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Abstract— While scheduling transmissions in a wireless
communications system can result in significant power sav-
ings, a realistic scheduling scheme must take into acvount
practical constraints that apply to wireless transmitters.
Here, we examine scheduling actions for power efficiency
under the constraints that physical transmission may be
carried out at a set of fixed

�
non-zero rates. For this class

of schedulers, we derive the optimal scheduling policy un-
der specified average delay constraints for the simple case
when

�����
under constant channel conditions. We also de-

rive bounds on both the achievable delays as well as power
performances for a general

�
-rate scheduler

Index Terms—Power Efficiency, Packet Scheduling, Bulk
Queues

I. INTRODUCTION

Power efficiency has always been an important design
challenge for wireless networks as it impacts the active
battery life of the mobile device, a critical performance
metric for any network offering mobility services. Power
saving through scheduling in a wireless channel accrues
from two different means [1].
� The wireless channel being time-varying, a sched-

uler can simply defer the transmission of backlogged
packets during ’bad’ channel states or fades to ’bet-
ter’ channel states. This brings down the average
power consumption at the cost of a higher delay for
packets arriving during the fades.� For most transmission schemes, (in wireless as well
as wired channels), power ( � ) increases as a convex
function of the physical transmission rate ( � ). An
example is the Shannon’s capacity relation for the
AWGN channel of unit bandwidth and a noise level
of variance �
	

� � � 	
�����������
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The � � � relation is convex even for the practi-
cal communication schemes. This allows us to save
power simply by appropriately sizing the batches of
transmissions at the cost of an increased buffer delay.

Apart from the concept itself, a difference also exists
in the implementation and realisation of the delay-power
tradeoff from these two means. To tap the gains due
to the fading nature of the channel, the transmitter need
not change the actual physical transmission rates. Indeed
gains, would be possible even if the � � � relation were
not convex. This is illustrated in [2], which assumes the
� � � relation to be linear. In this paper, we shall fo-
cus on the gains that can be achieved due to the latter by
suitably varying the transmission rates. For early work
on this, refer [1], [3], [4], [5]. In [4], the author provides
a comprehensive survey of the problem. Most of these
works seek to optimize average power consumption ( �� )
subject to an average delay ( �� ). Optimal and close to op-
timal scheduling techniques towards this end have been
proposed.

Although practical systems with variable transmission
rates exist and the same may be realized in several ways
[6], it is unlikely that transmission rates can be varied in
an arbitrary fashion. Not only would this require transmit-
ters capable of varying transmission rates continuously,
but also a considerable protocol overhead and receiver
complexity. However, in all the previous works related
to this problem, the scheduler uses the finest granularity
of transmission rate. In this paper, we argue that a realis-
tic scheduling scheme must take into account the practical
limitations. Accordingly, we assume that the transmitter
can transmit only at a finite set of pre-configured rates de-
noted by �������� "!$#&%�!$# 	 !(')')')!$# �

*
; with + denoting the

number of non-zero rates and formulate the problem of
power efficient scheduling. The primary contribution of
this paper is to derive an optimal scheduling policy for the
simple case when +,� � under constant channel condi-
tions. We also provide a lower bound on the power per-



formance of a general + -rate scheduler.

II. AUGMENTED MODEL

We use the same basic model, used in some of the ear-
lier works, notably [1]. This consists of a slotted com-
munication system with a single transmitter and a single
receiver or a point-to-point link and is applicable to an
uplink channel.

1) In a slot � , ��� denotes the number of packet ar-
rivals and � � the number of packets transmitted.
The packet arrival process is assumed to be iid with
Prob

� ��� ���	� ��

� . The average arrival rate � � �����
is denoted by � .

2) A packet arrived in slot � is available for transmis-
sion only from slot � ��� ��� onwards. The buffer
is assumed to be of infinite size. Buffer occupancy� � , measured just at the beginning of a slot � then
evolves as

� ��� % � � � � ��������� (1)

3) In general, the channel may be a time-varying one.
For the analysis here, we assume the channel to be
non-time variant.

The above system can be modeled by a discrete time
queue in which, the ‘state’ of the system can be character-
ized completely by the buffer occupancy - ��� � � � � � . As
stated before, we only investigate transmitters belonging
to a certain class � , called the constant power.

Definition 1: A scheduler � ��� is one character-
ized by the constraint that it can transmit only at a
set of finite pre-configured rates, i.e., � �!� � � �
�� "!$#&%�!$# 	 !(')')')!$# �

*
. A transmitter capable of transmit-

ting at + different non-zero rates is said to belong to the
class � � of + -rate transmitter.
With the additional assumption imposed on the transmit-
ters in the previous section, a constant power scheduler
can be of two types of schedulers.� Stuffing Schedulers: Although the transmitter can

transmit only at a fixed rate, a scheduler in princi-
ple, can transmit an arbitrary quantum of packet. It
can be stuffed with an appropriate amount of dummy
packets to form an (the nearest higher) allowable
transmissions. However, because of the constraint
on transmitter, the � � � relation in effect won’t be
convex but would rather take a ladder type form as
shown in Figure 1. The analysis techniques used in
previous works, such as the Dynamic Programming
Methods, may then be applied to arrive at an optimal
scheduler using this modified cost function. How-
ever it is interesting to note that some of the nice
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Fig. 1. Equivalent Cost function with stuffing

properties that the optimal scheduling policies gen-
erally have, such as monotonicity of the scheduling
action need not hold here.� Non-Stuffing Schedulers: A scheduler on the other
hand may only choose to schedule in sizes or rates
that are allowed for transmission. Thus the batch size
���"� � � . Thus for such a scheduler if �#� � #$� ,
then � �&% #$� . In particular, it must wait for a
number equal to the minimum non-zero transmis-
sion rate before dispatching any, i.e., if � �('  then� �)% # % . An optimal non-stuffing scheduler may
also be arrived at using standard Dynamic Program-
ming Methods.

A non-stuffing scheduler has obvious limitations on the
average delay targets it can meet. Even when an aver-
age delay target is achievable by the class of non-stuffing
schedulers, the optimal non-stuffing scheduler is likely
to under perform when compared to an optimal stuffing
scheduler in terms of power consumption. On the other
hand, non-stuffing scheduling policy might be preferrable
from the network perspective as stuffing can limit the ef-
fective throughput of the system as a whole especially
when the channel medium is shared as in case of a CDMA
Network through excessive use of dummy packets which
have no useful information content and only add to the in-
terference in the network. Also, when the delay bounds
are not very stringent, the scheduling action would natu-
rally tend to favour a non-stuffing technique. In this paper,
we consider only the non-stuffing schedulers. The queues
associated with special classes of non-stuffing schedulers
can be analysed easily using a generating function ap-



proach [7]. In the remaining part of this paper we use
the words scheduler and transmitter interchangeably and
consider them a single entity. We define some more sub-
classes of such schedulers.

Definition 2: A deterministic scheduler is the one in
which the scheduling action can be specified as a station-
ary function � � ' � on the state ��� i.e. �
� � � � ��� � .
A stochastic scheduler on the other hand would randomly
choose � � according to a probability distribution which is
a function of the system state ��� . An important sub-class
of deterministic schedulers is the monotone schedulers de-
fined as follows.

Definition 3: A deterministic scheduler � is said to be
monotone if the scheduling function � � ' � of the buffer-
state � � � � � is increasing in � .

Definition 4: A scheduling policy is said to be greedy
if, whenever � � % #$� � � � , ��� % # � .
Thus for any state ��� , a greedy (non-stuffing) scheduler
transmits at the maximum permissible rate. It follows that
among all the schedulers with the same set of allowable
rates � � , the greedy scheduler would give the best av-
erage delay performance and sets a bound on the feasible
delays.

The problem of power-efficient scheduling may then
be stated as follows. Given an iid packet arrival process
on � � , and an average delay constraint �� , design, for a
+ -rate scheduler using the set of rates � � , a stationary
scheduling policy that would give the optimal power per-
formance. A more challenging problem arises when the
set ��� is also open to design and a joint optimization of
the rates as well as policy is sought.

We first solve this problem for the simple possible sce-
nario, i.e., when only one non-zero rate is allowed ( + �
� ).1

III. OPTIMAL � -RATE SCHEDULERS

In this section we consider the problem of determining
an optimal non-zero rate and the corresponding schedul-
ing policy for � -rate scheduler under constant channel
conditions.

Proposition 1: For the constant channel case, among
the class of � -rate schedulers only, there is a greedy sched-
uler which gives the optimal performance.
Proof: We first show that any two � -rate schedulers that
use the same rate # will have the same power perfor-
mance. Let � � # � be the energy required for transmitting
# packets in � slot and let � be the fraction of slots in
which � transmits. If the queue is stable, then we must�

[1] uses a � -rate scheduler for a performance comparison, but does
not provide an analysis of arriving at the optimal rates.

have # ' � . Then,

� � �
#

� � ��� � � �
# � � # � (2)

where, � � ��� � denotes the average energy per slot or
power requirement of the scheduler � using a single rate
# . Since the greedy scheduler would give the same en-
ergy performance and at least as good a delay perfor-
mance as any scheduler using that rate; there is a greedy
scheduler which gives the optimal performance.

Proposition 2: Let � � # � denote the average power re-
quirement of a � -rate scheduler of rate # . Then if #
	 '
# , � � # 	 � ' � � # � .
Proof: To prove this result, we will invoke the assump-
tion of the convexity of � � # � .

� � # 	 � � � � # �
� �

� � � # 	 �
# 	 � � � # �

# �
� � � # 	 � # �

# 	 � � � # 	 � � � � # �
# 	 � # � � � # � � � �  �

# �  �
'  (3)

as # 	 ' # and � � # � is convex.
From the above results, it follows that, under constant

channel conditions, a greedy scheduler transmitting at rate
# , denoted by 
�� , is an optimal � -rate scheduler, iff #
is the smallest integer that satisfies the delay constraint.

Hence the problem of determining the optimal 1-rate
scheduler reduces to that of obtaining an expression of the
queueing delay as a function of # under 
�� for a given
arrival process. From this, the optimal # can be com-
puted for a given delay constraint. Note that for + ' � ,
however, a greedy scheduler is not necessarily optimal and
determining the structure of optimal policy is in general
difficult.

The system considered here can be modeled as discrete
time bulk queue with an infinite buffer and determinit-
stic inter-arrival and service times in which the departure
size is restricted to fixed number. We denote the resulting
queue as a

����� ��� � % queue. We have analyzed such
queues for more general arrival process and service sizes
in [7]. Here we provide the result only for � -rate scheduler
and geometric arrival process for illustration purposes.

Note that in our model, � � � # if � � % # and �
� �� 
otherwise. Let �
� ������� ����� Prob

� � ��� �	� . The flow
balance equation for the Markov chain on buffer occu-
pancy in terms of the characteristic functions � � � � and



� � � � gives

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �� �
��� ���
� ! (4)

� � � � �
�����	
����



�� � �
� � � � �

�����	
����


� � � �
� � � � � �

�����
� %	
����


��� � � (5)

Now (4) may be rewritten as

� � � � � � � � ��� � � � ���� � � � � � � � � � � � (6)

Under the assumption that the queue is stable, i.e., # ' �
and 
�� s are geometrically distributed, that is to say,


�� � � � ��� ��� �
i.e., � � � � � � ���

� ��� � (7)

It can be easilyshown that (8)� � � � � � ��� � %
#

� �
� %����
 � �
� ��� � % � (9)

where � is the only zero of ��� � � � � % � � � � � � � � � � �
that lies outside the unit circle. This analysis has been
explained in detail in [7] for a general arrival process as
well. From Little’s result, the average delay suffered is
given as

� � � � � � �
� � � 	 � ���

�
� # � �� � �

� � �
� � � � � ���

�
� # � �� � �

� � � � (10)

We can plot average delay
� � v/s the rate # of the greedy

� -rate scheduler 
�� for various values of # as in Figure
2. From this, given an average delay constraint �� , the
optimal rate # may be selected.

When + ' � , the problem of determining optimal
rates is a much more challenging problem with no ap-
parent straightforwrd solution. In this paper, we char-
acterize the + -rate non-stuffing schedulers in terms of
their schedulability extremes, i.e., their best case selay and
power-performances. As, noted before, the best delay per-
formance would be given by the greedy scheduler in the
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Fig. 2. Average delay �
� v/s rate � for  !� for a Geometric Arrival
Process

class. Using the techniques in [7], it is possible to ob-
tain the steady state solution to queues arriving from such
scheduling action for a general arrival process and thus
obtain the average queueing delay. This delay serves as
the lower bound for the delays feasible to all schedulers
using the rates in � � . Instead of attempting an optimal
solution for + -rate scheduler, we characterize the optimal
scheduler in the absence of delay constraints. This sched-
uler can serve as a good beginning point for an iterative
scheduler design and provides a lower bound on the mean
power consumption for + -rate scheduler.

IV. MINIMUM POWER REQUIREMENT

In this section, we discuss the minimum power require-
ment for a + -rate scheduler, when there is no delay con-
straint on scheduling. It is interesting to note that the min-
imal power depends only on the average arrival rate and
can be achieved by a corresponding

�
-rate scheduler.

Proposition 3: Let ##""!$#�" � % � � � be such that ##"%$
�&$ #'" � % . Then, the minimum power requirement, that
occurs in the absence of delay constraints, i.e., �� �)( is
given by

�+* � � � #�" � % � �
#�" � % � #�" � � #�" � �

� � #�"
#�" � % � #�" � � #'" � % �

(11)
Proof: In the absence of delay constraint, the prob-

lem of determining minimum power can be formulated
as optimization problem. We seek to determine the tuple



��� � � � �% ! � �	 !(')')')! � �� � that

minimizes � � � � �
��� �	
��� %

� � � � #$� �
subject to,
��� �	
��� %

� � # � � � (12)

��� �	
��� %

� � $ � (13)

Here � � is the fraction of time for which the scheduler
transmits at # � . The optimal solution, must satisfy (in
the limiting sense)

��� �	
��� %

� �� � � (14)

This may be seen readily from the following argument.
Suppose, � � � � � ��� �����
 � �� '  , and let #�� be the
highest rate for which � �� '  , then consider the tuple

� 	 ,
which is the same as

� �
, except that � 	 % � � �% � #���� and� 	� � �	� � # % � ; where � � � ��
 ��
��� � ! �� � ��� ��� . Note that� 	 satisfies (12) and (13). Also,

� � � � � � � � � 	 � � � � # % � � #�� � � #�� � � # % � �
'  

Thus it follows that the optimal tuple must satisfy� ��� �����
 � �� � � . Now to prove the proposition we note that
� � ' � is a convexly increasing function satisfying � �  � �
 . It can be easily seen that � � ' � satifies the following
property

if � $�� $�� $ � and � ��� ��� ��� � �
and also � ����� � ���!� ���	�

then ��� � � � ����� � � � % � � � � � ��� � � � �
It then follows that a policy transmitting at rates other than
#�""!$#'" � % , the rates closest to � on either side, will have
a higher power requirement than a policy that transmits at
only these rates. Hence, the optimal tuple is given by

� �" � � � #'"
#�" � % � #'"� �" � % � # " � % � �
#�" � % � #'"� �� �  �" �$#� 
 ! 
 � �

This proves the result.

From the above result, it follows that over the + -rate
schedulers, the least power will be achieved by the sched-
ulers that use the rates %	�'& and � %	�(& � ��� . For these sched-
ulers, � * � � � � � � %	�'& � � � %	�'& � � � � � � �)%	�(& � � � %	�'& � � � ,
which is similar to the expression in [1]. Note that �!* � �
is achievable in the limit by appropriate scheduling action,
which may be non-deterministic in general and provides
a lower bound on the mean power consumption for the
schedulers that use the set � � as the non-zero transmis-
sion rates.

V. CONCLUSIONS AND FUTURE DIRECTIONS

While scheduling for achieving efficient power perfor-
mance under delay constraints, the limitations of the trans-
mitter system in varying the physical rate of transmission
must be taken into account. The transmitter may be as-
sumed to be capable of transmitting only at a finite set of
fixed rates. An optimal scheduler for the simplest case
when the channel is non-time varying and only one non-
zero rate may be used has been dealt with in this paper.
Lower bounds on the power and delay performances of
a scheduler using multiple rates under constant channel
conditions have also been provided. It would be interest-
ing and challenging to consider the problem of the joint
optimal rate-scheduler design for the more complex case
of a time varying channel under the constraints of discrete
rate scheduling.
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