EE101: Bode plots

M. B. Patil

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* The unit dB is used to represent quantities on a logarithmic scale.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and $-\to$ simpler!

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and $-\to$ simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

- * The unit dB is used to represent quantities on a logarithmic scale.
- * Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and $-\to$ simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

 Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).

- * The unit dB is used to represent quantities on a logarithmic scale.
- Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and \rightarrow simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.

- * The unit dB is used to represent quantities on a logarithmic scale.
- Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
- * log scaling roughly corresponds to human perception of sound and light.
- * log scale allows \times and \div to be replaced by + and $-\to$ simpler!
- * The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

Interesting facts:

- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.
- * Bel turned out to be too large in practice \rightarrow deciBel (i.e., one tenth of a Bel).

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

$$X \text{ (in dB)} = 10 \log_{10} (X/X_{\text{ref}}).$$

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

$$X$$
 (in dB) = $10 \log_{10} (X/X_{\text{ref}})$.
For example, if $P_1 = 20 W$ and $P_{\text{ref}} = 1 W$, $P_1 = 10 \log (20 W/1 W) = 10 \log (20) = 13 \text{ dB}$.

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

```
X (in dB) = 10 \log_{10} (X/X_{\text{ref}}).
For example, if P_1 = 20 W and P_{\text{ref}} = 1 W, P_1 = 10 \log (20 W/1 W) = 10 \log (20) = 13 \text{ dB}.
```

* For voltages or currents, the ratio of squares is taken (since $P \propto V^2$ or $P \propto I^2$ for a resistor).

 dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

$$X \text{ (in dB)} = 10 \log_{10} (X/X_{\text{ref}}).$$

For example, if $P_1 = 20 W$ and $P_{ref} = 1 W$,

$$P_1 = 10 \log (20 W/1 W) = 10 \log (20) = 13 dB.$$

* For voltages or currents, the ratio of squares is taken (since $P \propto V^2$ or $P \propto I^2$ for a resistor).

For example, if $V_1 = 1.2 V$, $V_{ref} = 1 \,\mathrm{m} V$, then

$$V_1 = 10 \log (1.2 V/1 \text{ mV})^2 = 20 \log (1.2/10^{-3}) = 61.6 \text{ dBm}.$$

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.

$$X$$
 (in dB) = $10 \log_{10} (X/X_{\text{ref}})$.
For example, if $P_1 = 20 W$ and $P_{\text{ref}} = 1 W$, $P_1 = 10 \log (20 W/1 W) = 10 \log (20) = 13 \text{ dB}$.

* For voltages or currents, the ratio of squares is taken (since $P \propto V^2$ or $P \propto I^2$ for a resistor).

For example, if
$$V_1=1.2\,V,\ V_{\rm ref}=1\,{\rm m}\,V$$
, then $V_1=10\,\log{\left(1.2\,V/1\,{\rm m}\,V\right)^2}=20\,\log{\left(1.2/10^{-3}\right)}=61.6\,{\rm dBm}.$

* The voltage gain of an amplifier is

$$A_V$$
 in dB = 20 log (V_o/V_i) ,

with V_i serving as the reference voltage.

Given $V_i=2.5\,\text{mV}$ and $A_V=36.3\,\text{dB},$ compute V_o in dBm and in mV.

(V $_{i}$ and V $_{o}$ are peak input and peak output voltages, respectively).

$$V_i$$
 Amplifier V_o Given $V_i = 2.5 \, \text{mV}$ and $A_V = 36.3 \, \text{dB}$, compute V_o in dBm and in mV.
$$(V_i \text{ and } V_o \text{ are peak input and peak output voltages, respectively}).$$

$$V_i = 20 \, \log \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}$$

$$V_i$$
 Amplifier V_o Given $V_i = 2.5 \,\text{mV}$ and $A_V = 36.3 \,\text{dB}$, compute V_o in dBm and in mV.

(V_{i} and V_{o} are peak input and peak output voltages, respectively).

$$V_i = 20 \, \log \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \, \mathrm{dBm}$$

Given $V_i=2.5\,mV$ and $A_V=36.3\,dB$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

$$V_i = 20 \log \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \,\mathrm{dBm}$$

Since
$$V_o$$
 (dBm) = 20 log $\left(\frac{V_o (\text{in m} V)}{1 \text{ m} V}\right)$,

$$V_o = 10^{\times} \times 1 \,\mathrm{m}\,V$$
, where

$$x = \frac{1}{20} V_o (in dBm)$$

Given $V_i = 2.5\,\text{mV}$ and $A_V = 36.3\,\text{dB}$, compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

$$V_i = 20 \log \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \,\mathrm{dBm}$$

Since
$$V_o$$
 (dBm) = 20 log $\left(\frac{V_o (\text{in m} V)}{1 \text{ m} V}\right)$,

$$V_o = 10^{\times} \times 1 \,\mathrm{m}\,V$$
, where

$$x = \frac{1}{20} V_o (in dBm)$$

$$\rightarrow V_o = 162.5 \,\mathrm{m}V.$$

Given $V_i=2.5\,mV$ and $A_V=36.3\,dB,$ compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

Method 1:

$$V_i = 20 \, \log \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \,\mathrm{dBm}$$

Since
$$V_o(dBm) = 20 \log \left(\frac{V_o(in mV)}{1 mV} \right)$$
,

$$V_o = 10^{\times} \times 1 \,\mathrm{m}\,V$$
, where

$$x = \frac{1}{20} V_o (in dBm)$$

$$\rightarrow V_o = 162.5 \,\mathrm{mV}.$$

Method 2:

$$A_V = 36.3 \,\mathrm{dB}$$

$$\rightarrow$$
 20 log $A_V = 36.3 \rightarrow A_V = 65.$

Given $V_i=2.5\,mV$ and $A_V=36.3\,dB,$ compute V_o in dBm and in mV.

(V_i and V_o are peak input and peak output voltages, respectively).

Method 1:

$$V_i = 20 \, \log \left(\frac{2.5 \,\mathrm{mV}}{1 \,\mathrm{mV}} \right) = 7.96 \,\mathrm{dBm}$$

$$V_o = 7.96 + 36.3 = 44.22 \,\mathrm{dBm}$$

Since
$$V_o$$
 (dBm) = 20 log $\left(\frac{V_o (\text{in m}V)}{1 \text{ m}V}\right)$,

$$V_o = 10^{\times} \times 1 \,\mathrm{m}\,V$$
, where

$$x = \frac{1}{20} V_o (in dBm)$$

$$\rightarrow V_0 = 162.5 \,\mathrm{mV}$$
.

Method 2:

$$A_V = 36.3 \,\mathrm{dB}$$

$$\to 20 \log A_V = 36.3 \to A_V = 65.$$

$$V_o = A_V \times V_i = 65 \times 2.5 \,\mathrm{mV} = 162.5 \,\mathrm{mV}.$$

* When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}.$

- * When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).
 - If the pressure corresponding to the sound being measured is P, we say that it is $20 \log (P/P_{\rm ref}) \, {\rm dB}$.
- * Some interesting numbers:

mosquito 3 m away

 $0 \, dB$

- * When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).
 - If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}$.
- * Some interesting numbers:

mosquito 3 m away 0 dB whisper 20 dB

* When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}.$

* Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB

- * When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).
 - If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dl

- * When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).
 - If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}$.
- * Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB

* When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}$.

* Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB

* When sound intensity is specified in dB, the reference pressure is $P_{\rm ref}=20\,\mu Pa$ (our hearing threshold).

If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P/P_{\rm ref}\right) {\rm dB}$.

* Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s) = V_o(s)/V_i(s), \quad s = j\omega.$

e.g.,
$$H(s) = \frac{K}{1 + s\tau} = \frac{K}{1 + j\omega\tau}$$

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s) = V_o(s)/V_i(s), \quad s = j\omega.$

e.g.,
$$H(s) = \frac{K}{1+s\tau} = \frac{K}{1+i\omega\tau}$$

- * $H(j\omega)$ is a complex number, and a complete description of $H(j\omega)$ involves (a) a plot of $|H(j\omega)|$ versus ω .
 - (b) a plot of $\angle H(j\omega)$ versus ω .

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s) = V_o(s)/V_i(s)$, $s = i\omega$.

e.g.,
$$H(s) = \frac{K}{1+s\tau} = \frac{K}{1+i\omega\tau}$$

- * $H(j\omega)$ is a complex number, and a complete description of $H(j\omega)$ involves (a) a plot of $|H(j\omega)|$ versus ω .
 - (b) a plot of $\angle H(j\omega)$ versus ω .
- * Bode gave simple rules which allow construction of the above "Bode plots" in an approximate (asymptotic) manner.

A simple transfer function

A simple transfer function

* The circuit behaves like a low-pass filter.

For
$$\omega \ll \omega_0$$
, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $|H(j\omega)| \propto 1/\omega$.

A simple transfer function

* The circuit behaves like a low-pass filter.

For
$$\omega \ll \omega_0$$
, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $|H(j\omega)| \propto 1/\omega$.

* The magnitude and phase of $H(j\omega|$ are given by,

$$|H(j\omega)| = rac{1}{\sqrt{1+(\omega/\omega_0)^2}}, \quad \angle H(j\omega) = -\tan^{-1}\left(rac{\omega}{\omega_0}
ight).$$

A simple transfer function

* The circuit behaves like a low-pass filter.

For
$$\omega \ll \omega_0$$
, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $|H(j\omega)| \propto 1/\omega$.

* The magnitude and phase of $H(j\omega|$ are given by,

$$|H(j\omega)| = rac{1}{\sqrt{1+(\omega/\omega_0)^2}}, \quad \angle H(j\omega) = - an^{-1}\left(rac{\omega}{\omega_0}
ight).$$

* We are generally interested in a large variation in ω (several orders), and its effect on |H| and $\angle H$.

A simple transfer function

* The circuit behaves like a low-pass filter.

For
$$\omega \ll \omega_0$$
, $|H(j\omega)| \to 1$.
For $\omega \gg \omega_0$, $|H(j\omega)| \propto 1/\omega$.

* The magnitude and phase of $H(j\omega)$ are given by,

$$|H(j\omega)| = rac{1}{\sqrt{1+(\omega/\omega_0)^2}}, \quad \angle H(j\omega) = - an^{-1}\left(rac{\omega}{\omega_0}
ight).$$

- * We are generally interested in a large variation in ω (several orders), and its effect on |H| and $\angle H$.
- * The magnitude (|H|) varies by orders of magnitude as well. The phase ($\angle H$) varies from 0 (for $\omega \ll \omega_0$) to $-\pi/2$ (for $\omega \gg \omega_0$).

Since ω and $|H(j\omega)|$ vary by several orders of magnitude, a linear ω - or |H|-axis is not appropriate $\to \log |H|$ is plotted against $\log \omega$.

Note that the *shape* of the plot does not change.

|H| (dB) = 20 log |H| is simply a scaled version of log |H|.

Since $\omega = 2\pi f$, the *shape* of the plot does not change.

A simple transfer function: phase

A simple transfer function: phase

* Since $\angle H = -\tan^{-1}(\omega/\omega_0)$ varies in a limited range (0° to -90° in this example), a linear axis is appropriate for $\angle H$.

A simple transfer function: phase

Frequency (rad/s)

- * Since $\angle H = -\tan^{-1}(\omega/\omega_0)$ varies in a limited range (0° to -90° in this example), a linear axis is appropriate for $\angle H$.
- * As in the magnitude plot, we use a log axis for ω , since we are interested in a wide range of ω .

Frequency (rad/s)

$$\text{Consider } H(s) = \frac{K \left(1 + s/z_1 \right) \left(1 + s/z_2 \right) \cdots \left(1 + s/z_M \right)}{(1 + s/p_1) (1 + s/p_2) \cdots (1 + s/p_N)} \ .$$

Consider
$$H(s) = \frac{K(1+s/z_1)(1+s/z_2)\cdots(1+s/z_M)}{(1+s/p_1)(1+s/p_2)\cdots(1+s/p_N)}$$
.

 $-z_1$, $-z_2$, \cdots are called the "zeros" of H(s).

 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

Consider
$$H(s) = \frac{K(1+s/z_1)(1+s/z_2)\cdots(1+s/z_N)}{(1+s/\rho_1)(1+s/\rho_2)\cdots(1+s/\rho_N)}$$
.

 $-z_1$, $-z_2$, \cdots are called the "zeros" of H(s).

 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

(a) computing approximate contribution of each pole/zero as a function ω .

Consider
$$H(s) = \frac{K(1+s/z_1)(1+s/z_2)\cdots(1+s/z_M)}{(1+s/p_1)(1+s/p_2)\cdots(1+s/p_N)}$$
.

 $-z_1$, $-z_2$, \cdots are called the "zeros" of H(s).

 $-p_1$, $-p_2$, \cdots are called the "poles" of H(s).

(In addition, there could be terms like s, s^2, \cdots in the numerator.)

We will assume, for simplicity, that the zeros (and poles) are real and distinct.

Construction of Bode plots involves

- (a) computing approximate contribution of each pole/zero as a function ω .
- (b) combining the various contributions to obtain |H| and $\angle H$ versus ω .

$$\text{Consider } \textit{H(s)} = \frac{1}{1 + s/p} \rightarrow \textit{H(j}\omega) = \frac{1}{1 + j\left(\omega/p\right)} \,, \left|\textit{H(j}\omega\right)\right| = \frac{1}{\sqrt{1 + (\omega/p)^2}} \,.$$

$$\text{Consider } H(s) = \frac{1}{1+s/p} \to H(j\omega) = \frac{1}{1+j\left(\omega/p\right)} \,, |H(j\omega)| = \frac{1}{\sqrt{1+(\omega/p)^2}} \,.$$

 $\text{Asymptote 1:} \quad \omega \ll \textit{p} \colon \left| H \right| \to 1, \ \ 20 \log \left| H \right| = 0 \, \mathrm{dB}.$

$$\text{Consider } \textit{H(s)} = \frac{1}{1 + s/p} \rightarrow \textit{H(j}\omega) = \frac{1}{1 + j\left(\omega/p\right)} \,, |\textit{H(j}\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}} \,.$$

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega$ (dB)

Consider
$$H(s) = \frac{1}{1 + s/\rho} \to H(j\omega) = \frac{1}{1 + j(\omega/\rho)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/\rho)^2}}.$$

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega$ (dB)

Consider two values of ω : ω_1 and $10 \omega_1$.

$$|H|_1 = 20 \log p - 20 \log \omega_1$$
 (dB)

$$|H|_2 = 20 \log p - 20 \log (10 \omega_1)$$
 (dB)

Consider
$$H(s) = \frac{1}{1 + s/p} \to H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}.$$

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:
$$\omega \gg p$$
: $|H| \to \frac{1}{\omega/p} = \frac{p}{\omega} \to |H| = 20 \log p - 20 \log \omega$ (dB)

Consider two values of ω : ω_1 and $10 \omega_1$.

$$|H|_1 = 20 \log p - 20 \log \omega_1 \text{ (dB)}$$

$$|H|_2 = 20 \log p - 20 \log (10 \omega_1) \text{ (dB)}$$

$$|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10 \, \omega_2} = 20 \text{ dB}.$$

Consider
$$H(s) = \frac{1}{1 + s/p} \rightarrow H(j\omega) = \frac{1}{1 + j(\omega/p)}, |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega/p)^2}}.$$

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{1}{\omega/p} = \frac{p}{\omega} \rightarrow |H| = 20 \log p - 20 \log \omega$ (dB)

Consider two values of ω : ω_1 and $10 \omega_1$.

$$|H|_1 = 20 \log p - 20 \log \omega_1$$
 (dB)

$$|H|_2 = 20 \log p - 20 \log (10 \omega_1)$$
 (dB)

$$|H|_1 - |H|_2 = -20 \log \frac{\omega_1}{10 \text{ cr}} = 20 \text{ dB}.$$

$$\rightarrow$$
 $|H|$ versus ω has a slope of $-20\,\mathrm{dB/decade}$.

Note that, at $\omega = p$, the actual value of |H| is $1/\sqrt{2}$ (i.e., -3 dB).

$$\text{Consider } H(s) = \frac{1}{1+s/p} = \frac{1}{1+j\left(\omega/p\right)} \to \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

Consider
$$H(s) = \frac{1}{1 + s/p} = \frac{1}{1 + j(\omega/p)} \rightarrow \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

Asymptote 1: $\omega \ll p$ (say, $\omega < p/10$): $\angle H = 0$.

$$\mathsf{Consider}\ \mathit{H}(\mathit{s}) = \frac{1}{1 + \mathit{s/p}} = \frac{1}{1 + \mathit{j}\left(\omega/p\right)} \to \angle \mathit{H} = -\tan^{-1}\left(\frac{\omega}{\mathit{p}}\right)$$

 $\text{Asymptote 1:} \hspace{0.5cm} \omega \ll p \text{ (say, } \omega < p/10\text{): } \angle H = 0.$

Asymptote 2: $\omega \gg p$ (say, $\omega > 10 \, p$): $\angle H = -\pi/2$.

$$\text{Consider } H(s) = \frac{1}{1+s/p} = \frac{1}{1+j\left(\omega/p\right)} \to \angle H = -\tan^{-1}\left(\frac{\omega}{p}\right)$$

Asymptote 1: $\omega \ll p$ (say, $\omega < p/10$): $\angle H = 0$.

Asymptote 2: $\omega \gg p$ (say, $\omega > 10 p$): $\angle H = -\pi/2$.

Asymptote 3: For $p/10 < \omega < 10 \, p$, $\angle H$ is assumed to vary linearly with $\log \omega$ \rightarrow at $\omega = p$, $\angle H = -\pi/4$ (which is also the actual value of $\angle H$).

Consider
$$H(s)=1+s/z \rightarrow H(j\omega)=1+j\left(\omega/z\right), \left|H(j\omega)\right|=\sqrt{1+\left(\omega/z\right)^2}$$
 .

Consider
$$H(s)=1+s/z \rightarrow H(j\omega)=1+j\left(\omega/z\right), |H(j\omega)|=\sqrt{1+\left(\omega/z\right)^2}$$
 .

$$\mbox{Asymptote 1:} \hspace{0.5cm} \omega \ll \mbox{p: $|H| \to 1$, $20 \log |H| = 0$ dB}. \label{eq:delta_symptote}$$

Consider
$$H(s)=1+s/z \rightarrow H(j\omega)=1+j\left(\omega/z\right), |H(j\omega)|=\sqrt{1+\left(\omega/z\right)^2}$$
 .

 $\mbox{Asymptote 1:} \hspace{0.5cm} \omega \ll \mbox{p: } |H| \rightarrow 1, \,\, 20 \log |H| = 0 \, \mbox{dB}.$

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider
$$H(s)=1+s/z \rightarrow H(j\omega)=1+j\left(\omega/z\right), |H(j\omega)|=\sqrt{1+\left(\omega/z\right)^2}$$
 .

 $\text{Asymptote 1:} \hspace{0.5cm} \omega \ll \textit{p:} \hspace{0.1cm} |\textit{H}| \rightarrow 1, \hspace{0.1cm} 20 \log |\textit{H}| = 0 \hspace{0.1cm} \text{dB}.$

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider two values of ω : ω_1 and $10 \omega_1$.

$$|H|_1 = 20 \log \omega_1 - 20 \log z$$
 (dB)

$$|H|_2 = 20 \log (10 \, \omega_1) - 20 \log z \, (dB)$$

Consider
$$H(s)=1+s/z \rightarrow H(j\omega)=1+j\left(\omega/z\right), |H(j\omega)|=\sqrt{1+\left(\omega/z\right)^2}$$
 .

Asymptote 1: $\omega \ll p$: $|H| \rightarrow 1$, $20 \log |H| = 0 dB$.

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider two values of $\omega\colon \, \omega_1$ and $10\,\omega_1.$

$$|H|_1 = 20 \log \omega_1 - 20 \log z$$
 (dB)

$$|H|_2 = 20 \log (10 \omega_1) - 20 \log z \text{ (dB)}$$

$$|H|_1 - |H|_2 = 20 \log \frac{\omega_1}{10 \omega_1} = -20 \text{ dB}.$$

Consider
$$H(s)=1+s/z \rightarrow H(j\omega)=1+j\left(\omega/z\right), |H(j\omega)|=\sqrt{1+\left(\omega/z\right)^2}$$
 .

$$\text{Asymptote 1:} \qquad \omega \ll \textit{p} \colon \left| \textit{H} \right| \to 1, \ \ 20 \log \left| \textit{H} \right| = 0 \, \mathrm{dB}.$$

Asymptote 2:
$$\omega \gg p$$
: $|H| \rightarrow \frac{\omega}{z} \rightarrow |H| = 20 \log \omega - 20 \log z$ (dB)

Consider two values of ω : ω_1 and $10 \omega_1$.

$$|H|_1 = 20 \log \omega_1 - 20 \log z$$
 (dB)

$$|H|_2 = 20 \log (10 \omega_1) - 20 \log z \text{ (dB)}$$

$$|H|_1 - |H|_2 = 20 \log \frac{\omega_1}{10 \text{ cm}} = -20 \text{ dB}.$$

 \rightarrow $|\emph{H}|$ versus ω has a slope of +20 dB/decade.

Note that, at $\omega=z$, the actual value of |H| is $\sqrt{2}$ (i.e., 3 dB).

Consider
$$H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right)$$

Consider
$$H(s)=1+s/z=1+j\left(\omega/z\right)
ightarrow \angle H= an^{-1}\left(rac{\omega}{z}
ight)$$

Asymptote 1: $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Consider
$$H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right)$$

Asymptote 1: $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2: $\omega \gg z$ (say, $\omega > 10\,z$): $\angle H = \pi/2$.

Consider
$$H(s) = 1 + s/z = 1 + j(\omega/z) \rightarrow \angle H = \tan^{-1}\left(\frac{\omega}{z}\right)$$

Asymptote 1: $\omega \ll z$ (say, $\omega < z/10$): $\angle H = 0$.

Asymptote 2: $\omega \gg z$ (say, $\omega > 10\,z$): $\angle H = \pi/2$.

Asymptote 3: For $z/10<\omega<10\,z$, $\angle H$ is assumed to vary linearly with $\log\omega$ \to at $\omega=z$, $\angle H=\pi/4$ (which is also the actual value of $\angle H$).

Contribution of K (constant), s, and s^2

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For H(s) = s, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For H(s) = s, i.e., $H(j\omega) = j\omega$, $|H| = \omega$. $\rightarrow 20 \log |H| = 20 \log \omega$,

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For
$$H(s) = s$$
, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.
 $\rightarrow 20 \log |H| = 20 \log \omega$,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1, 0).

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For H(s) = s, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.

ightarrow 20 $\log |H| =$ 20 $\log \omega$,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1, 0).

 $\angle H = \pi/2$ (irrespective of ω).

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For H(s)=s, i.e., $H(j\omega)=j\omega$, $|H|=\omega$.

ightarrow 20 $\log |H| =$ 20 $\log \omega$,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1, 0).

 $\angle H = \pi/2$ (irrespective of ω).

For
$$H(s) = s^2$$
, i.e., $H(j\omega) = -\omega^2$, $|H| = \omega^2$.

For H(s) = K, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For
$$H(s)=s$$
, i.e., $H(j\omega)=j\omega$, $|H|=\omega$.

$$ightarrow$$
 20 $\log |H| =$ 20 $\log \omega$,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0).

$$\angle H = \pi/2$$
 (irrespective of ω).

For
$$H(s)=s^2$$
, i.e., $H(j\omega)=-\omega^2$, $|H|=\omega^2$.
 $\rightarrow 20 \log |H|=40 \log \omega$,

For
$$H(s) = K$$
, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For
$$H(s)=s$$
, i.e., $H(j\omega)=j\omega$, $|H|=\omega$.

$$ightarrow$$
 20 $\log |H| =$ 20 $\log \omega$,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1,0).

$$\angle H = \pi/2$$
 (irrespective of ω).

For
$$H(s)=s^2$$
, i.e., $H(j\omega)=-\omega^2$, $|H|=\omega^2$.

$$\rightarrow$$
 20 log $|H|$ = 40 log ω ,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 40 dB/decade, passing through (1,0).

For
$$H(s) = K$$
, 20 $\log |H| = 20 \log K$ (a constant), and $\angle H = 0$.

For
$$H(s) = s$$
, i.e., $H(j\omega) = j\omega$, $|H| = \omega$.

$$\rightarrow$$
 20 log $|H|$ = 20 log ω ,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 20 dB/decade, passing through (1, 0).

$$\angle H = \pi/2$$
 (irrespective of ω).

For
$$H(s)=s^2$$
, i.e., $H(j\omega)=-\omega^2$, $|H|=\omega^2$.

$$\rightarrow$$
 20 log $|H|$ = 40 log ω ,

i.e., a straight line in the |H| (dB)-log ω plane with a slope of 40 dB/decade, passing through (1.0).

$$\angle H = \pi$$
 (irrespective of ω).

Consider
$$H(s) = H_1(s) \times H_2(s)$$
.

Consider $H(s) = H_1(s) \times H_2(s)$.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$

20 $\log |H| = 20 \log |H_1| + 20 \log |H_2|$.

Consider
$$H(s) = H_1(s) \times H_2(s)$$
.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$

20
$$\log |H| = 20 \log |H_1| + 20 \log |H_2|$$
.

 \rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Consider
$$H(s) = H_1(s) \times H_2(s)$$
.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$

20
$$\log |H| = 20 \log |H_1| + 20 \log |H_2|$$
.

 \rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Phase:

 $H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers.

At a given
$$\omega$$
, let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$.

Then,
$$H_1H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1 K_2 \angle (\alpha+\beta)$$
.

i.e.,
$$\angle H = \angle H_1 + \angle H_2$$
.

Consider
$$H(s) = H_1(s) \times H_2(s)$$
.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$

20
$$\log |H| = 20 \log |H_1| + 20 \log |H_2|$$
.

 \rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Phase:

 $H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers.

At a given
$$\omega$$
, let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$.

Then,
$$H_1H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1 K_2 \angle (\alpha+\beta)$$
.

i.e.,
$$\angle H = \angle H_1 + \angle H_2$$
.

In the Bode phase plot, the contributions due to H_1 and H_2 also get added.

Consider
$$H(s) = H_1(s) \times H_2(s)$$
.

Magnitude:

$$|H(j\omega)| = |H_1(j\omega)| \times |H_2(j\omega)|.$$

20
$$\log |H| = 20 \log |H_1| + 20 \log |H_2|$$
.

 \rightarrow In the Bode magnitude plot, the contributions due to H_1 and H_2 simply get added.

Phase:

 $H_1(j\omega)$ and $H_2(j\omega)$ are complex numbers.

At a given ω , let $H_1 = K_1 \angle \alpha = K_1 e^{j\alpha}$, and $H_2 = K_2 \angle \beta = K_2 e^{j\beta}$.

Then,
$$H_1H_2 = K_1 K_2 e^{j(\alpha+\beta)} = K_1 K_2 \angle (\alpha + \beta)$$
.

i.e.,
$$\angle H = \angle H_1 + \angle H_2$$
.

In the Bode phase plot, the contributions due to H_1 and H_2 also get added.

The same reasoning applies to more than two terms as well.

Combining different terms: example

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/10^2\right) \left(1 + s/10^5\right)}$$
 .

Combining different terms: example

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/10^2\right) \left(1 + s/10^5\right)}$$
 .

Let $H(s) = H_1(s) H_2(s) H_3(s) H_4(s)$, where

$$H_1(s)=10\,,$$

$$H_2(s)=s$$
,

$$H_3(s) = \frac{1}{1 + s/p_1}, p_1 = 10^2 \, \mathrm{rad/s},$$

$$H_4(s) = \frac{1}{1 + s/p_2}$$
, $p_2 = 10^5 \, \mathrm{rad/s}$.

Combining different terms: example

Consider
$$H(s) = \frac{10 \, s}{(1 + s/10^2) \, (1 + s/10^5)}$$
.

Let $H(s) = H_1(s) H_2(s) H_3(s) H_4(s)$, where

$$H_1(s)=10\,,$$

$$H_2(s)=s$$
,

$$H_3(s) = \frac{1}{1 + s/p_1}, p_1 = 10^2 \, \mathrm{rad/s},$$

$$H_4(s) = rac{1}{1+s/p_2} \,, p_2 = 10^5 \, {
m rad/s}.$$

We can now plot the magnitude and phase of H_1 , H_2 , H_3 , H_4 individually versus ω and then simply add them to obtain |H| and $\angle H$.

Frequency (rad/s)

Frequency (rad/s)

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).

- * As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
- * Near $\omega = p$ (or $\omega = z$), there is some error.

- * As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
- * Near $\omega = p$ (or $\omega = z$), there is some error.
- * If two poles p_1 and p_2 are close to each other (say, separated by less than a decade in ω), the error becomes larger (next slide).

- * As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
- * Near $\omega = p$ (or $\omega = z$), there is some error.
- * If two poles p_1 and p_2 are close to each other (say, separated by less than a decade in ω), the error becomes larger (next slide).
- * When the poles and zeros are not sufficiently separated, the Bode approximation should be used only for a rough estimate, follwed by a numerical calculation. However, even in such cases, it does give a good idea of the asymptotic magnitude and phase plots, which is valuable in amplifier design.

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/p_1\right) \left(1 + s/p_2\right)}$$
 .

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/p_1\right) \left(1 + s/p_2\right)}$$
 .

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/\rho_1\right) \left(1 + s/\rho_2\right)}$$
 .

Consider
$$H(s) = \frac{10 s}{\left(1 + s/p_1\right)\left(1 + s/p_2\right)}$$
.

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/p_1\right) \left(1 + s/p_2\right)}$$
 .

Consider
$$H(s) = \frac{10 \, s}{\left(1 + s/p_1\right) \left(1 + s/p_2\right)}$$
 .

