Adaptive Prediction based Approach for
Congestion Estimation (APACE) in Active
Queue Management

Abhishek Jain, Abhay Karandikar and Rahul Verma

Information Networks Laboratory, Department of Electrical Engineering,
Indian Institute of Technology, Mumbai, India-400076
{E-mail: karandi@ee.iith.ac.in}

Abstract

Active Queue Management (AQM) policies provide an early indication of incipient
congestion to the sources. In this paper, we propose a new AQM policy called
APACE. APACE stands for Adaptive Prediction based Approach for Congestion
Estimation in Active Queue Management that predicts the instantaneous queue
length at a future time instant using adaptive filtering techniques. We compare the
performance of APACE with other existing AQM schemes in networks having both
single and multiple bottleneck links. We show that APACE is able to control the
oscillations in the instantaneous queue. We also demonstrate, through exhaustive
simulations, that APACE performs well in terms of link utilization even in networks
with multiple bottleneck links. Moreover, APACE is not very sensitive to parameter
settings and adapts quickly to changes in traffic.

Key words: TCP, Congestion Control, Active Queue Management (AQM),
Random Early Detection (RED).

1 Introduction

TCP (and its variants) remains the dominant end-to-end congestion control mechanism
deployed in the Internet. The essence of this mechanism is that a TCP source adjusts its
window size based on an implicit feedback about the congestion in the network. This implicit
feedback is in the form of lack of receipt of acknowledgement from the receiver within a
certain time out interval or the receipt of three duplicate acknowledgements. Either of these
feedbacks is taken as an indication of packet loss. In a simple DropTail node, a packet
gets dropped whenever the buffer is full. In networks with large Round Trip Times (RTT)
and subsequently longer time out periods, the TCP congestion control has slower response

Preprint submitted to Elsevier Science 25 April 2004

to a packet drop. Thus it is desirable that the sender be notified early so as to adjust
its rate pre-emptively in order to avoid congestion in the bottleneck node. Active Queue
Management (AQM) policies attempt to estimate the congestion at a node and signal the
incipient congestion by dropping packet(s) before the buffer is full. A responsive congestion
control strategy then reduces its transmission rate. This helps in avoiding further congestion
and is expected to reduce the packet loss rate and keep the average queue size low. But if
packets are dropped aggressively, then the capacity of the node may remain underutilized. An
AQM policy thus has two components - one component estimates the congestion and another
component takes the packet drop decision. The performance, therefore, depends upon how
aggressive or conservative the estimate of congestion is and also on how aggressively the
packets are dropped based on this estimate.

In this paper, we propose and analyze a new AQM strategy called APACE. The primary
contribution of this paper is to propose an adaptive prediction based approach for active
queue management that is simple to implement and not sensitive to parameter settings. We
also attempt to give a general framework in terms of operating points for evaluating any
AQM policy. We use this framework to compare APACE with other existing AQM schemes
like RED [1], SRED [2], AVQ [3] and PAQM [4] in terms of Delay-Loss trade-off and Delay-
Link utilization trade-off curves. These trade-off comparisons have been reported for the
first time here in the literature. We have performed these experiments for networks having
single as well as multiple bottleneck links. Our simulation results indicate that the APACE
is able to effectively control the oscillations in the instantaneous queue and in that respect
its performance is comparable to PAQM. Moreover, APACE scheme achieves higher link
utilization and a lower packet loss for a given delay in networks with multiple bottleneck
links than that of other AQM schemes including PAQM.

The rest of the paper is organized as follows. In Section 2, we discuss some of the related work
in the area of active queue management. We then explain the concept of operating point in
Section 3, the APACE algorithm in Section 4, discuss prediction accuracy in Section 5 and
significance of various parameters in Section 6. We compare the performance of our scheme
with RED, SRED, AVQ, and PAQM in Section 7 for single bottleneck link scenario and in
Section 8 for a multiple bottleneck link scenario. We finally conclude the paper in Section 9.

2 Related Work

The RED scheme was initially described and analyzed in [1] with the main aim of providing
“congestion avoidance” by dropping packets in anticipation of congestion. The performance
of the RED algorithm depends significantly upon the setting of each of its parameters, i.e.,
Wq, MAT,, ming, and maxy,. Though significant progress has been made towards the under-
standing of tuning RED parameters, this problem has not yet been addressed satisfactorily.
The difficulty in tuning the parameters of RED under different network conditions has lim-
ited its effectiveness. Experiments have shown that it is difficult to find appropriate values of
parameters that will enable RED gateways to perform equally well under different congestion

scenarios. Incorrectly tuned parameters may in fact cause RED to perform worse than that
of Drop tail. In [5,6], the authors have questioned the benefits of RED by performing exper-
iments on testbeds. They also argue that RED performs well only under single bottleneck
gateways and heavy TCP traffic. These are also the cases for which most of the simulations
have been performed and reported. The performance of RED and most other schemes under
multiple bottleneck gateways has not yet been satisfactorily studied.

Various authors [7-9] have given guidelines and proposals for setting RED parameters or
to adaptively vary them. In [10], Hollot et. al. have studied the problem of tuning RED
parameters from a control theoretic stand point. The aim is to improve the throughput by
controlling oscillations in the instantaneous queue. Feng et. al. [11] have proposed a mecha-
nism for adaptively varying one of the RED parameters, max,, with the aim of reducing the
packet loss rates across congested links. Floyd et. al. in [12] discuss the modifications to the
self-configuring RED algorithm [11] for tuning max, adaptively. Their objective is to control
the average queue length around a pre-decided target. The choice of the target queue size,
left to the network operator, determines the trade-off between delay and link utilization.
Controlling the average queue size, however, has a limited impact on regulating the packet
loss rate. Balanced RED (BRED) [13] and Fair RED [14] aim to improve the fairness of RED
by maintaining per-active-flow state information.

Adaptive Virtual Queue (AVQ) [3] decouples congestion measure from the performance mea-
sure. Stochastic Fair Blue (SFB) [15] attempts to enforce fairness among a large number of
flows. It handles and rate limits non-responsive flows effectively using an extremely small
amount of state information. CHOKe (CHOose and Keep for responsive flows and CHOose
and Kill for unresponsive flows) [16] also aims to ensure fairness to each of the flows that
share the outgoing link.

Predictive AQM (PAQM) [4] tries to exploit traffic predictability in the calculation of the
packet dropping probability. The authors have shown that the correlation structure present
in long-range dependent traffic can be used to accurately predict the future traffic. PAQM
enables the link capacity to be fully utilized without incurring excessive packet loss by
stabilizing the instantaneous queue to a desired level. This scheme is an attractive AQM
policy but is very compute intensive. We propose an AQM scheme which is comparable to
PAQM in terms of queue stability but has other attractive features like higher link utilization
with low packet loss and delay under multiple bottleneck links.

3 Operating Point

An AQM policy can be used to control the performance metrics such as link utilization,
average queuing delay and packet loss rate. An AQM policy should give the freedom to
specify the required performance metrics and should be able to meet the requirements to
its best. In other words, one should be able to specify the operating point that one wants
to achieve given a particular network scenario. The operating point, for instance can be

specified in terms of link utilization, average queuing delay and packet loss rate that one
wants to achieve. We denote such an operating point by (¢*,d*,[*), where t* is the target
link utilization, d* is the target average queuing delay and [* denotes the target packet loss
rate. In order to keep our representation simple and be able to visualize the graphs in two
dimension, in this paper we define operating points as (t*,d*) and (I*,d*,). It is possible that
a desired operating point might not be achievable. In that case, the aim of the AQM policy
should be to approach this operating point as closely as possible.

In case of a Drop Tail gateway, there is only one operating point for a given network sce-
nario since the packets are dropped only when the buffer is full. In RED and APACE, the
parameters can be suitably adjusted resulting in greater choices of operating points. Setting
the appropriate parameters is difficult in case of RED, but as will be illustrated later, in
APACE we need to vary only one parameter to achieve a given operating point.

4 Proposed Scheme

In APACE, we estimate the congestion by predicting the instantaneous queue length at
a future time instant. This estimate is based on the queue lengths at the previous packet
arrivals. The decision to drop any packet is based on the predicted value of the instantaneous
queue length rather than the average queue length, as in the case of RED. As will be shown
later, this makes the scheme more responsive especially in scenarios with changing network
conditions. We now explain the APACE scheme in detail.

4.1 Predicting the Instantaneous Queue

We predict the instantaneous queue length using the Normalized Least Mean Square (NLMS)
algorithm [17]. Our simulation results show that the NLMS predictor can be used to obtain
a good estimate of the instantaneous queue length under a large set of network scenarios
(different kinds of sources, topologies etc.). Moreover, the algorithm requires only a few
iterations to converge and adapts well under changing network scenarios.

The instantaneous queue length prediction is made at every packet arrival. Let M denote
the order of the NLMS filter used for prediction, ¢(n) the instantaneous queue length at the
nth packet arrival and g(n) a Mx1 vector of the instantaneous queue lengths of the past M
packet arrivals. The instantaneous queue length after N, packet arrivals from the n'® packet
arrival instant is predicted based on §(n). We call Ny the prediction parameter. We denote
the predicted queue length by G(n + Ny). G(n + Np) is calculated as follows:

q(n + No) = w, (n) * q(n) (1)

In the above equation, w,(n) denotes a Mx1 weight vector. These weights are updated

dynamically based on the error between the predicted and the actual queue length. The
error, e(n) in the prediction is computed as

e(n+ No) =q(n+ Ny) — IT)qT(n) * q(n) (2)

The queue weights are updated using the following equation:

By (n+1) = By(n) + u(n) * () * e(n) (3)

In the NLMS algorithm, u(n) is calculated using the following equation:

pn) = (4)

The queue weights are initially set to fixed values and later updated using the above equa-
tions. Typically, the weights are initially set to 0. In our simulations, py has been set to
0.01. A small value of uy implies guaranteed convergence of the NLMS algorithm though
at a slower rate. A large value of y increases the rate of convergence but may cause the
algorithm to diverge.

4.2 Taking a Packet Drop Decision

As stated earlier, the decision to drop the incoming packet is based on the predicted value
of the instantaneous queue length. The incoming packet is dropped with a probability p
that is calculated based on ¢(n + Np). The algorithm for dropping the incoming packet(s)
is illustrated in Figure 1. Let B denote the maximum buffer size. If §(n + Ny) < a * B,
no packet is dropped (where « is a positive constant less than 1). If §(n + Ny) > B, every
incoming packet is dropped. If ax B < §(n+ Ny) < B, the incoming packet is dropped with a
probability p, which is a function of the predicted queue size. For the purpose of simulations,
we vary the probability p linearly from 0 at aB to maz, at B. The motivation behind
linearly increasing the packet dropping probability is to make the scheme more aggressive
as the predicted queue length increases. The packet dropping probability, p can thus be
expressed as:

maz,(§(n + Ny) — o x B)

P (1—a)*B (5)

On every packet arrival

e Predict instantaneous queue size (after N, packet arrivals):

q(n+ No) < wl(n)xq(n)

e Calculate packet dropping probability p:

- If axB<{n+Ny) <B

mazy(§(n+No)—axB)
(1—a)*B

p

- else if §(n+ Ny) > B
p=1

- else if g(n+ Ny) < axB
p=0

e Update queue weights using the NLMS algorithm

Fig. 1. The APACE algorithm

5 Prediction Accuracy

The first issue that needs to be addressed is whether the NLMS algorithm can predict the
instantaneous queue length accurately. We test the performance of NLMS algorithm under
different network loads. The simulations have been performed using the network simulator,
ns v2.1b8a [18]. The network topology shown in Figure 2 has been used for simulations.

3Mbps, 10ms

3Mbps, 10ms

Bottleneck Link Q
1Mbps, 10ms

Sinks
3Mbps, 10ms

Fig. 2. Network Topology

Figure 3 illustrates the mean square error in the actual and the predicted value of the
instantaneous queue size (learning curve). The plot has been obtained for 25 TCP sources.
The packet loss rate is relatively high ~ (5—10)%. The mean square error has been averaged

800 T T T T T

700 —
600 - b
500 —
400 —

300 —

Mean square error

200 - —

i w _
0 |
500 1000 1500 2000 2500 3000
Number of packets arrived

o

Fig. 3. Learning curve

over 100 sample paths. As can be seen from the figure, the NLMS algorithm converges
quickly and is able to predict the instantaneous queue to a reasonable accuracy (residual
error ! & 8 square packets). We get similar learning curves even for fluctuating network loads
(described in Section 7), though the prediction in case of sustained heavy traffic is better
as compared to other scenarios with lower or fluctuating network loads. This is because
under conditions of heavy congestion, the aggregate incoming traffic characteristics is more
predictable. Moreover, even under fluctuating network loads, the algorithm is able to adapt
to the network conditions in a few iterations only. The error in the queue prediction for the
same is shown in Figure 4.

40 T T T T T
35 -

30 —
25 —
20 —
15 —
ol |
ol |

Mean square error

0 —
5 .
210 b .

15 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000

Iterations

Fig. 4. Error for fluctuating traffic scenario

Based on the above discussion and simulation results, we can conclude that the NLMS
algorithm does a good prediction of the instantaneous queue for various traffic scenarios.

1 Residual error refers to the steady state mean square error in predicting the instantaneous queue.

6 Significance of Various Parameters

The various parameters of the scheme are listed in Table 1. Our simulation results indicate

Table 1
APACE parameters

Parameter | Function

M Order of the filter

Ny Prediction parameter for the filter
maxy Maximum dropping probability

o Decides the lower threshold below which

no incoming packet(s) is dropped

that the order of the filter M does not have a significant impact on the performance of the
scheme. However, for large values of M (> 50), the NLMS algorithm does not converge. This
is because the NLMS algorithm typically takes 20M iterations to converge and during this
period, the traffic arriving at the queue might vary substantially. Moreover, the computa-
tional complexity of the scheme increases with increasing M. Therefore, it is advisable to
keep a low value for the order of the filter. We suggest that M ~ (5 — 20) is a good value for
the order of the filter and the performance of the scheme is not sensitive to M in this range.
For the purposes of simulations, we have chosen M = 10.

The prediction parameter Ny decides the trade-off between the accuracy of the prediction
and how early the prediction is made, i.e., a lower value of Ny means that the prediction is
made over a relatively shorter time scale. In such a scenario, the prediction error is typically
low. On the other hand, by taking a large value of Ny, the prediction is made over a longer
time scale but the prediction error might be large. The value of Ny should ideally depend on
the round trip time (RTT) as well. Ny should be large enough so that the effect of dropping
a packet results in an early congestion notification to the source. This implies that for large
RTTs, one should keep a large value of Ny, though this might result in a greater residual
error in prediction. Keeping a small value of V; in scenarios with large RTTs, might result in
a delay in the congestion estimation (since the prediction instant is not far enough in future)
as well as a delay in the congestion notification (owing to a large RTT) to the source.

Our exhaustive simulation results also illustrate that Ny does not have a strong bearing on
the performance (in terms of packet loss rate, average queuing delay and link utilization) of
the scheme. We have reported simulations results for M = 10 and Ny = 15. An extensive
simulations study to determine the effects of these parameters can be found in [19].

The parameter maz, governs how aggressively the packets are being dropped, based on the
predicted value of the instantaneous queue length and « determines the buffer occupancy
at which we should start dropping packets. Figure 5 illustrates the variation of the average
queuing delay as a function of maz, in a harsh scenario (25 TCP sources and 5 —10% packet

loss rate). The different plots, as indicated, correspond to different values of . The plots
show that the average queuing delay is a non-increasing function of max,. Moreover, for
relatively high values of o (> 0.5), the delay stabilizes above a certain value of maz, (~
0.2). For low values of «, the delay keeps decreasing even for high values of max,. In a mild
scenario (5 TCP sources and 1 — 2% packet loss rate) (see Figure 6), even for low values of
o, the average queuing delay stabilizes beyond max, = 0.1.

03 T T T T T T T T T

0.25

o
]

N e

"alpha=0.10’

"alpha=0.20" -- == . I
‘alpha=0.30" -~ T~ T
"alpha=0.50" -------
"alpha=0.60" -------
"alpha=0.80" -------
'alpha=0.90" ------ --
’?Ipha=?..00’ T |

o
-
T

0.05 -

Average queuing delay (in seconds)

0 01 02 03 04 05 06 07 08 09 1
maxp

Fig. 5. Average queuing delay vs. maz, (different o), harsh scenario

Delay N=15 M=10
0.016 T T T T T T

T T T
‘alpha=0.00' ———

0.014 =

0012 fo

0.006
0.004

0.002

Average queuing delay (in seconds)
o
o
o
[e°]

maxp

Fig. 6. Average queuing delay vs. maz, (different o), mild scenario

Figure 7 illustrates the variation of the packet loss rate against mazx, in a harsh scenario.
The plots show that the packet loss rate increases with increasing max,. This is intuitive
because a higher value of maz, results in a more aggressive dropping of packets leading to
a greater packet loss rate. Moreover, the increase is more prominent for low values of a. For
large values of o (> 0.5), the packet loss rate stabilizes beyond maz, ~ 0.2. However, in a
mild scenario (Figure 8) the packet loss rate is independent of maz, for a large range of «
(a>0.2).

0.12

T T
"alpha=0.00’
‘alpha=0.10" ------
0.11 - ‘’alpha=0.20" -------
‘alpha=0.30" -
‘alpha=0.50" -------
0.1 - ‘’alpha=0.60" ------- AN s
‘alpha=0.80" ---- -
‘alpha=0.90" ---~-- _
0.09 - ‘alpha=1.00" /- -;= o

0.08

Fraction of Packets Lost

0.07 -

0.06 [

0.05 | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1

maxp

Fig. 7. Packet loss rate vs. maz, (different «), harsh scenario

Loss N=15 M=10

0012 ' T T T T T T T T
‘alpha=0.00' ——
‘alpha=0.10" ------
0.01 010
g ‘alpha=0.30" -
g ‘alpha=0.40" ———--
j 0.008 "alpha=0.50" ------ |
3]
4
% -
o 0.006 i
©
5
g 0.004 8
o
L
0.002
0 I ' : L 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1
maxp

Fig. 8. Packet loss rate vs. maz, (different o), mild scenario

The effects of other parameters on the performance have been explained in detail in [19].
Extensive simulations by varying all the parameters indicate that the scheme gives similar
performance under a wide range of parameter settings. The scheme adapts itself to the
network conditions well, thus reducing the importance of initial parameter settings. We
suggest maz, = 0.2, a = 0.3, Ny = 15, M = 10 as the default values.

7 Comparison with other Queuing Strategies

In this section, we compare the performance of APACE with other queuing schemes like
RED, SRED, PAQM and AVQ. The network topology with single bottleneck link shown in
Figure 2 is used for performing the simulations. The results for multiple bottleneck scenario
are explained in the next section. The number of TCP sources, N, is varied to achieve

10

different incoming traffic loads. Packet size has been fixed at 500 bytes. The buffer size at
the router is of 20 packets for SRED and 50 for all others. The reason for choosing 20 is
the fact that SRED always tries to keep the buffer close to full. The results (except for the
instantaneous queue) have been averaged over 20 sample paths.

7.1 Instantaneous Queue Length Stability

We first address the issue of instantaneous queue stability. In our simulation, 40 TCP sources
are switched on randomly in the first two seconds and the simulation is performed for 40
seconds. Figure 9 illustrates the instantaneous queue size at the gateway for various queuing
strategies. Instantaneous queue is measured in terms of number of packets in the queue
throughout the paper. We have used w, = 0.002, miny, = 5, mazy, = 15, maz, = 0.1 for
RED and the default parameters for APACE, i.e., maz, = 0.2, a = 0.3, Ny = 15, M = 10.
The parameters for SRED are M = 1000, « = 1/M and py, = 0.15 and for AVQ, v = 0.98,
a = 0.10. We have chosen @, = 20 for PAQM as the queue in APACE is stable at 20. The
meaning of these parameters have been explained in respective papers [2-4]. Note that the
meanings of M and « in APACE are different from those in SRED and AVQ.

As is evident from the plots, RED is unable to control the oscillations in the instantaneous
queue, while APACE and PAQM provide reasonable stability to the instantaneous queue.
Moreover, even under steady heavy traffic, the instantaneous queue in RED becomes empty
frequently (as shown in Figure 9) leading to severe underutilization of the link. In addition,
the average queue size in RED deviates significantly from the instantaneous queue. This
motivates us to look for better indicators of congestion than the average queue length. The
decision to drop a packet based on the average queue size also introduces delay in the
estimation of congestion as the learning is slower. As a result, RED might take a wrong
decision regarding a packet drop. SRED has problems of global synchronization similar to
that of DropTail since it always keeps its buffer close to full.

We next perform the simulation under fluctuating network loads. We switch on 40 sources
within a small interval of time. After about 10 seconds of the simulation, 36 of these sources
are switched off resulting in a drastic decrease in the incoming traffic. At about 20 seconds
from the start of the simulation, 20 new TCP sources are switched on resulting in a sudden
increase in the incoming traffic and 10 seconds later additional 16 TCP sources are switched
on. These 40 TCP sources run till 40 seconds from the start where the simulation is ter-
minated. Even under such fluctuating network loads, the NLMS algorithm adapts very well
and is able to predict the instantaneous queue accurately. The error in prediction of the
instantaneous queue is plotted in Figure 4. We note that at points where there is a sudden
change in the incoming traffic, the prediction error increases. However, the NLMS algorithm
is able to converge and predict the instantaneous queue accurately and quickly.

The instantaneous queues are shown in Figure 10. The instantaneous queues are kept again
around 20 for the sake of comparison. Conclusions similar to above can be drawn from it.

11

RED

so T T T T T T T
INnstantaneocous’ ———————
as TAvVerage® —-———-—-—-—-— —

ao —
=5
=0
=2s

Qe

=20
1s P 2 0 O 2 SR 72 N2 N (N % SR I SR % S 2 S 2 N 7S 72 SN 2 S 2 N 2 N % DN 972 .2 N

10 h

on

o = 10O a1s =20 =25 0
Time (n seconds)

APACE

so T T T T T T T
TINsStantaneous’ _—
as | —

=25 |[— —
=20 |[— —
=2s —

Qe size

=Zo f —
as —

10 —

on

L L L L L L
o = 10O a1s =20 =25 =0 =5 <10 a5
Time (n seconds)

SRED

so T T T T T T T T
as |- —

a0 |- —
=25 |[— —
=0 |- —
=25 — —

=20 —

Queug Size

1s —

10 —

on

L L L L L L
o = 10O a1s =20 =25 0 =5 <10 a5
Time (n seconds)

PAQM

so T T T T T T T T
as | —

a0 |- —
=25 |[— —
=0 |— —
=25 — —

Queug Size

=20 —
1s f —
10 l

L L L L L dA
o = 10O a1s =20 =25 0 =5 <10 a5
Time (n seconds)

on

Fig. 9. Instantaneous queue at RED, APACE, SRED and PAQM routers under heavy traffic con-
ditions

APACE is indeed able to adapt well to the changes in network conditions and in maintaining
the stability of the instantaneous queue.

12

so0
as
ao
=5
=0
=2s
=0

Queug Size

1s
10

on

50
as

=25
=0
=2s

Queug Size

=20
1s
10

on

so0
as
ao
=5
=0
=2s

Queug Size

=20
1s
10

on

so0
as
ao
=5
=0
=2s
=0

Queug Size

1s
10

on

RED

10O a1s =20 =25 0 =5 <10 a5
Time (n seconds)
T T T T T T T
L L L L L L L
10O a1s =20 =25 =0 =5 <10 a5
Time (n seconds)
T T T T T T T
L L L L L
10O a1s =20 =25 0 =5 <10 a5
Time (n seconds)
T T T T T T T
L L L) L A
10O a1s =20 =25 0 =5 <10 a5

Time (n seconds)

Fig. 10. Instantaneous queue at RED, APACE, SRED and PAQM routers under fluctuating traffic

conditions

7.2 Link utilization

Figure 11 shows the number of packets transmitted successfully at the bottleneck node
as the number of TCP connections is increased. Link utilization is measured as the total

13

number of packets transmitted successfully by the router. We observe that APACE is able
to successfully transmit more packets than any other scheme that we have simulated.

5200 T T T T T T

= v,,.,‘,,,,,_,,v__r,v_,v___
5100 | V '
5050 |-
5000 |

4950

Link utilization

4900

4850 -

4800
0 20 40 60 80 100 120 140

Number of Sources

Fig. 11. Link utilization vs. number of sources in a single bottleneck scenario

7.8 Packet loss rate

Figure 12 illustrates the fraction of packets dropped at the bottleneck node as the number
of TCP connections is increased. As can be seen from the figure, APACE shows a consistent,
improvement in the packet loss rate. This improvement is more prominent under heavy
network loads (larger number of TCP sources) because under mild congestion scenarios, the
packet loss, as such, is quite low.

0.4 T T T T T T

0.35 |-

0.25 |-

02

0.15 |-

Fraction of Packets Lost

0.05 |-

0 | | | | | |
0 20 40 60 80 100 120 140

Number of Sources

Fig. 12. Fraction of packets lost vs. number of sources in a single bottleneck scenario

14

7.4 Trade-off Comparison with RED

It should be noted that it is unfair to compare APACE and RED by fixing any one set of
parameters. In fact, the above statement holds true for any scheme whose performance needs
to be compared with RED. One might achieve an entirely different performance for some
other setting of RED parameters. Moreover, using only one performance metric to compare
any scheme with RED is also not entirely correct because finally there is a trade-off between
various performance metrics such as delay-link utilization or delay-loss. Also we need to take
into consideration the effects of various parameters on the performance metrics.

Hence, we now compare the performance of APACE scheme with RED in terms of the delay-
link utilization trade-off curves (refer Figures 13, 14) and delay-loss trade-off curves (refer
Figures 15, 16). The buffer size is 250 packets. The simulations have been performed with
80 TCP sources. We have measured delay in seconds throughout.

4060 T T T T T
4040 - . e .
4020 - —
4000 - —
5 3980 - —
8 3960 |- .
5 L i
x 3940 ‘alpha=0.00' ——
= L alpha=0.10" ------ i
- 3920 alpha=0.20" -------
3900 | alpha=0 30 -
alpha=0.50" -—-—--
3880 | alpha=0.60" ------ 4
alpha=0.80
3860 - alpha=0.90 .
alpha=1.00" --------
3840 1 1 1 I 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Delay

Fig. 13. Delay-link utilization trade-off curves for single bottleneck scenario APACE

4000 ! ! T T T T T T T
'maxth=50.00' ——
'maxth=100.00" ------
'maxth=150.00" ------- ‘
3950 'maxth=200.00" - 7
'maxth=225.00' -~ ;
c
S 3900 | |
©
N
5
£ 3850 |- |
i} o
3800 + |
=
K"W?
3750 T
015 02 025 03 035 04 045 05 055 0.6 0.65

Delay

Fig. 14. Delay-link utilization trade-off curves for single bottleneck scenario with RED

15

0.22 ; | , | .
‘alpha=0.00' ——
02 ‘alpha=0.10" ------ |
. alpha=0.20" -------
alpha=0.30
g 018 alpha=0.50' ———- i
3 alpha=0.60" -------
d alpha=0.80
g or alpha=0.90" --------]
é ‘alpha=1.00" ---- -
o 014 | |
kS
c
S 012 |
Q
o
L 01f |
0.08 -) pe—r i
0.06 ! ! | . .
0.2 03 0.4 0.5 0.6 0.7 08

Fig. 15. Delay-loss for trade-off curves for single bottleneck scenario with APACE

026 ' T T T T T T T T
'maxth=50.00' ——
B 'maxth=100.00" ------ |
o 'maxth=150.00" -------
'maxth=200.00" -
. 022 / Max=20000 - |
- 02} 3 |
g .
S 018 -) | |
o ., } :
5 016 - S | |
c . B ;
S %, :
g S :]
g : |
0.12 |
0.08 1 1 | | | . I I |
015 02 025 03 03 04 045 05 055 0.6 0.65

Delay

Fig. 16. Delay-loss trade-off curves for single bottleneck scenario with RED

Each curve corresponds to a different value of mazy, (o) for RED (APACE). The extreme
right point on each curve corresponds to maz, = 0 and as we move along the curve, we get
points corresponding to higher values of maz,. It is worth noting that the plots for different
values of « are close to each other and in particular, the plot with @ = 0, encompasses the
complete range of the delay-link utilization trade-off plane covered by the other plots (for
different values of «). Therefore, by setting & = 0 and varying only max,, one can span all
the achievable delay-link utilization trade-off operating points. An operating point below the
delay-link utilization trade-off curve is an achievable operating point, while the one above it is
unachievable. By an achievable operating point, we mean that given a particular delay-link-
utilization pair that one wants to achieve, an operating point with a higher link-utilization
and lower delay can be achieved.

As can be seen from Figures 13 and 14, APACE gives a better link utilization and also lower
delay than that of RED. Also any operating point that is achievable by RED can be achieved

16

by APACE as well by a suitable setting of parameters. Moreover, for the APACE scheme
(refer Figures 13, 15) one can cover the entire range of operating points by keeping o = 0 and
varying max, only. The above observations are also true when the buffer size is 50 packets.
This, however, can not be said for RED and both the parameters, maz, and maz, need
to be varied (Figure 14) in order to achieve a certain operating point. This makes APACE
scheme easy to adapt to network conditions. By varying only mazx, adaptively based on the
network traffic, we can achieve a better AQM strategy than the existing ones.

We have compared the performance with only RED here, mainly to illustrate the significance
of the concept of trade-off curves. Trade-off comparisons with other schemes are reported in
the next section for multiple bottleneck link scenarios. From the above we can conclude that
the APACE gives a better link utilization with lower delay and only one parameter mazx,
needs to be varied to achieve any given feasible operating point.

8 Performance under Multiple Bottleneck Links

We now compare the performance of the various AQM schemes in networks having multiple
congested bottleneck links. The network topology is shown in Figure 17. There are “N” TCP
sources connected to router 1 and a cross traffic of 25 TCP sources each flows from router
2 to router 3 and from router 4 to router 5 respectively. Packet size has been fixed at 500
bytes and buffer size at 50 packets. The results (except for instantaneous queue) have been
averaged over 20 sample paths.

Cross—traffic Sources Cross—traffic Sources
OIN®)
()
2Mbps, 5ms 2Mbps, Sms 2Mbps, Sms 2Mbps, 5ms

2 ()

. IMbis. 10 2Mbps, 10ms 2Mbps, 10ms

. ps, 10ms 2Mbps, 10ms /\ 2Mbps, 10ms

Router 1 Router 2 Router 3 Router 4 Router 5 Router 6
2Mbps, 5ms 2Mbps, Sms

v

Sources o o o o O Sinks

Cross-traffic Sinks Cross-traffic Sinks

Fig. 17. Network topology for multiple bottleneck links

Routers 2 and 4 are the most congested nodes and hence show similar behavior. We have
chosen router 2 for detailed study. We verify our earlier observation by extensive simulations
that values of Ny and M do not affect the performance significantly. The results are in fact
similar to those for the single bottleneck case in terms of dependence on Ny and M. We
choose the same parameter settings as before, except that), = 40 for PAQM and a buffer
size of 40 packets for SRED at all the five nodes.

17

8.1 Instantaneous Queue, Link utilization and Packet loss

RED

Qe e

N

] (RN Al LS

L L L N
LTSy 15 =YY =2s =20
Time (n seconds)

APACE

50 T T T

as |- - . bl= =/rg=2. g @——— —
=25 y —
=0 —

=2s —

Qe e

Tl —
1s —
10 —

on

L L L L
o s 10 15 =YY =2s =20
Time (n seconds)

SRED

p
0
I
I

)
0
I

QueueSize

=
o L L L L L
o s 10 15 =20 =2s =20
Time (n seconds)

PAQM

50 T T T T T

as [~ —
a0 —
=25 —
=20 | —
=2s |- —

=20 [—

Queug Size

1s | —

10 | —

=
o L L L L)
o = 10 15 =20 =25 30
Time (n seconds)

Fig. 18. Instantaneous queue at RED, APACE, SRED and PAQM routers in a multiple bottleneck
scenario

The instantaneous queue length results are similar to those obtained for single bottleneck
link. The queue occupancy is around 40 packets instead of 20 previously. We observe that
APACE is able to keep the instantaneous queue stable in agreement to our observations for

18

the single bottleneck case. This implies that the packet delay remains almost constant under
the APACE scheme.

AL I S I S— S S—
6100 F . S
6000 F . e
5900 | e S R
S
§ 5800 .
2 5700 -
<
-
5600 .
L APACE —— |
5500 AVG
PAQM ------- -
5400 T RED o]
T B </////““SRE_D<: ,,,,,,
5300 | | | b | |
0 20 40 60 80 100 120 140

Number of Sources

Fig. 19. Link utilization vs. number of sources in a multiple bottleneck scenario

0.26 T T T T T T
APACE ———
AVQ - I -
024 FpAQM - .
RED oo s ‘
o 022 FSRED ———- .27 -
0 e -
%] P e
2 o2 - _
o .
c o18f -
5
S o016 f -
Q
&
L 014
012 -
0.1 | | | | | |
O 20 40 60 8 100 120 140

Number of Sources
Fig. 20. Fraction of packets lost vs. number of sources in a multiple bottleneck scenario

In addition APACE also gives better link utilization and lower packet loss as shown in
Figures 19 and 20. Link utilization and fraction of packets lost are illustrated in Figures
19 and 20 respectively, as the number of TCP connections is increased. We observe that in
networks with multiple bottleneck links, APACE is able to achieve high link utilization with
low packet loss rate and a stable queue that keeps the delay bounded.

8.2 Trade-off Curves

The delay-link utilization and delay-loss trade-off curves for the various schemes are shown
in Figures 21 and 22 respectively. The curves for APACE correspond to a = 0 and varying
maz,. Though APACE has better curves for other values of «, we plot the curves for o =0

19

while comparing it with others to illustrate the fact that we can indeed fix o at 0 or some
other small value and vary only max, and still get performance better than that of other
schemes. For RED, the curves correspond to mazy, = 15 and varying mazx,. @,y in PAQM
and buffer size in SRED is varying from 3 to 50 as we move from left to right and « is varying
from 0.05 to 0.99 in AVQ.

6200 T T T — T
6000 - -
5800 | |
c "
K] L
T 5600 | -
¥
3 i
x 5400 | ! -
£ !
4 ‘(} ;
5200 | i i
"RED' ——
"APACE’ ------
5000 |- 'PAQM’ ------- E
ESRED’
4800 ; AV(? 0 1 1 1 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Delay

Fig. 21. Delay-link utilization trade-off curves for multiple bottleneck scenario

0.26 T T T T T T
024 F W .
_ o022} .
7] -~ \
202t —_— -
Q ! T
S 018 - g .
o ‘,\ Loy
S 0.16 -) = b
c /
9 /
S 014 | — \ B
| REDC— d T N
012 | ppAce - :
PAQM - ‘:
01 'SRED’ - S
0.08 AV(? 777777] 1 1 1 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Delay

Fig. 22. Delay-loss trade-off curves for multiple bottleneck scenario

We observe that for a given delay, APACE achieves the highest link utilization at a much
lower packet loss rate. Though the trade-off curves for SRED look better, it is associated
with other problems like global synchronization owing to its frequent overflow of buffer. In
addition link utilization in APACE remains almost constant at a high value indicating that
it is quite independent of its parameter settings and hence the network operator can focus
more on the delay and packet loss rate without worrying much about link utilization.

Note that the drop in the link utilization-delay trade-off curve in Figure 21 for mazy, = 15

20

which is the default value for RED indicates that we would achieve lower link utilization and
higher packet delays at least for the traffic scenario considered here (which is common) for
higher values of max,. This suggests that varying maz, adaptively may sometimes worsen
the performance of RED under multiple bottleneck links.

8.3 Stability of Link Utilization

Figure 23 shows the link utilization of RED at router 2 as its parameters are varied. For
RED we have taken 4 values for maxy,, i.e., 15, 30, 45, 50. For every value of max,, we
have varied max, from 0.00 to 1.00. For these different values, we have plotted the link
utilization on the Y-axis. Similarly for APACE, we have varied maz, from 0.00 to 1.00 and
a from 0.0 to 1.0. The link utilization is plotted on the Y-axis of Figure 24. We observe
that the link utilization remains fairly constant for the different values of its parameters as
compared to RED. In fact, the initial part of Figure 23 corresponds to maxy, = 15, which
is also its default value. The average packet delay and packet drop rate vary in both the
schemes. Given this flexibility in parameter adjustment for link utilization in addition to the
fact that the instantaneous queue remains fairly constant and its level of occupancy can be
controlled by varying only max, may be useful to give delay guarantees and achieve better
link utilization.

6100 .
6080
6060

6040 -

6020 -

Link Utilization

6000 - —

5980 —

5960 —

5940 | | | | | | |
0 10 20 30 40 50 60 70 80 90

max_th and max_p varying

Fig. 23. Link utilization of RED with various parameter settings

9 Conclusions

In this paper, we have presented a new AQM scheme based on (predicted) instantaneous
queue length. The main contributions of the paper can be summarized as follows-

21

6180 T T T T T T T T
'sta_apace50 ——

6160

6140

6120

6100

Link Utilization

6080

6060

6040

6020 | | | | | | | |
0 10 20 30 40 50 60 70 80 90

max_th and alpha varying

Fig. 24. Link utilization of APACE with various parameter settings

e We have shown that NLMS adaptive algorithm can indeed be used to predict the instan-
taneous queue length.

e An AQM scheme based on this predicted queue length is able to achieve the stability of
the queue. The scheme is also simple to implement.

e Since there is a complex inter-play between various performance metrics of an AQM
scheme, we have argued that these AQM schemes must be compared in terms of Delay-
Loss and Delay-Link utilization trade-off curves. We have performed exhaustive simulation
experiments and compared AQM schemes in terms of these trade-off. It has been argued
[6] that schemes like RED perform well in simulation environments of single bottleneck
but do not perform well in multiple bottleneck scenario. We have, therefore, performed
our experiemnts for both these scenarios. The results of these trade-off comparisons for
schemes like RED, SRED, AVQ and PAQM were also not available earlier.

Our results demonstrate that APACE is able to achieve the instantaneous queue stability
comparable to PAQM. Moreover, APACE gives higher link utilization and a much lower
packet loss rate as compared to schemes like PAQM. In this paper, we have not addressed
the issue of bandwidth sharing between adaptive flows like TCP and non-adaptive flows like
UDP. Typically, per-flow state information like in [14] is required to achieve fariness. Such
schemes are therefore not scalable. In [20], the authors have argued that AQM scheme when
used in combination with fair scheduling algorithm can provide better isolation and fairness.
The issue of APACE in conjunction with fair scheduling needs to be investigated further.
One limitation of APACE is its overhead in terms of computation of the predicted value of
the instantaneous queue at every packet arrival. A feasible solution is to predict the queue
at periodic intervals. However, there will be a trade-off between the prediction interval and
the accuracy of the prediction. This issue requires more investigation.

22

References

[1] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion Avoidance.
ACM/IEEE Transactions on NetworkingACM/IEEE Transactions on Networking, 1(4):397—
413, August 1993.

[2] Teunis J. Ott and T. V. Lakshman and Larry H. Wong. SRED: Stabilized RED. In Proceedings
of IEEE INFOCOM, pages 13461355, 1999.

[3] Srisankar Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue (AVQ)
Algorithm for Active Queue Management. In Proceedings of ACM SIGCOMM, pages 123-134,
August 2001.

[4] Yuan Gao, Guanghui He, and Jennifer C. Hou. On Exploiting Traffic Predictability in Active
ueue Management. In Proceedings of IEEE INFOCOM, pages 14151424, 2000.
g g

[5] T. Bonald , M. May and J. Bolot. Analytic Evaluation of RED Performance. In Proceedings
of IEEE INFOCOM, 2000.

[6] Martin May, Jean Bolot, Christophe Diot and Bryan Lyles. Reasons not to deploy RED. In
Seventh International Workshop on Quality of Service, June 1999.

[7] Sally Floyd. RED: Discussions of Setting Parameters.
http://www.aciri.org/floyd/REDparameters.txt.

[8] Van Jacobson, K. Nichols, and K. Poduri. RED in a Different Light.
http://www.cnaf.infn.it/ “ferrari/papers/ispn/red_light 9_30.pdf, September 1999.

[9] H. Ohsaki and M. Murata. Steady state Analysis of the RED Gateway: Stability, Transient
Behaviour, and Parameter Setting. IEICE Transcations on Communications, E85-B(1),
January 2002.

[10] C. V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. A Control Theoretic Analysis of
RED. In Proceedings of IEEE INFOCOM, pages 1510-1519, 2001.

[11] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha and Kang G. Shin. A Self-Configuring RED
Gateway . In Proceedings of IEEE INFOCOM, pages 1320-1328, 1999.

[12] Sally Floyd, Ramakrishna Gummadi and Scott Shenker. Adaptive RED: An Algorithm for
Increasing the Robustness of RED’s Active Queue Management.

http://www.icir.org/floyd /papers/adaptiveRed.pdf, August 2001.

[13] F. Anjum, and L. Tassiulas. Fair Bandwidth Sharing among Adaptive and Non-Adaptive Flows
in the Internet . In Proceedings of IEEE INFOCOM, pages 1412-1420, 1999.

[14] Don Ling, Robert Morris. Dynamics of Random Early Detection . In Proceedings of ACM
SIGCOMM, 1997.

[15] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha and Kang G. Shin. Stochastic Fair Blue:
A Queue Management Algorithm for Enforcing Fairness. In Proceedings of IEEE INFOCOM,
pages 1520-1529, 2001.

23

[16] Rong Pan, Balaji Prabhakar and Konstantios Psounis. CHOKE, A Stateless Active Queue
Management Scheme for Approximating Fair Bandwidth Allocation . In Proceedings of IEEE
INFOCOM, pages 942-951, 2000.

[17] Simon Haykin. Adaptive Filter Theory. Third Edition, Prentice-Hall, 1996.
[18] Network SImulator. http://www.isi.edu/nsnam/ns/.

[19] Abhishek Jain. Congestion Management and Bandwidth Allocation for Best Effort Traffic
in Packet Switched Networks. Master’s thesis, Department of Electrical Engineering, Indian
Institute of Technology, Bombay, Mumbai, India, June 2003.

[20] B. Suter, T. V. Lakshman, D. Stiliadis and A. K. Choudhary. Buffer Management Schemes for
supporting TCP in Giagbit Routers with Per-flow Queueing. IEEE Journal on Selected Areas
in Communications, 17(6), June 1999.

24

