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What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

* Because of the log scale, dB is convenient for representing numbers that vary in
a wide range.

* log scaling roughly corresponds to human perception of sound and light.

* log scale allows × and ÷ to be replaced by + and − → simpler!

* The unit “Bel” was developed in the 1920s by Bell Labs engineers to quantify
attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his

wife on the phone (she was deaf).

- Bell considered the telephone an intrusion and refused to put one in his office.

* Bel turned out to be too large in practice → deciBel (i.e., one tenth of a Bel).
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What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference
quantity.

X (in dB) = 10 log10 (X/Xref).

For example, if P1 = 20W and Pref = 1W ,

P1 = 10 log (20W /1W ) = 10 log (20) = 13 dB.

* For voltages or currents, the ratio of squares is taken (since P ∝ V 2 or P ∝ I 2

for a resistor).

For example, if V1 = 1.2V , Vref = 1 mV , then

V1 = 10 log (1.2V /1 mV )2 = 20 log
(
1.2/10−3

)
= 61.6 dBm.

* The voltage gain of an amplifier is

AV in dB = 20 log (Vo/Vi ),

with Vi serving as the reference voltage.
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Example

Amplifier VoVi

Given Vi = 2.5mV and AV = 36.3 dB,

compute Vo in dBm and in mV.

(Vi and Vo are peak input and peak output voltages, respectively).

Method 1:

Vi = 20 log

(
2.5 mV

1 mV

)
= 7.96 dBm

Vo = 7.96 + 36.3 = 44.22 dBm

Since Vo (dBm) = 20 log

(
Vo (in mV )

1 mV

)
,

Vo = 10x × 1 mV , where

x =
1

20
Vo (in dBm)

→ Vo = 162.5 mV .

Method 2:

AV = 36.3 dB

→ 20 log AV = 36.3→ AV = 65.

Vo = AV ×Vi = 65× 2.5 mV = 162.5 mV .
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dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



dB in audio measurements

* When sound intensity is specified in dB, the reference pressure is Pref = 20µPa
(our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is
20 log (P/Pref) dB.

* Some interesting numbers:

mosquito 3 m away 0 dB

whisper 20 dB

normal conversation 60 to 70 dB

noisy factory 90 to 100 dB

loud thunder 110 dB

loudest sound human ear can tolerate 120 dB

windows break 163 dB

M. B. Patil, IIT Bombay



Bode plots

H(s) Vo(s)Vi(s)

* The transfer function of a circuit such as an amplifier or a filter is given by,

H(s) = Vo(s)/Vi (s), s = jω.

e.g., H(s) =
K

1 + sτ
=

K

1 + jωτ

* H(jω) is a complex number, and a complete description of H(jω) involves

(a) a plot of |H(jω)| versus ω.

(b) a plot of ∠H(jω) versus ω.

* Bode gave simple rules which allow construction of the above “Bode plots” in an
approximate (asymptotic) manner.
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A simple transfer function

C

ω0 =
1

RC
.

→ H(s) =
1

1+sRC
=

1

1+ (jω/ω0)
,

Vo =
(1/sC)

R+ (1/sC)
Vs ,

Vs Vo

R

* The circuit behaves like a low-pass filter.

For ω � ω0, |H(jω)| → 1.

For ω � ω0, |H(jω)| ∝ 1/ω.

* The magnitude and phase of H(jω| are given by,

|H(jω)| =
1√

1 + (ω/ω0)2
, ∠H(jω) = − tan−1

(
ω

ω0

)
.

* We are generally interested in a large variation in ω (several orders), and its
effect on |H| and ∠H.

* The magnitude (|H|) varies by orders of magnitude as well.

The phase (∠H) varies from 0 (for ω � ω0) to −π/2 (for ω � ω0).
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A simple transfer function: magnitude

C

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Frequency (rad/s) Frequency (rad/s) Frequency (rad/s)

ω0 =
1

RC
.

106106 106

→ H(s) =
1

1+sRC
=

1

1+ (jω/ω0)
,

105

Vo =
(1/sC)

R+ (1/sC)
Vs ,

104
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A simple transfer function: magnitude
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|H| (dB) = 20 log |H| is simply a scaled version of log |H|.
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A simple transfer function: phase
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* Since ∠H = − tan−1(ω/ω0) varies in a limited range (0◦ to −90◦ in this
example), a linear axis is appropriate for ∠H.

* As in the magnitude plot, we use a log axis for ω, since we are interested in a
wide range of ω.
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Construction of Bode plots

Consider H(s) =
K (1 + s/z1)(1 + s/z2) · · · (1 + s/zM)

(1 + s/p1)(1 + s/p2) · · · (1 + s/pN)
.

−z1, −z2, · · · are called the “zeros” of H(s).

−p1, −p2, · · · are called the “poles” of H(s).

(In addition, there could be terms like s, s2, · · · in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function ω.

(b) combining the various contributions to obtain |H| and ∠H versus ω.
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Contribution of a pole: magnitude
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Consider H(s) =
1

1 + s/p
→ H(jω) =

1

1 + j (ω/p)
, |H(jω)| =

1√
1 + (ω/p)2

.

Asymptote 1: ω � p: |H| → 1, 20 log |H| = 0 dB.

Asymptote 2: ω � p: |H| →
1

ω/p
=

p

ω
→ |H| = 20 log p − 20 logω (dB)

Consider two values of ω: ω1 and 10ω1.

|H|1 = 20 log p − 20 logω1 (dB)

|H|2 = 20 log p − 20 log (10ω1) (dB)

|H|1 − |H|2 = −20 log
ω1

10ω1
= 20 dB.

→ |H| versus ω has a slope of −20 dB/decade.

Note that, at ω = p, the actual value of |H| is 1/
√

2 (i.e., −3 dB).
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Contribution of a pole: phase

asymptote 3
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Consider H(s) =
1

1 + s/p
=

1

1 + j (ω/p)
→ ∠H = − tan−1

(
ω

p

)

Asymptote 1: ω � p (say, ω < p/10): ∠H = 0.

Asymptote 2: ω � p (say, ω > 10 p): ∠H = −π/2.

Asymptote 3: For p/10 < ω < 10 p , ∠H is assumed to vary linearly with logω

→ at ω = p, ∠H = −π/4 (which is also the actual value of ∠H).
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Contribution of a zero: magnitude
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Consider H(s) = 1 + s/z → H(jω) = 1 + j (ω/z) , |H(jω)| =
√

1 + (ω/z)2 .

Asymptote 1: ω � p: |H| → 1, 20 log |H| = 0 dB.

Asymptote 2: ω � p: |H| →
ω

z
→ |H| = 20 logω − 20 log z (dB)

Consider two values of ω: ω1 and 10ω1.

|H|1 = 20 logω1 − 20 log z (dB)

|H|2 = 20 log (10ω1)− 20 log z (dB)

|H|1 − |H|2 = 20 log
ω1

10ω1
= −20 dB.

→ |H| versus ω has a slope of +20 dB/decade.

Note that, at ω = z, the actual value of |H| is
√

2 (i.e., 3 dB).
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|H|1 − |H|2 = 20 log
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Contribution of a zero: phase

exact

asymptote 3
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Consider H(s) = 1 + s/z = 1 + j (ω/z)→ ∠H = tan−1

(
ω

z

)

Asymptote 1: ω � z (say, ω < z/10): ∠H = 0.

Asymptote 2: ω � z (say, ω > 10 z): ∠H = π/2.

Asymptote 3: For z/10 < ω < 10 z , ∠H is assumed to vary linearly with logω

→ at ω = z, ∠H = π/4 (which is also the actual value of ∠H).
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Contribution of K (constant), s, and s2

For H(s) = K , 20 log |H| = 20 log K (a constant), and ∠H = 0 .
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For H(s) = s, i.e., H(jω) = jω, |H| = ω.

→ 20 log |H| = 20 log ω,

i.e., a straight line in the |H| (dB)-logω plane with a slope of 20 dB/decade,

passing through (1, 0).

∠H = π/2 (irrespective of ω).

For H(s) = s2, i.e., H(jω) = −ω2, |H| = ω2.

→ 20 log |H| = 40 log ω,

i.e., a straight line in the |H| (dB)-logω plane with a slope of 40 dB/decade,

passing through (1, 0).

∠H = π (irrespective of ω).
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Combining different terms

Consider H(s) = H1(s)× H2(s).

Magnitude:

|H(jω)| = |H1(jω)| × |H2(jω)|.
20 log |H| = 20 log |H1|+ 20 log |H2|.
→ In the Bode magnitude plot, the contributions due to H1 and H2 simply get added.

Phase:

H1(jω) and H2(jω) are complex numbers.

At a given ω, let H1 = K1∠α = K1 e jα, and H2 = K2∠β = K2 e jβ .

Then, H1H2 = K1 K2 e j(α+β) = K1K2∠ (α+ β) .

i.e., ∠H = ∠H1 + ∠H2 .

In the Bode phase plot, the contributions due to H1 and H2 also get added.

The same reasoning applies to more than two terms as well.
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Combining different terms: example

Consider H(s) =
10 s

(1 + s/102) (1 + s/105)
.

Let H(s) = H1(s)H2(s)H3(s)H4(s) , where

H1(s) = 10 ,

H2(s) = s ,

H3(s) =
1

1 + s/p1
, p1 = 102 rad/s,

H4(s) =
1

1 + s/p2
, p2 = 105 rad/s.

We can now plot the magnitude and phase of H1, H2, H3, H4 individually versus ω
and then simply add them to obtain |H| and ∠H.
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Magnitude plot (|H| in dB)
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Magnitude plot (|H| in dB)
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Magnitude plot (|H| in dB)
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Magnitude plot (|H| in dB)
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Magnitude plot (|H| in dB)
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Phase plot
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How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is
well represented by the asymptotes when ω � p or ω � p (similarly for a zero).

* Near ω = p (or ω = z), there is some error.

* If two poles p1 and p2 are close to each other (say, separated by less than a
decade in ω), the error becomes larger (next slide).

* When the poles and zeros are not sufficiently separated, the Bode approximation
should be used only for a rough estimate, follwed by a numerical calculation.
However, even in such cases, it does give a good idea of the asymptotic
magnitude and phase plots, which is valuable in amplifier design.
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How good are the approximations?

Consider H(s) =
10 s

(1 + s/p1) (1 + s/p2)
.
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