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Resonance in series RLC circuits
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I =
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R + jωL + 1/jωC
=

Vm

R + j(ωL− 1/ωC)
≡ Im ∠ θ , where

Im =
Vm√

R2 + (ωL− 1/ωC)2
, θ = − tan−1

[
ωL− 1/ωC

R

]
.

* As ω is varied, both Im and θ change.

* When ωL = 1/ωC , Im reaches its maximum value, Imax
m = Vm/R, and

θ becomes 0, i.e., the current I is in phase with the applied voltage.

* The above condition is called “resonance,” and the corresponding frequency is
called the “resonance frequency” (ω0).

ω0 = 1/
√
LC
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Im =
Vm√

R2 + (ωL− 1/ωC)2
, θ = − tan−1

[
ωL− 1/ωC

R

]
.

* As ω deviates from ω0, Im decreases.

* As ω → 0, the term 1/ωC dominates, and θ → π/2.

* As ω →∞, the term ωL dominates, and θ → −π/2.
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* The maximum power that can be absorbed by the resistor is

Pmax =
1

2
(Imax
m )2 R =

1

2
V 2
m/R.

* Define ω1 and ω2 (see figure) as frequencies at which Im = Imax
m /
√

2, i.e., the
power absorbed by R is Pmax/2.

* The bandwidth of a resonant circuit is defined as B = ω2 − ω1, and the quality
factor as Q = ω0/B. Quality is a measure of the sharpness of the Im versus
frequency relationship.

M. B. Patil, IIT Bombay



Resonance in series RLC circuits

 

 

 

 

 

 

 

ω

I

VC

VLVR

0

Vm 6 0

Imax
m

Imax
m /

√
2

ω2ω0ω1

* The maximum power that can be absorbed by the resistor is

Pmax =
1

2
(Imax
m )2 R =

1

2
V 2
m/R.

* Define ω1 and ω2 (see figure) as frequencies at which Im = Imax
m /
√

2, i.e., the
power absorbed by R is Pmax/2.

* The bandwidth of a resonant circuit is defined as B = ω2 − ω1, and the quality
factor as Q = ω0/B. Quality is a measure of the sharpness of the Im versus
frequency relationship.

M. B. Patil, IIT Bombay



Resonance in series RLC circuits

 

 

 

 

 

 

 

ω

I

VC

VLVR

0

Vm 6 0

Imax
m

Imax
m /

√
2

ω2ω0ω1

* The maximum power that can be absorbed by the resistor is

Pmax =
1

2
(Imax
m )2 R =

1

2
V 2
m/R.

* Define ω1 and ω2 (see figure) as frequencies at which Im = Imax
m /
√

2, i.e., the
power absorbed by R is Pmax/2.

* The bandwidth of a resonant circuit is defined as B = ω2 − ω1, and the quality
factor as Q = ω0/B. Quality is a measure of the sharpness of the Im versus
frequency relationship.

M. B. Patil, IIT Bombay



Resonance in series RLC circuits

 

 

 

 

 

 

 

ω

I

VC

VLVR

0

Vm 6 0

Imax
m

Imax
m /

√
2

ω2ω0ω1

* The maximum power that can be absorbed by the resistor is

Pmax =
1

2
(Imax
m )2 R =

1

2
V 2
m/R.

* Define ω1 and ω2 (see figure) as frequencies at which Im = Imax
m /
√

2, i.e., the
power absorbed by R is Pmax/2.

* The bandwidth of a resonant circuit is defined as B = ω2 − ω1, and the quality
factor as Q = ω0/B. Quality is a measure of the sharpness of the Im versus
frequency relationship.

M. B. Patil, IIT Bombay



Resonance in series RLC circuits

Im =
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For ω = ω0, Im = Imax
m = Vm/R .

For ω = ω1 or ω = ω2, Im = Imax
m /

√
2 .  
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⇒ 1√
2

(
Vm

R

)
=

Vm√
R2 + (ωL− 1/ωC)2

for ω = ω1,2 .

2R2 = R2 + (ωL− 1/ωC)2 → R = ±(ωL− 1/ωC) .

Solving for ω (and discarding negative solutions), we get

ω1,2 = ∓ R

2L
+

√(
R

2L

)2

+
1

LC
.

* Bandwidth B = ω2 − ω1 = R/L .

* Quality Q = ω0/B = ω0L/R .

* Show that, at resonance (i.e., ω = ω0), |VL| = |VC | = Q Vm .

* Show that ω0 =
√
ω1ω2 .
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As R is increased,

* The quality factor Q = ω0L/R decreases, i.e., Im versus ω curve becomes
broader.

* The maximum current (at ω = ω0) decreases (since Imax
m = Vm/R).

* The resonance frequency (ω0 = 1/
√
LC) is not affected.
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I =
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R + jωL + 1/jωC
=

Vm

R + j(ωL− 1/ωC)
≡ Im ∠ θ , where

Im =
Vm√

R2 + (ωL− 1/ωC)2
, θ = − tan−1

[
ωL− 1/ωC

R

]
.

* For ω < ω0, ωL < 1/ωC , the net impedance is capacitive, and the current leads
the applied voltage.

* For ω = ω0, ωL = 1/ωC , the net impedance is purely resistive, and the current
is in phase with the applied voltage.

* For ω > ω0, ωL > 1/ωC , the net impedance is inductive, and the current lags
the applied voltage.

* Let us look at an example (next slide).
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is in phase with the applied voltage.

* For ω > ω0, ωL > 1/ωC , the net impedance is inductive, and the current lags
the applied voltage.

* Let us look at an example (next slide).
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Resonance in series RLC circuits
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Resonance in series RLC circuits: phasor diagrams
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Resonance in parallel RLC circuits

IL ICIR

VIm 6 0

Im ∠ 0 = YV, where Y = G + jωC + 1/jωL (G = 1/R) .

V =
Im ∠ 0

G + jωC + 1/jωL
=

Im

G + j(ωC − 1/ωL)
≡ Vm ∠ θ , where

Vm =
Im√

G2 + (ωC − 1/ωL)2
, θ = − tan−1

[
ωC − 1/ωL

G

]
.

* As ω is varied, both Vm and θ change.

* When ωC = 1/ωL, Vm reaches its maximum value, Vmax
m = Im/G = ImR, and

θ becomes 0, i.e., the voltage V is in phase with the source current.

* The above condition is called “resonance,” and the corresponding frequency is
called the “resonance frequency” (ω0).

ω0 = 1/
√
LC

M. B. Patil, IIT Bombay



Resonance in parallel RLC circuits

IL ICIR

VIm 6 0

Im ∠ 0 = YV, where Y = G + jωC + 1/jωL (G = 1/R) .

V =
Im ∠ 0

G + jωC + 1/jωL
=

Im

G + j(ωC − 1/ωL)
≡ Vm ∠ θ , where

Vm =
Im√

G2 + (ωC − 1/ωL)2
, θ = − tan−1

[
ωC − 1/ωL

G

]
.

* As ω is varied, both Vm and θ change.

* When ωC = 1/ωL, Vm reaches its maximum value, Vmax
m = Im/G = ImR, and

θ becomes 0, i.e., the voltage V is in phase with the source current.

* The above condition is called “resonance,” and the corresponding frequency is
called the “resonance frequency” (ω0).

ω0 = 1/
√
LC

M. B. Patil, IIT Bombay



Resonance in parallel RLC circuits

IL ICIR

VIm 6 0

Im ∠ 0 = YV, where Y = G + jωC + 1/jωL (G = 1/R) .

V =
Im ∠ 0

G + jωC + 1/jωL
=

Im

G + j(ωC − 1/ωL)
≡ Vm ∠ θ , where

Vm =
Im√

G2 + (ωC − 1/ωL)2
, θ = − tan−1

[
ωC − 1/ωL

G

]
.

* As ω is varied, both Vm and θ change.

* When ωC = 1/ωL, Vm reaches its maximum value, Vmax
m = Im/G = ImR, and

θ becomes 0, i.e., the voltage V is in phase with the source current.

* The above condition is called “resonance,” and the corresponding frequency is
called the “resonance frequency” (ω0).

ω0 = 1/
√
LC

M. B. Patil, IIT Bombay



Resonance in parallel RLC circuits

IL ICIR

VIm 6 0

Im ∠ 0 = YV, where Y = G + jωC + 1/jωL (G = 1/R) .

V =
Im ∠ 0

G + jωC + 1/jωL
=

Im

G + j(ωC − 1/ωL)
≡ Vm ∠ θ , where

Vm =
Im√

G2 + (ωC − 1/ωL)2
, θ = − tan−1

[
ωC − 1/ωL

G

]
.

* As ω is varied, both Vm and θ change.

* When ωC = 1/ωL, Vm reaches its maximum value, Vmax
m = Im/G = ImR, and

θ becomes 0, i.e., the voltage V is in phase with the source current.

* The above condition is called “resonance,” and the corresponding frequency is
called the “resonance frequency” (ω0).

ω0 = 1/
√
LC

M. B. Patil, IIT Bombay



Resonance in parallel RLC circuits

Series RLC circuit: Im =
Vm√

R2 + (ωL− 1/ωC)2
, θ = − tan−1

[
ωL− 1/ωC

R

]
.

Parallel RLC circuit: Vm =
Im√

G2 + (ωC − 1/ωL)2
, θ = − tan−1

[
ωC − 1/ωL

G

]
.

* The two situations are identical if we make the following substitutions:
I↔ V,
R ↔ 1/R,
L↔ C .

* Thus, our results for series RLC circuits can be easily extended to parallel RLC
circuits.

* Show that ω1,2 = ∓ 1

2RC
+

√(
1

2RC

)2

+
1

LC
⇒Bandwidth B = 1/RC .

* Show that, at resonance (i.e., ω = ω0), |IL| = |IC | = Q Im .

* Show that ω0 =
√
ω1ω2 .
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Resonance in parallel RLC circuits: home work

IL ICIR

VIm 6 0 R = 2 kΩ

L = 40 mH

C = 0.25 µF

Im = 50 mA

* Calculate ω0, f0, B, Q.

* Calculate IR , IL, IC at ω = ω0, ω1, ω2.

* Verify graphically that IR + IL + IC = Is in each case.

* Plot the power absorbed by R as a function of frequency for f0/10 < f < 10 f0.
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