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Series RLC circuit

R Li

C

VR

VC

VL

V0

KVL: VR + VL + VC = V0 ⇒ i R + L
di

dt
+

1

C

∫
i dt = V0

Differentiating w. r. t. t, we get,

R
di
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+ L

d2i
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+

1

C
i = 0.

i.e.,
d2i
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+

R

L

di

dt
+

1

LC
i = 0 ,

a second-order ODE with constant coefficients.
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Parallel RLC circuit

CR L

iR iL

VI0

iC

KCL: iR + iL + iC = I0 ⇒
1

R
V +

1

L

∫
V dt + C

dV
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Series/Parallel RLC circuits

R L

C

i

CR L

iR iLVR

VC V

iCVL

I0 V0

* A series RLC circuit driven by a constant current source is trivial to analyze.
Since the current through each element is known, the voltage can be found in a
straightforward manner.

VR = i R, VL = L
di

dt
, VC =

1

C

∫
i dt .

* A parallel RLC circuit driven by a constant voltage source is trivial to analyze.
Since the voltage across each element is known, the current can be found in a
straightforward manner.

iR = V /R, iC = C
dV

dt
, iL =

1

L

∫
V dt .

* The above equations hold even if the applied voltage or current is not constant,
and the variables of interest can still be easily obtained without solving a
differential equation.
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Series/Parallel RLC circuits

A general RLC circuit (with one inductor and one capacitor) also leads to a
second-order ODE. As an example, consider the following circuit:

i

C

L

V R2V0

R1

V0 = R1 i + L
di

dt
+ V (1)

i = C
dV

dt
+

1

R2
V (2)

Substituting (2) in (1), we get

V0 = R1

[
CV ′ + V /R2

]
+ L

[
CV ′′ + V ′/R2

]
+ V , (3)

V ′′ [LC ] + V ′ [R1C + L/R2] + V [1 + R1/R2] = V0 . (4)
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General solution

Consider the second-order ODE with constant coefficients,

d2y

dt2
+ a

dy

dt
+ b y = K (constant) .

The general solution y(t) can be written as,

y(t) = y (h)(t) + y (p)(t) ,

where y (h)(t) is the solution of the homogeneous equation,

d2y

dt2
+ a

dy

dt
+ b y = 0 ,

and y (p)(t) is a particular solution.

Since K = constant, a particular solution is simply y (p)(t) = K/b.

In the context of RLC circuits, y (p)(t) is the steady-state value of the variable of
interest, i.e.,

y (p) = lim
t→∞

y(t),

which can be often found by inspection.
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General solution

For the homogeneous equation,

d2y

dt2
+ a

dy

dt
+ b y = 0 ,

we first find the roots of the associated characteristic equation,

r2 + a r + b = 0 .

Let the roots be r1 and r2. We have the following possibilities:

* r1, r2 are real, r1 6= r2 (“overdamped”)

y (h)(t) = C1 exp(r1t) + C2 exp(r2t) .

* r1, r2 are complex, r1,2 = α± jω (“underdamped”)

y (h)(t) = exp(αt) [C1 cos(ωt) + C2 sin(ωt)] .

* r1 = r2 =α (“critically damped”)

y (h)(t) = exp(αt) [C1 t + C2] .
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Parallel RLC circuit

CR L

iR iL

VI0

iC R=10Ω

C=1µF

L=0.44mH

I0 = 100mA

iL(0−) = 0A⇒ iL(0+) = 0A.

V (0−) = 0V ⇒ V (0+) = 0V .

d2V

dt2
+

1

RC

dV

dt
+

1

LC
V = 0 (as derived earlier)

The roots of the characteristic equation are (show this):

r1 = −0.65× 105 s−1 , r2 = −0.35× 105 s−1 .

The general expression for V (t) is,

V (t) = A exp(r1t) + B exp(r2t) + V (∞),

i.e., V (t) = A exp(−t/τ1) + B exp(−t/τ2) + V (∞),

where τ1 = −1/r1 = 15.4µs, τ2 = −1/r1 = 28.6µs.
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Parallel RLC circuit

As t →∞ ,V = L
diL

dt
= 0 V ⇒ V (∞) = 0 V .

⇒ V (t) = A exp(−t/τ1) + B exp(−t/τ2),

Since V (0+) = 0 V , we have,
A + B = 0 . (1)

Our other initial condition is iL(0+) = 0 A, which can be used to obtain
dV

dt
(0+).

iL(0+) = I0 −
1

R
V (0+)− C

dV

dt
(0+) = 0 A, which gives

(A/τ1) + (B/τ2) = −I0/C . (2)

From (1) and (2), we get the values of A and B, and

V (t) = −3.3 [exp(−t/τ1)− exp(−t/τ2)] V . (3)

(SEQUEL file: ee101 rlc 1.sqproj)
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Parallel RLC circuit

As t →∞ ,V = L
diL

dt
= 0 V ⇒ V (∞) = 0 V .

⇒ V (t) = A exp(−t/τ1) + B exp(−t/τ2),

Since V (0+) = 0 V , we have,
A + B = 0 . (1)

Our other initial condition is iL(0+) = 0 A, which can be used to obtain
dV

dt
(0+).

iL(0+) = I0 −
1

R
V (0+)− C

dV

dt
(0+) = 0 A, which gives

(A/τ1) + (B/τ2) = −I0/C . (2)

From (1) and (2), we get the values of A and B, and

V (t) = −3.3 [exp(−t/τ1)− exp(−t/τ2)] V . (3)
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Series RLC circuit: home work

R L

C

i

0 V

5 V

t=0

VR

C=1µF

L=1 mH

VC

VL

Vs

(a) Show that the condition for critically damped response is R = 63.2 Ω.

(b) For R = 20 Ω, derive expressions for i(t) and VL(t) for t > 0 (Assume that
VC (0−) = 0V and iL(0−) = 0A). Plot them versus time.

(c) Repeat (b) for R = 100 Ω.

(d) Compare your results with the following plots.
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