EE101: Bode plots

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by + and $-\rightarrow$ simpler!

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by + and $-\rightarrow$ simpler!
* The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by + and $-\rightarrow$ simpler!
* The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.
Interesting facts:
- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by + and $-\rightarrow$ simpler!
* The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.
Interesting facts:
- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.

What is deciBel (dB)?

* The unit dB is used to represent quantities on a logarithmic scale.
* Because of the log scale, dB is convenient for representing numbers that vary in a wide range.
* log scaling roughly corresponds to human perception of sound and light.
* log scale allows \times and \div to be replaced by + and $-\rightarrow$ simpler!
* The unit "Bel" was developed in the 1920s by Bell Labs engineers to quantify attenuation of an audio signal over one mile of cable.
Interesting facts:
- Alexander Graham Bell, who invented the telephone in 1876, could never talk to his wife on the phone (she was deaf).
- Bell considered the telephone an intrusion and refused to put one in his office.
* Bel turned out to be too large in practice \rightarrow deciBel (i.e., one tenth of a Bel).

What is deciBel (dB)?

* dB is a unit that describes a quantity, on a log scale, with respect to a reference quantity.
$X($ in dB$)=10 \log _{10}\left(X / X_{\text {ref }}\right)$.

What is deciBel (dB)?

* dB is a unit that describes a quantity, on a \log scale, with respect to a reference quantity.
$X($ in dB$)=10 \log _{10}\left(X / X_{\text {ref }}\right)$.
For example, if $P_{1}=20 \mathrm{~W}$ and $P_{\text {ref }}=1 \mathrm{~W}$,

$$
P_{1}=10 \log (20 \mathrm{~W} / 1 \mathrm{~W})=10 \log (20)=13 \mathrm{~dB} .
$$

What is deciBel (dB)?

* dB is a unit that describes a quantity, on a \log scale, with respect to a reference quantity.
$X($ in dB$)=10 \log _{10}\left(X / X_{\text {ref }}\right)$.
For example, if $P_{1}=20 \mathrm{~W}$ and $P_{\text {ref }}=1 \mathrm{~W}$,
$P_{1}=10 \log (20 W / 1 W)=10 \log (20)=13 \mathrm{~dB}$.
* For voltages or currents, the ratio of squares is taken (since $P \propto V^{2}$ or $P \propto I^{2}$ for a resistor).

What is deciBel (dB)?

* dB is a unit that describes a quantity, on a \log scale, with respect to a reference quantity.
$X($ in dB$)=10 \log _{10}\left(X / X_{\text {ref }}\right)$.
For example, if $P_{1}=20 \mathrm{~W}$ and $P_{\text {ref }}=1 \mathrm{~W}$,
$P_{1}=10 \log (20 W / 1 W)=10 \log (20)=13 \mathrm{~dB}$.
* For voltages or currents, the ratio of squares is taken (since $P \propto V^{2}$ or $P \propto I^{2}$ for a resistor).
For example, if $V_{1}=1.2 V, V_{\text {ref }}=1 \mathrm{~m} V$, then
$V_{1}=10 \log (1.2 V / 1 \mathrm{~m} V)^{2}=20 \log \left(1.2 / 10^{-3}\right)=61.6 \mathrm{dBm}$.

What is deciBel (dB)?

* dB is a unit that describes a quantity, on a \log scale, with respect to a reference quantity.
$X($ in dB$)=10 \log _{10}\left(X / X_{\text {ref }}\right)$.
For example, if $P_{1}=20 \mathrm{~W}$ and $P_{\text {ref }}=1 \mathrm{~W}$,
$P_{1}=10 \log (20 W / 1 W)=10 \log (20)=13 \mathrm{~dB}$.
* For voltages or currents, the ratio of squares is taken (since $P \propto V^{2}$ or $P \propto I^{2}$ for a resistor).
For example, if $V_{1}=1.2 V, V_{\text {ref }}=1 \mathrm{~m} V$, then

$$
V_{1}=10 \log (1.2 V / 1 \mathrm{~m} V)^{2}=20 \log \left(1.2 / 10^{-3}\right)=61.6 \mathrm{dBm} .
$$

* The voltage gain of an amplifier is
A_{V} in $\mathrm{dB}=20 \log \left(V_{0} / V_{i}\right)$,
with V_{i} serving as the reference voltage.

Example

Given $\mathrm{V}_{\mathrm{i}}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{0} are peak input and peak output voltages, respectively).

Example

Given $\mathrm{V}_{\mathrm{i}}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{0} are peak input and peak output voltages, respectively).

Method 1:

$$
V_{i}=20 \log \left(\frac{2.5 \mathrm{~m} V}{1 \mathrm{~m} V}\right)=7.96 \mathrm{dBm}
$$

Example

Given $\mathrm{V}_{\mathrm{i}}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{0} are peak input and peak output voltages, respectively).

Method 1:

$V_{i}=20 \log \left(\frac{2.5 \mathrm{~m} V}{1 \mathrm{~m} V}\right)=7.96 \mathrm{dBm}$
$V_{o}=7.96+36.3=44.22 \mathrm{dBm}$

Example

Given $V_{i}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{o} are peak input and peak output voltages, respectively).

Method 1:

$V_{i}=20 \log \left(\frac{2.5 \mathrm{~m} V}{1 \mathrm{mV}}\right)=7.96 \mathrm{dBm}$
$V_{o}=7.96+36.3=44.22 \mathrm{dBm}$
Since $V_{o}(\mathrm{dBm})=20 \log \left(\frac{V_{o}(\text { in } m V)}{1 m V}\right)$,
$V_{o}=10^{x} \times 1 \mathrm{mV}$, where
$x=\frac{1}{20} V_{o}($ in dBm$)$

Example

Given $\mathrm{V}_{\mathrm{i}}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{o} are peak input and peak output voltages, respectively).

Method 1:

$V_{i}=20 \log \left(\frac{2.5 \mathrm{~m} V}{1 \mathrm{~m} V}\right)=7.96 \mathrm{dBm}$
$V_{o}=7.96+36.3=44.22 \mathrm{dBm}$
Since $V_{o}(\mathrm{dBm})=20 \log \left(\frac{V_{o}(\mathrm{in} \mathrm{m} V)}{1 \mathrm{~m} V}\right)$,
$V_{o}=10^{\times} \times 1 \mathrm{~m} V$, where
$x=\frac{1}{20} V_{o}($ in dBm $)$
$\rightarrow V_{o}=162.5 \mathrm{mV}$.

Example

Given $\mathrm{V}_{\mathrm{i}}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{0} are peak input and peak output voltages, respectively).

Method 1:

$V_{i}=20 \log \left(\frac{2.5 \mathrm{~m} V}{1 \mathrm{~m} V}\right)=7.96 \mathrm{dBm}$
$V_{o}=7.96+36.3=44.22 \mathrm{dBm}$
Since $V_{o}(\mathrm{dBm})=20 \log \left(\frac{V_{o}(\mathrm{in} \mathrm{m} V)}{1 \mathrm{~m} V}\right)$,
$V_{o}=10^{\times} \times 1 \mathrm{~m} V$, where
$x=\frac{1}{20} V_{o}($ in dBm$)$
$\rightarrow V_{o}=162.5 \mathrm{mV}$.

Method 2:

$A_{V}=36.3 \mathrm{~dB}$
$\rightarrow 20 \log A_{V}=36.3 \rightarrow A_{V}=65$.

Example

Given $\mathrm{V}_{\mathrm{i}}=2.5 \mathrm{mV}$ and $\mathrm{A}_{\mathrm{V}}=36.3 \mathrm{~dB}$, compute V_{o} in dBm and in mV .
(V_{i} and V_{0} are peak input and peak output voltages, respectively).

Method 1:

$V_{i}=20 \log \left(\frac{2.5 \mathrm{~m} V}{1 \mathrm{~m} V}\right)=7.96 \mathrm{dBm}$
$V_{o}=7.96+36.3=44.22 \mathrm{dBm}$
Since $V_{o}(\mathrm{dBm})=20 \log \left(\frac{V_{o}(\mathrm{in} \mathrm{m} V)}{1 \mathrm{~m} V}\right)$,
$V_{o}=10^{x} \times 1 \mathrm{~m} V$, where
$x=\frac{1}{20} V_{o}($ in dBm$)$
$\rightarrow V_{o}=162.5 \mathrm{mV}$.

Method 2:

$A_{V}=36.3 \mathrm{~dB}$
$\rightarrow 20 \log A_{V}=36.3 \rightarrow A_{V}=65$.
$V_{o}=A_{V} \times V_{i}=65 \times 2.5 \mathrm{mV}=162.5 \mathrm{mV}$.

* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold). If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:
mosquito 3 m away
0 dB
* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:
mosquito 3 m away
0 dB
whisper 20 dB
* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:
mosquito 3 m away
0 dB
whisper
20 dB
normal conversation
60 to 70 dB
* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:
mosquito 3 m away
0 dB
whisper
20 dB
normal conversation
60 to 70 dB
noisy factory
90 to 100 dB
* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:
mosquito 3 m away
whisper
normal conversation
noisy factory
loud thunder

0 dB
20 dB
60 to 70 dB
90 to 100 dB
110 dB

* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB

* When sound intensity is specified in dB , the reference pressure is $P_{\text {ref }}=20 \mu \mathrm{~Pa}$ (our hearing threshold).
If the pressure corresponding to the sound being measured is P, we say that it is $20 \log \left(P / P_{\text {ref }}\right) \mathrm{dB}$.
* Some interesting numbers:

mosquito 3 m away	0 dB
whisper	20 dB
normal conversation	60 to 70 dB
noisy factory	90 to 100 dB
loud thunder	110 dB
loudest sound human ear can tolerate	120 dB
windows break	163 dB

Bode plots

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s)=V_{o}(s) / V_{i}(s), \quad s=j \omega$.
e.g., $H(s)=\frac{K}{1+s \tau}=\frac{K}{1+j \omega \tau}$

Bode plots

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s)=V_{0}(s) / V_{i}(s), \quad s=j \omega$.
e.g., $H(s)=\frac{K}{1+s \tau}=\frac{K}{1+j \omega \tau}$
* $H(j \omega)$ is a complex number, and a complete description of $H(j \omega)$ involves
(a) a plot of $|H(j \omega)|$ versus ω.
(b) a plot of $\angle H(j \omega)$ versus ω.

Bode plots

* The transfer function of a circuit such as an amplifier or a filter is given by, $H(s)=V_{o}(s) / V_{i}(s), \quad s=j \omega$.
e.g., $H(s)=\frac{K}{1+s \tau}=\frac{K}{1+j \omega \tau}$
* $H(j \omega)$ is a complex number, and a complete description of $H(j \omega)$ involves
(a) a plot of $|H(j \omega)|$ versus ω.
(b) a plot of $\angle H(j \omega)$ versus ω.
* Bode gave simple rules which allow construction of the above "Bode plots" in an approximate (asymptotic) manner.

A simple transfer function

A simple transfer function

* The circuit behaves like a low-pass filter.

For $\omega \ll \omega_{0},|H(j \omega)| \rightarrow 1$.
For $\omega \gg \omega_{0},|H(j \omega)| \propto 1 / \omega$.

A simple transfer function

* The circuit behaves like a low-pass filter.

For $\omega \ll \omega_{0},|H(j \omega)| \rightarrow 1$.
For $\omega \gg \omega_{0},|H(j \omega)| \propto 1 / \omega$.

* The magnitude and phase of $H(j \omega \mid$ are given by,

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}, \quad \angle H(j \omega)=-\tan ^{-1}\left(\frac{\omega}{\omega_{0}}\right) .
$$

A simple transfer function

$$
\begin{aligned}
& V_{o}=\frac{(1 / \mathrm{sC})}{\mathrm{R}+(1 / \mathrm{sC})} \mathrm{V}_{\mathrm{s}}, \\
& \rightarrow \mathrm{H}(\mathrm{~s})=\frac{1}{1+\mathrm{sRC}}=\frac{1}{1+\left(\mathrm{j} \omega / \omega_{0}\right)}, \\
& \omega_{0}=\frac{1}{\mathrm{RC}} .
\end{aligned}
$$

* The circuit behaves like a low-pass filter.

For $\omega \ll \omega_{0},|H(j \omega)| \rightarrow 1$.
For $\omega \gg \omega_{0},|H(j \omega)| \propto 1 / \omega$.

* The magnitude and phase of $H(j \omega \mid$ are given by,

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}, \quad \angle H(j \omega)=-\tan ^{-1}\left(\frac{\omega}{\omega_{0}}\right) .
$$

* We are generally interested in a large variation in ω (several orders), and its effect on $|H|$ and $\angle H$.

A simple transfer function

$$
\begin{aligned}
& V_{o}=\frac{(1 / s C)}{R+(1 / s C)} V_{s} \\
& \rightarrow H(s)=\frac{1}{1+s R C}=\frac{1}{1+\left(j \omega / \omega_{0}\right)} \\
& \omega_{0}=\frac{1}{R C}
\end{aligned}
$$

* The circuit behaves like a low-pass filter.

For $\omega \ll \omega_{0},|H(j \omega)| \rightarrow 1$.
For $\omega \gg \omega_{0},|H(j \omega)| \propto 1 / \omega$.

* The magnitude and phase of $H(j \omega \mid$ are given by,

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}, \quad \angle H(j \omega)=-\tan ^{-1}\left(\frac{\omega}{\omega_{0}}\right) .
$$

* We are generally interested in a large variation in ω (several orders), and its effect on $|H|$ and $\angle H$.
* The magnitude $(|H|)$ varies by orders of magnitude as well.

The phase $(\angle H)$ varies from 0 (for $\omega \ll \omega_{0}$) to $-\pi / 2$ (for $\omega \gg \omega_{0}$).

A simple transfer function: magnitude

A simple transfer function: magnitude

Since ω and $|H(j \omega)|$ vary by several orders of magnitude, a linear ω - or $|H|$-axis is not appropriate $\rightarrow \log |H|$ is plotted against $\log \omega$.

A simple transfer function: magnitude

A simple transfer function: magnitude

Note that the shape of the plot does not change.
$|H|(\mathrm{dB})=20 \log |H|$ is simply a scaled version of $\log |H|$.

A simple transfer function: magnitude

A simple transfer function: magnitude

Since $\omega=2 \pi f$, the shape of the plot does not change.

A simple transfer function: phase

A simple transfer function: phase

* Since $\angle H=-\tan ^{-1}\left(\omega / \omega_{0}\right)$ varies in a limited range $\left(0^{\circ}\right.$ to -90° in this example), a linear axis is appropriate for $\angle H$.

A simple transfer function: phase

* Since $\angle H=-\tan ^{-1}\left(\omega / \omega_{0}\right)$ varies in a limited range $\left(0^{\circ}\right.$ to -90° in this example), a linear axis is appropriate for $\angle H$.
* As in the magnitude plot, we use a \log axis for ω, since we are interested in a wide range of ω.

Construction of Bode plots

Consider $H(s)=\frac{K\left(1+s / z_{1}\right)\left(1+s / z_{2}\right) \cdots\left(1+s / z_{M}\right)}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right) \cdots\left(1+s / p_{N}\right)}$.

Construction of Bode plots

Consider $H(s)=\frac{K\left(1+s / z_{1}\right)\left(1+s / z_{2}\right) \cdots\left(1+s / z_{M}\right)}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right) \cdots\left(1+s / p_{N}\right)}$.
$-z_{1},-z_{2}, \cdots$ are called the "zeros" of $H(s)$.
$-p_{1},-p_{2}, \cdots$ are called the "poles" of $H(s)$.
(In addition, there could be terms like s, s^{2}, \cdots in the numerator.)
We will assume, for simplicity, that the zeros (and poles) are real and distinct.
Construction of Bode plots involves

Construction of Bode plots

Consider $H(s)=\frac{K\left(1+s / z_{1}\right)\left(1+s / z_{2}\right) \cdots\left(1+s / z_{M}\right)}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right) \cdots\left(1+s / p_{N}\right)}$.
$-z_{1},-z_{2}, \cdots$ are called the "zeros" of $H(s)$.
$-p_{1},-p_{2}, \cdots$ are called the "poles" of $H(s)$.
(In addition, there could be terms like s, s^{2}, \cdots in the numerator.)
We will assume, for simplicity, that the zeros (and poles) are real and distinct.
Construction of Bode plots involves
(a) computing approximate contribution of each pole/zero as a function ω.

Construction of Bode plots

Consider $H(s)=\frac{K\left(1+s / z_{1}\right)\left(1+s / z_{2}\right) \cdots\left(1+s / z_{M}\right)}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right) \cdots\left(1+s / p_{N}\right)}$.
$-z_{1},-z_{2}, \cdots$ are called the "zeros" of $H(s)$.
$-p_{1},-p_{2}, \cdots$ are called the "poles" of $H(s)$.
(In addition, there could be terms like s, s^{2}, \cdots in the numerator.)
We will assume, for simplicity, that the zeros (and poles) are real and distinct.
Construction of Bode plots involves
(a) computing approximate contribution of each pole/zero as a function ω.
(b) combining the various contributions to obtain $|H|$ and $\angle H$ versus ω.

Contribution of a pole: magnitude

Consider $H(s)=\frac{1}{1+s / p} \rightarrow H(j \omega)=\frac{1}{1+j(\omega / p)},|H(j \omega)|=\frac{1}{\sqrt{1+(\omega / p)^{2}}}$.

Contribution of a pole: magnitude

Consider $H(s)=\frac{1}{1+s / p} \rightarrow H(j \omega)=\frac{1}{1+j(\omega / p)},|H(j \omega)|=\frac{1}{\sqrt{1+(\omega / p)^{2}}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.

Contribution of a pole: magnitude

Consider $H(s)=\frac{1}{1+s / p} \rightarrow H(j \omega)=\frac{1}{1+j(\omega / p)},|H(j \omega)|=\frac{1}{\sqrt{1+(\omega / p)^{2}}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{1}{\omega / p}=\frac{p}{\omega} \rightarrow|H|=20 \log p-20 \log \omega(\mathrm{~dB})$

Contribution of a pole: magnitude

Consider $H(s)=\frac{1}{1+s / p} \rightarrow H(j \omega)=\frac{1}{1+j(\omega / p)},|H(j \omega)|=\frac{1}{\sqrt{1+(\omega / p)^{2}}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{1}{\omega / p}=\frac{p}{\omega} \rightarrow|H|=20 \log p-20 \log \omega(\mathrm{~dB})$
Consider two values of $\omega: \omega_{1}$ and $10 \omega_{1}$.
$|H|_{1}=20 \log p-20 \log \omega_{1}(\mathrm{~dB})$
$|H|_{2}=20 \log p-20 \log \left(10 \omega_{1}\right)(\mathrm{dB})$

Contribution of a pole: magnitude

Consider $H(s)=\frac{1}{1+s / p} \rightarrow H(j \omega)=\frac{1}{1+j(\omega / p)},|H(j \omega)|=\frac{1}{\sqrt{1+(\omega / p)^{2}}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{1}{\omega / p}=\frac{p}{\omega} \rightarrow|H|=20 \log p-20 \log \omega(\mathrm{~dB})$
Consider two values of $\omega: \omega_{1}$ and $10 \omega_{1}$.
$|H|_{1}=20 \log p-20 \log \omega_{1}(\mathrm{~dB})$
$|H|_{2}=20 \log p-20 \log \left(10 \omega_{1}\right)(\mathrm{dB})$
$|H|_{1}-|H|_{2}=-20 \log \frac{\omega_{1}}{10 \omega_{1}}=20 \mathrm{~dB}$.

Contribution of a pole: magnitude

Consider $H(s)=\frac{1}{1+s / p} \rightarrow H(j \omega)=\frac{1}{1+j(\omega / p)},|H(j \omega)|=\frac{1}{\sqrt{1+(\omega / p)^{2}}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{1}{\omega / p}=\frac{p}{\omega} \rightarrow|H|=20 \log p-20 \log \omega(\mathrm{~dB})$
Consider two values of $\omega: \omega_{1}$ and $10 \omega_{1}$.
$|H|_{1}=20 \log p-20 \log \omega_{1}(\mathrm{~dB})$
$|H|_{2}=20 \log p-20 \log \left(10 \omega_{1}\right)(\mathrm{dB})$
$|H|_{1}-|H|_{2}=-20 \log \frac{\omega_{1}}{10 \omega_{1}}=20 \mathrm{~dB}$.
$\rightarrow|H|$ versus ω has a slope of $-20 \mathrm{~dB} /$ decade.
Note that, at $\omega=p$, the actual value of $|H|$ is $1 / \sqrt{2}$ (i.e., -3 dB).

Contribution of a pole: phase

Consider $H(s)=\frac{1}{1+s / p}=\frac{1}{1+j(\omega / p)} \rightarrow \angle H=-\tan ^{-1}\left(\frac{\omega}{p}\right)$

Contribution of a pole: phase

Consider $H(s)=\frac{1}{1+s / p}=\frac{1}{1+j(\omega / p)} \rightarrow \angle H=-\tan ^{-1}\left(\frac{\omega}{p}\right)$
Asymptote 1: $\quad \omega \ll p($ say,$\omega<p / 10): \angle H=0$.

Contribution of a pole: phase

Consider $H(s)=\frac{1}{1+s / p}=\frac{1}{1+j(\omega / p)} \rightarrow \angle H=-\tan ^{-1}\left(\frac{\omega}{p}\right)$
Asymptote 1: $\quad \omega \ll p($ say,$\omega<p / 10): \angle H=0$.
Asymptote 2: $\quad \omega \gg p($ say,$\omega>10 p): \angle H=-\pi / 2$.

Contribution of a pole: phase

Consider $H(s)=\frac{1}{1+s / p}=\frac{1}{1+j(\omega / p)} \rightarrow \angle H=-\tan ^{-1}\left(\frac{\omega}{p}\right)$
Asymptote 1: $\quad \omega \ll p($ say,$\omega<p / 10): \angle H=0$.
Asymptote 2: $\quad \omega \gg p($ say,$\omega>10 p): \angle H=-\pi / 2$.
Asymptote 3: For $p / 10<\omega<10 p, \angle H$ is assumed to vary linearly with $\log \omega$
\rightarrow at $\omega=p, \angle H=-\pi / 4$ (which is also the actual value of $\angle H$).

Contribution of a zero: magnitude

Consider $H(s)=1+s / z \rightarrow H(j \omega)=1+j(\omega / z),|H(j \omega)|=\sqrt{1+(\omega / z)^{2}}$.

Contribution of a zero: magnitude

Consider $H(s)=1+s / z \rightarrow H(j \omega)=1+j(\omega / z),|H(j \omega)|=\sqrt{1+(\omega / z)^{2}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.

Contribution of a zero: magnitude

Consider $H(s)=1+s / z \rightarrow H(j \omega)=1+j(\omega / z),|H(j \omega)|=\sqrt{1+(\omega / z)^{2}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{\omega}{z} \rightarrow|H|=20 \log \omega-20 \log z(d B)$

Contribution of a zero: magnitude

Consider $H(s)=1+s / z \rightarrow H(j \omega)=1+j(\omega / z),|H(j \omega)|=\sqrt{1+(\omega / z)^{2}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{\omega}{z} \rightarrow|H|=20 \log \omega-20 \log z(d B)$
Consider two values of $\omega: \omega_{1}$ and $10 \omega_{1}$.
$|H|_{1}=20 \log \omega_{1}-20 \log z(d B)$
$|H|_{2}=20 \log \left(10 \omega_{1}\right)-20 \log z(d B)$

Contribution of a zero: magnitude

Consider $H(s)=1+s / z \rightarrow H(j \omega)=1+j(\omega / z),|H(j \omega)|=\sqrt{1+(\omega / z)^{2}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{\omega}{z} \rightarrow|H|=20 \log \omega-20 \log z(d B)$
Consider two values of $\omega: \omega_{1}$ and $10 \omega_{1}$.
$|H|_{1}=20 \log \omega_{1}-20 \log z(d B)$
$|H|_{2}=20 \log \left(10 \omega_{1}\right)-20 \log z(d B)$
$|H|_{1}-|H|_{2}=20 \log \frac{\omega_{1}}{10 \omega_{1}}=-20 \mathrm{~dB}$.

Contribution of a zero: magnitude

Consider $H(s)=1+s / z \rightarrow H(j \omega)=1+j(\omega / z),|H(j \omega)|=\sqrt{1+(\omega / z)^{2}}$.
Asymptote 1: $\quad \omega \ll p:|H| \rightarrow 1,20 \log |H|=0 \mathrm{~dB}$.
Asymptote 2: $\quad \omega \gg p:|H| \rightarrow \frac{\omega}{z} \rightarrow|H|=20 \log \omega-20 \log z(d B)$
Consider two values of $\omega: \omega_{1}$ and $10 \omega_{1}$.
$|H|_{1}=20 \log \omega_{1}-20 \log z(d B)$
$|H|_{2}=20 \log \left(10 \omega_{1}\right)-20 \log z(d B)$
$|H|_{1}-|H|_{2}=20 \log \frac{\omega_{1}}{10 \omega_{1}}=-20 \mathrm{~dB}$.
$\rightarrow|H|$ versus ω has a slope of $+20 \mathrm{~dB} /$ decade.
Note that, at $\omega=z$, the actual value of $|H|$ is $\sqrt{2}$ (i.e., 3 dB).

Contribution of a zero: phase

Consider $H(s)=1+s / z=1+j(\omega / z) \rightarrow \angle H=\tan ^{-1}\left(\frac{\omega}{z}\right)$

Contribution of a zero: phase

Consider $H(s)=1+s / z=1+j(\omega / z) \rightarrow \angle H=\tan ^{-1}\left(\frac{\omega}{z}\right)$

Asymptote 1: $\quad \omega \ll z($ say,$\omega<z / 10): \angle H=0$.

Contribution of a zero: phase

Consider $H(s)=1+s / z=1+j(\omega / z) \rightarrow \angle H=\tan ^{-1}\left(\frac{\omega}{z}\right)$

Asymptote 1: $\quad \omega \ll z$ (say, $\omega<z / 10$): $\angle H=0$.
Asymptote 2: $\quad \omega \gg z($ say,$\omega>10 z): \angle H=\pi / 2$.

Consider $H(s)=1+s / z=1+j(\omega / z) \rightarrow \angle H=\tan ^{-1}\left(\frac{\omega}{z}\right)$

Asymptote 1: $\quad \omega \ll z($ say,$\omega<z / 10): \angle H=0$.
Asymptote 2: $\quad \omega \gg z($ say,$\omega>10 z): \angle H=\pi / 2$.
Asymptote 3: For $z / 10<\omega<10 z, \angle H$ is assumed to vary linearly with $\log \omega$
\rightarrow at $\omega=z, \angle H=\pi / 4$ (which is also the actual value of $\angle H$).

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K($ a constant $)$, and $\angle H=0$.

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K($ a constant $)$, and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $20 \mathrm{~dB} /$ decade, passing through $(1,0)$.

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K($ a constant $)$, and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $20 \mathrm{~dB} /$ decade, passing through $(1,0)$.
$\angle H=\pi / 2$ (irrespective of ω).

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $20 \mathrm{~dB} /$ decade, passing through $(1,0)$.
$\angle H=\pi / 2$ (irrespective of ω).

For $H(s)=s^{2}$, i.e., $H(j \omega)=-\omega^{2},|H|=\omega^{2}$.

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $20 \mathrm{~dB} /$ decade, passing through $(1,0)$.
$\angle H=\pi / 2$ (irrespective of ω).

For $H(s)=s^{2}$, i.e., $H(j \omega)=-\omega^{2},|H|=\omega^{2}$.
$\rightarrow 20 \log |H|=40 \log \omega$,

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $20 \mathrm{~dB} /$ decade, passing through $(1,0)$.
$\angle H=\pi / 2$ (irrespective of ω).

For $H(s)=s^{2}$, i.e., $H(j \omega)=-\omega^{2},|H|=\omega^{2}$.
$\rightarrow 20 \log |H|=40 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $40 \mathrm{~dB} /$ decade,
passing through (1,0).

Contribution of K (constant), s, and s^{2}

For $H(s)=K, 20 \log |H|=20 \log K$ (a constant), and $\angle H=0$.

For $H(s)=s$, i.e., $H(j \omega)=j \omega,|H|=\omega$.
$\rightarrow 20 \log |H|=20 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $20 \mathrm{~dB} /$ decade, passing through $(1,0)$.
$\angle H=\pi / 2$ (irrespective of ω).

For $H(s)=s^{2}$, i.e., $H(j \omega)=-\omega^{2},|H|=\omega^{2}$.
$\rightarrow 20 \log |H|=40 \log \omega$,
i.e., a straight line in the $|H|(\mathrm{dB})-\log \omega$ plane with a slope of $40 \mathrm{~dB} /$ decade,
passing through $(1,0)$.
$\angle H=\pi$ (irrespective of ω).

Combining different terms

Consider $H(s)=H_{1}(s) \times H_{2}(s)$.

Combining different terms

Consider $H(s)=H_{1}(s) \times H_{2}(s)$.
Magnitude:
$|H(j \omega)|=\left|H_{1}(j \omega)\right| \times\left|H_{2}(j \omega)\right|$.
$20 \log |H|=20 \log \left|H_{1}\right|+20 \log \left|H_{2}\right|$.

Combining different terms

Consider $H(s)=H_{1}(s) \times H_{2}(s)$.
Magnitude:
$|H(j \omega)|=\left|H_{1}(j \omega)\right| \times\left|H_{2}(j \omega)\right|$.
$20 \log |H|=20 \log \left|H_{1}\right|+20 \log \left|H_{2}\right|$.
\rightarrow In the Bode magnitude plot, the contributions due to H_{1} and H_{2} simply get added.

Combining different terms

Consider $H(s)=H_{1}(s) \times H_{2}(s)$.
Magnitude:
$|H(j \omega)|=\left|H_{1}(j \omega)\right| \times\left|H_{2}(j \omega)\right|$.
$20 \log |H|=20 \log \left|H_{1}\right|+20 \log \left|H_{2}\right|$.
\rightarrow In the Bode magnitude plot, the contributions due to H_{1} and H_{2} simply get added.

Phase:

$H_{1}(j \omega)$ and $H_{2}(j \omega)$ are complex numbers.
At a given ω, let $H_{1}=K_{1} \angle \alpha=K_{1} e^{j \alpha}$, and $H_{2}=K_{2} \angle \beta=K_{2} e^{j \beta}$.
Then, $H_{1} H_{2}=K_{1} K_{2} e^{j(\alpha+\beta)}=K_{1} K_{2} \angle(\alpha+\beta)$.
i.e., $\angle H=\angle H_{1}+\angle H_{2}$.

Combining different terms

Consider $H(s)=H_{1}(s) \times H_{2}(s)$.
Magnitude:
$|H(j \omega)|=\left|H_{1}(j \omega)\right| \times\left|H_{2}(j \omega)\right|$.
$20 \log |H|=20 \log \left|H_{1}\right|+20 \log \left|H_{2}\right|$.
\rightarrow In the Bode magnitude plot, the contributions due to H_{1} and H_{2} simply get added.

Phase:

$H_{1}(j \omega)$ and $H_{2}(j \omega)$ are complex numbers.
At a given ω, let $H_{1}=K_{1} \angle \alpha=K_{1} e^{j \alpha}$, and $H_{2}=K_{2} \angle \beta=K_{2} e^{j \beta}$.
Then, $H_{1} H_{2}=K_{1} K_{2} e^{j(\alpha+\beta)}=K_{1} K_{2} \angle(\alpha+\beta)$.
i.e., $\angle H=\angle H_{1}+\angle H_{2}$.

In the Bode phase plot, the contributions due to H_{1} and H_{2} also get added.

Combining different terms

Consider $H(s)=H_{1}(s) \times H_{2}(s)$.
Magnitude:
$|H(j \omega)|=\left|H_{1}(j \omega)\right| \times\left|H_{2}(j \omega)\right|$.
$20 \log |H|=20 \log \left|H_{1}\right|+20 \log \left|H_{2}\right|$.
\rightarrow In the Bode magnitude plot, the contributions due to H_{1} and H_{2} simply get added.

Phase:

$H_{1}(j \omega)$ and $H_{2}(j \omega)$ are complex numbers.
At a given ω, let $H_{1}=K_{1} \angle \alpha=K_{1} e^{j \alpha}$, and $H_{2}=K_{2} \angle \beta=K_{2} e^{j \beta}$.
Then, $H_{1} H_{2}=K_{1} K_{2} e^{j(\alpha+\beta)}=K_{1} K_{2} \angle(\alpha+\beta)$.
i.e., $\angle H=\angle H_{1}+\angle H_{2}$.

In the Bode phase plot, the contributions due to H_{1} and H_{2} also get added.
The same reasoning applies to more than two terms as well.

Combining different terms: example

Consider $H(s)=\frac{10 s}{\left(1+s / 10^{2}\right)\left(1+s / 10^{5}\right)}$.

Combining different terms: example

Consider $H(s)=\frac{10 s}{\left(1+s / 10^{2}\right)\left(1+s / 10^{5}\right)}$.
Let $H(s)=H_{1}(s) H_{2}(s) H_{3}(s) H_{4}(s)$, where
$H_{1}(s)=10$,
$H_{2}(s)=s$,
$H_{3}(s)=\frac{1}{1+s / p_{1}}, p_{1}=10^{2} \mathrm{rad} / \mathrm{s}$,
$H_{4}(s)=\frac{1}{1+s / p_{2}}, p_{2}=10^{5} \mathrm{rad} / \mathrm{s}$.

Combining different terms: example

Consider $H(s)=\frac{10 s}{\left(1+s / 10^{2}\right)\left(1+s / 10^{5}\right)}$.
Let $H(s)=H_{1}(s) H_{2}(s) H_{3}(s) H_{4}(s)$, where
$H_{1}(s)=10$,
$H_{2}(s)=s$,
$H_{3}(s)=\frac{1}{1+s / p_{1}}, p_{1}=10^{2} \mathrm{rad} / \mathrm{s}$,
$H_{4}(s)=\frac{1}{1+s / p_{2}}, p_{2}=10^{5} \mathrm{rad} / \mathrm{s}$.
We can now plot the magnitude and phase of $H_{1}, H_{2}, H_{3}, H_{4}$ individually versus ω and then simply add them to obtain $|H|$ and $\angle H$.

Magnitude plot ($|H|$ in dB)

Magnitude plot ($|H|$ in dB)

Magnitude plot $(|H|$ in dB)

Phase plot

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
* Near $\omega=p$ (or $\omega=z$), there is some error.
* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
* Near $\omega=p$ (or $\omega=z$), there is some error.
* If two poles p_{1} and p_{2} are close to each other (say, separated by less than a decade in ω), the error becomes larger (next slide).

How good are the approximations?

* As we have seen, the contribution of a pole to the magnitude and phase plots is well represented by the asymptotes when $\omega \ll p$ or $\omega \gg p$ (similarly for a zero).
* Near $\omega=p$ (or $\omega=z$), there is some error.
* If two poles p_{1} and p_{2} are close to each other (say, separated by less than a decade in ω), the error becomes larger (next slide).
* When the poles and zeros are not sufficiently separated, the Bode approximation should be used only for a rough estimate, follwed by a numerical calculation. However, even in such cases, it does give a good idea of the asymptotic magnitude and phase plots, which is valuable in amplifier design.

How good are the approximations?

Consider $H(s)=\frac{10 s}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)}$.

How good are the approximations?

Consider $H(s)=\frac{10 s}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)}$.

How good are the approximations?

Consider $H(s)=\frac{10 s}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)}$.

How good are the approximations?

$$
\text { Consider } H(s)=\frac{10 s}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)} .
$$

How good are the approximations?

Consider $H(s)=\frac{10 s}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)}$.

How good are the approximations?

Consider $H(s)=\frac{10 s}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)}$.

