T.

(b) γpT < X2 < X1

S =

(
TX1 −

γpT
2

2
+ CT

)
−
(
TX2 −

γpT
2

2
+ CT

)
= T (X1 −X2).

(c) X2 ≤ γpT < X1
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Let X1 = γpT + δ1 and X2 = γpT − δ2 where δ1 > 0 and 0 < δ2 < γpT .

S =

(
T (γpT + δ1)− γpT

2

2
+ CT

)
−
(

(γpT − δ2)2

2γp
+ CT

)
= δ1T + δ2T −

δ2
2

2γp

= δ1T +
δ2

2γp
(2γpT − δ2),

≤ δ1T +
δ2

2γp
2γpT

= T (δ1 + δ2)

= T (X1 −X2).

Proof of Theorem 9. Let x < x′. x and x′ represent the state in the nth slot.

Let < Yk > be the optimal activation vector for states < X ′k > and arrival rate λ. We

have X ′n = x′ and define inductively,

X ′k+1 = (X ′k − YkT + λT )
+
, k > n.

Similarly, we take Xn = x and inductively define the process < Xk > as

Xk+1 = (Xk − YkT + λT )+ , k > n.

It can be shown that Xk ≤ X ′k ∀k.

Let Jn<Yk>(x) be the cost incurred from slot n to N when the actions in each slot is

given by the sequence < Yk >. Now,

V n(x) ≤ Jn<Yk>(x)

= E

(
N∑
i=n

RYi(Xi)

)

≤ E

(
N∑
i=n

RYi(X
′
i)

)
(Ry(x) monotonically increases in x.)

= Vn(x′).

Proof of 10. Let x < x′. Let < Yk > be the optimal activation vector for states < Xk >

and arrival rate λ. We take Xn = x and define inductively,

Xk+1 = (Xk − YkT + λT )+ , k > n.
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Similarly, we take X ′n = x′ and inductively define the process < X ′k > as

X ′k+1 = (X ′k − YkT + λT )
+
, k > n.

It can be shown that Xk ≤ X ′k ∀k.

V n(x′)− V n(x) ≤ Jn<Yk>(x′)− V n(x)

= E

(
N∑
i=n

(RYi(X
′
i)−RYi(Xi))

)
,

≤ E

(
N∑
i=n

(T (X ′i −Xi))

)
(Lemma 5),

≤ T (N − n+ 1)(x′ − x) (∵ X ′k −Xk ≤ x′ − x).

This proves the continuity of V n(x) and also derives the required bound.

Proof of 11. Consider the case k = 0 i.e. C > T
2
(γm + γp). It can be easily checked that

a∗N(x) = 0 ∀x. Assume that the above claim holds for k = 1, 2, · · · , j − 1. We will prove

the claim for k = j.

We have, C > (2j + 1)T
2
(γm + γp). As C > (2l + 1)T

2
(γm + γp), l < j, from the

assumption we have a∗N−l(x) = 0 ∀x, 0 ≤ l < j. Thus, we only have to prove a∗N−j(x) =

0 ∀x.

Consider x > γpT , the optimal action would be to switch OFF the PBS if

R0(x) + V N−j+1(x+ γmT ) < R1(x) + V N−j+1(x− γpT )

⇐⇒ T

2
(j + 1)(2x+ (j + 1)γmT ) < CT + Tx− γp

T 2

2
+
jT

2
(2x− 2γpT + jγmT )

⇐⇒ 2j + 1

2
T (γm + γp) < C,

which is true. Thus, a∗N−j(x) = 0 ∀ x > γpT.

Now consider x < γpT. The optimal action would be to switch OFF the PBS if

R0(x) + V N−j+1(x+ γmT ) < R1(x) + V N−j+1(x− γpT )

⇐⇒ (j + 1)T

2
(2x+ (j + 1)γmT ) < CT +

x2

2γp
+

1

2
j2T 2γm

⇐⇒ (j + 1)2γpT
2

2
− CT +

(2j + 1)γmT
2

2
<

(γpT (j + 1)− x)2

2γp
.

In the last inequality, the right hand side term(RHS) is a decreasing function of x for

x < γpT whereas the left hand side term(LHS) is a constant. Thus, if the RHS > LHS

for x = γpT , then RHS > LHS for all x in the considered region (x < γpT ).
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Value of RHS at x = γpT is
j2T 2γp

2
which is greater than the LHS(

as
2j + 1

2
T (γm + γp) < C

)
.

Thus, even for x < γpT, a
∗
N−j(x) = 0.

Combining the above two cases, we get a∗N−j(x) = 0 ∀x. Hence, by induction we have

shown that if C > (2k + 1)T
2
(γm + γp) then a∗N−k(x) = 0 ∀ x , 0 6 k 6 N.

Proof of Lemma 6. As (2k − 1)T
2
(γm + γp) < C, a∗N(x) = a∗N−1(x) = · · · a∗N−(k−1)(x) =

0 ∀x. Thus, V N−(k−1)(x) = kT
2

(2x+ kγmT ).

For x > γpT , the optimal policy would be to switch ON the PBS if,

R1(x) + V N−k+1(x− γpT ) < R0(x) + V N−k+1(x+ γmT )

⇐⇒ T
2
(2x− γpT ) + V N−(k−1)(x− γpT ) + CT < T

2
(2x+ γmT ) + V N−(k−1)(x+ γmT )

⇐⇒ −γpT 2

2
− γm

T 2 /2 + CT − kT 2(γp + γm) < 0

⇐⇒ C < 2k+1
2

(γp + γm)T.

which is true. Thus, a∗N−k(x) = 1 for x > γpT .

For x < γpT , the optimal policy would be to switch OFF the PBS if,

R0(x) + V N−k+1(x+ γmT ) < R1(x) + V N−k+1(x− γpT )

⇐⇒ T
2
(2x+ γmT ) + V N−(k−1)(x+ γmT ) < x2

2γp
+ CT + V N−(k−1)(0)

⇐⇒ (γpT−x)2

2γp
− γpT 2

2
− γmT 2

2
− kT (x+ γmT ) + CT > 0

⇐⇒ x < x∗N−k,

where, x∗N−k =
(

(k + 1)γpT −
√
γpT 2

(
(k + 1)2γp + (2k + 1)γm − 2C

T

))+

.

Combining with the case when x > γpT , we get

a∗N−k(x) =

0 for 0 ≤ x < x∗N−k

1 if x∗N−k ≤ x.

Thus, the optimal policy is a threshold policy with the threshold x∗N−k.

Further, we want x∗N−k < γpT . This is trivially true if

(k + 1)γpT −
√
γpT 2

(
(k + 1)2γp + (2k + 1)γm − 2C

T

)
< 0. When it is greater than 0, we

want
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x∗N−k < γpT

⇐⇒ (k + 1)γpT −
√
γpT 2

(
(k + 1)2γp + (2k + 1)γm − 2C

T

)
< γpT

⇐⇒ (k + 1)2γ2
p + (2k + 1)γmγp − 2C

Tγp
> k2γ2

p

⇐⇒ C < (2k+1)
2

(γp + γm)T,

which is true. Hence, x∗N−k < γpT .

Proof of Theorem 12. From Theorem 11, a∗s(x) = 0 ∀x,N − k < s ≤ N . For 1 ≤ s ≤

N − k, we will prove by induction. From Lemma 6, the optimal policy in slot N − k is a

threshold policy with threshold x∗N−k < γpT .

Now, assume that a∗l (x) = Thx∗l (x) with x∗l < γpT for j < l ≤ N − k. We will prove

that the above also holds for l = j (reverse induction).

1) Consider x < γpT . The optimal policy in slot j will be to switch OFF if,

R0(x) + V j+1(x+ γmT ) < R1(x) + V j+1(0)

⇐⇒ Tx+ γmT 2

2
+ V j+1(x+ γmT ) < x2

2γp
+ V j+1(0) + CT

⇐⇒ (2γpT−x)2

2γp
+ V j+1(0)− V j+1(x+ γmT ) + CT − γmT 2

2
− γpT 2

2
> 0.

Let h(x) = (γpT−x)2

2γp
+V j+1(0)−V j+1(x+γmT )+CT− γmT 2

2
− γpT 2

2
. h(x) is a decreasing

function of x.

h(0) = CT − γmT
2

2
+ V j+1(0)− V j+1(γmT ).

h(γpT ) =V j+1(0)− V j+1(γpT + γmT ) + CT − γmT
2

2
− γpT

2

2

= min

(
γmT

2

2
+ V j+2(γmT ), CT − γpT

2

2
+ V j+2(0)

)
−
(
γmT

2 +
γpT

2

2
+

CT + V j+2(γmT )

)
+ CT − γmT

2

2
− γpT

2

2

≤− T 2(γm + γp),

< 0.

Thus, if h(0) < 0, then a∗j(x) = 1 ∀x < γpT . In this case, define x∗j = 0.

If h(0) ≥ 0, then there exists x∗(j) < γpT such that h(x∗j) = 0 (because h(x) is a

decreasing function for x < γpT and h(γpT ) < 0).

Thus, a∗j(x) =

0 if x < x∗j

1 if x∗j ≤ x < γpT.
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2) Consider lγpT < x < (l + 1)γpT where l ≥ 1. There are two possibilities -

• j + l > N − k

The optimal policy would be to switch ON the PBS if -

R1(x) +R1(x− γpT ) + · · ·+R1(x− (z − 1)γpT ) + V N−k+1(x− zγpT ) <

R0(x) + R1(x + γmT ) + R1(x + γmT − γpT ) + · · · + R1(x + γmT − (z − 2)γpT ) +

V N−k+1(x+ γmT − (z − 1)γpT ),

where z = N − k − j + 1.

For any s < z,

R1(x− sγpT )−R1(x+ γmT − (s− 1)γpT ) = −T 2(γm + γp)

and

V N−k+1(x− zγpT )− V N−k+1(x+ γmT − (z − 1)γpT ) = −kT 2(γm + γp).

Thus, it is optimal to switch ON the PBS if,

R1(x)−R0(x)− (z − 1)(γm + γp)T
2 − kT 2(γm + γp) < 0.

⇐⇒ CT − γmT 2

2
− γp T

2

2
− T 2(γm + γp)(z + k − 1) < 0 .

Maximum value of LHS = (k − z − k + 1)(γm + γp)T
2

= (k + j −N)(γm + γp)T
2,

< 0 (∵ j ≤ N − k)

Thus, the optimal policy is to switch OFF the PBS.

• j + l ≤ N − k . There are two subcases here -

– lγpT < x < lγpT + x∗j+l

The optimal policy would be to switch ON the PBS if -

R1(x) +R1(x− γpT ) + · · ·+R1(x− (l− 1)γpT ) +R0(x− lγpT ) + V j+l+1(x+

γmT − lγpT ) < R0(x) +R1(x+ γmT ) +R1(x+ γmT − γpT ) + · · ·+

R1(x+γmT −(l−2)γpT )+R1(x+γmT −(l−1)γpT )+V j+l+1(x+γmT − lγpT ),

which is true.
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– lγpT + x∗j+l < x < (l + 1)γpT

The optimal policy would be to switch ON the PBS if -

R1(x) +R1(x− γpT ) + · · ·+R1(x− (l − 1)γpT ) +R1(x− lγpT ) +

V j+l+1(0) < R0(x) +R1(x+ γmT ) +R1(x+ γmT − γpT ) + · · ·+

R1(x+ γmT − (l − 1)γpT ) + V j+l+1(x+ γmT − lγpT ).

This is equivalent to

CT − (γm + γp)
T 2

2
− lT 2(γm + γp) + V j+l+1(0)− V j+l+1(x+ γmT − lγpT ) < 0.

The L.H.S is a decreasing function of x. Its value at x = lγpT + x∗j+l is

CT − T 2

2
(γm + γp)(2l + 1) + V j+l+1(0)− V j+l+1(x∗j+l + γmT ).

From continuity of V j+l(x) at x = x∗j+l, we have

R1(x∗j+l) + V j+l+1(0) ≤ R0(x∗j+l) + V j+l+1(x∗j+l + γmT ).

(The inequality is applicable when x∗j+l = 0. )

Thus, value of L.H.S at γpT

≤ CT − T 2

2
(γm + γp)(2l + 1) +R0(x∗j+l)−R1(x∗j+l)

= −lT 2(γm + γp),

< 0.

As the L.H.S is a decreasing function of x, its value is less than 0 throughout

the range lγpT + x∗j+l < x < (l + 1)γpT . Thus, for all the above values of x,

the optimal policy is to switch ON the PBS.

Thus, a∗j(x) = 1 if x > γpT .

Combining all the above cases, we get a∗j(x) = Thx∗j (x) where x∗j < γpT .



Appendix

Appendix A - Review of Multimodularity

This section has been reproduced from [9] for a brief summary of concepts in multi-

modularity. More details can be found in [19]

Definition 1: Set F := {−e1, s2, s3, · · · , sn, en} is the mulitmodular base where

−e1 = (-1 0 0 0 0 · · · 0 0), s2 = (1 -1 0 0 0 · · · 0 0)

s3 = (0 1 -1 0 0 · · · 0 0), s4 = (0 0 1 -1 0 · · · 0 0)
...

sN = (0 0 0 0 0 · · · 1 -1) and eN = (0 0 0 0 0 · · · 0 1).

Definition 2: A function f : {0, 1}n → R is Multimodular if

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v)

for all a ∈ {0, 1}n and for all u,v ∈ F with u 6= v and such that a+u, a+v, a+u+v ∈

{0, 1}n .

Definition 3: The bracket sequence a∗(η, β) := {an(η, β)} with rate η ∈ [0, 1) and initial

phase β ∈ [0, 1) is defined as

an(η, β) = bnη + βc − b(n− 1)η + βc.

Theorem 13. A bracket sequence a∗(η, β) for any β ∈ [0, 1) minimizes the cost

lim sup
N→∞

1
N

∑N
n=1 fn(a1, · · · , an)

over all the sequences that satisfy

lim inf
N→∞

1
N

∑N
n=1 an ≥ η
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where η ∈ [0, 1), under the following assumptions:

1) fn is multimodular ∀ n.

2) fn(a1, · · · , an) ≥ fn−1(a2, · · · , an) ∀ n > 1

3) ∀ sequence{an} ,∃ a sequence{bn} ∀ n,m with n > m, such that

fn(b1, · · · , bn−m, a1, · · · , am) = fm(a1, · · · , am)

4) ∀ n, the functionsfn(a1, · · · , an) are increasing in ai∀ i. �



Abbreviations

3GPP : 3rd Generation Partnership Project

BS : Base Station

IID : Independent and Identical Distributions

MBS : Macro Base station

MDP : Markov Decision Process

MMAP : Markov Modulated Arrival Process

PBS : Pico Base station

QoS : Quality of service
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