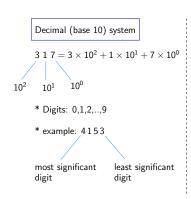
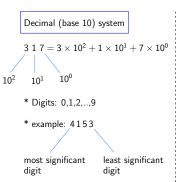
EE101: Digital circuits (Part 3)



M. B. Patil mbpatil@ee.iitb.ac.in

mopatil@ee.litb.ac.in
www.ee.iitb.ac.in/~sequel


Department of Electrical Engineering Indian Institute of Technology Bombay

Decimal (base 10) system
$$\begin{array}{c|c} 3\ 1\ 7 = 3\times 10^2 + 1\times 10^1 + 7\times 10^0 \\ & & \\ 10^2 & 10^1 & 10^0 \end{array}$$

Binary (base 2) system

1 0 1 1 1 = 1 × 2^4 + 0 × 2^3 + 1 × 2^2 + 1 × 2^1 + 1 × 2^0 - 23 (in decimal)

Binary (base 2) system

- * Bits: 0,1
- * example: 100110

most significant least significant bit (MSB) bit (LSB)

Decimal (base 10) system

	10^{4}	10^{3}	10^{2}	10^{1}	10°	weight
_		3	1	7	9	first number
		8	0	1	5	second number
	1		 	1		carry
	1	1	1	9	4	sum

Decimal (base 10) system

10)+ ;	10°	10-	101	100	weight
		3	1	7	9	first number
Т.		8	0	1	5	second number
1			! ! ! !	1		carry
1		1	1	9	4	sum

	2 ⁴	2 ³	2 ²	2^1	2 ⁰	weight
		1	0	1	1	first number (dec. 11)
Т		1	1	1	0	second number (dec. 14
	1	1	1	 	 	carry
	1	1	0	0	1	sum (dec. 25)

Decimal (base 10) system

	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰	weight
		3	1	7	9	first number
_		8	0	1	5	second num
	1		 	1		carry
	1	1	1	9	4	sum

*
$$0+1=1+0=1 \to S=1, \ C=0$$

Decimal (base 10) system

	10 ⁴	10 ³	10 ²	10^1	10 ⁰	weight
		3	1	7	9	first number
_		8	0	1	5	second numb
	1		 	1	! !	carry
	1	1	1	9	4	sum

*
$$0+1=1+0=1 \to S=1, \ C=0$$

*
$$1 + 1 = 10 \text{ (dec. 2)} \rightarrow S = 0, C = 1$$

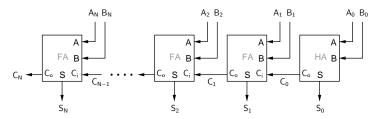
Decimal (base 10) system

10 ⁴	10^{3}	10 ²	10^1	10 ⁰	weight
	3	1	7	9	first number
	8	0	1	5	second number
1		! ! !	1	! !	carry
1	1	1	9	4	sum

*
$$0 + 1 = 1 + 0 = 1 \rightarrow S = 1$$
, $C = 0$

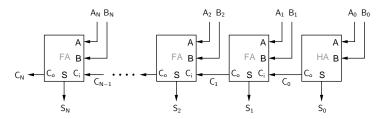
*
$$1 + 1 = 10 \text{ (dec. 2)} \rightarrow S = 0, C = 1$$

*
$$1 + 1 + 1 = 11$$
 (dec. 3) $\rightarrow S = 1, C = 1$

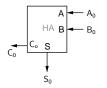

			CAAII	ipie		
	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	weight
_		1	0	1	1	first number
7		1	1	1	0	second number
	1	1	1			carry
	1	1	0	0	1	sum

		exan	ple					general p	oroce	dure		
2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	weight		; 2 ^N	1	; 2 ²	2^1	2 ⁰	weight
+	1	0	1	1	first number	,	A _N		A ₂	A_1	A ₀	first number
	1	1	1	0	second number	+	B _N		B ₂	B ₁	B ₀	second number
1	1	1			carry	C _N	C _{N-1}		C ₁	C ₀		carry
1	1	0	0	1	sum		S _N		S ₂	S ₁	S ₀	sum

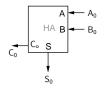
			exan	nple						general p	roce	dure		
	2 ⁴	2 ³	2 ²	2 ¹	; 2 ⁰	weight			2 ^N	! !	2 ²	2^1	2 ⁰	weight
		1	0	1	1	first number	+		A _N		A ₂	A_1	A ₀	first number
_		1	1	1	0	second number		-	B _N		B ₂	B ₁	B ₀	second number
	1	1	1			carry		C_N	C_{N-1}		C ₁	C ₀		carry
	1	1	0	0	1	sum			S _N		S ₂	S ₁	S ₀	sum

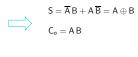


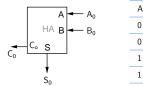
	exam	ıple					9	general p	roce	dure		
2 ³	2 ²	2 ¹	2 ⁰	weight			2 ^N		2 ²	2 ¹	2 ⁰	weight
1	0	1	1	first number	_		A _N		A_2	A_1	A ₀	first number
1	1	1	0	second number			B _N		B ₂	B ₁	B ₀	second number
1	1			carry		C_N	C_{N-1}		C_1	C_0		carry
1	0	0	1	sum			S _N		S ₂	S ₁	S ₀	sum
	2 ³ 1 1	2 ³ 2 ² 1 0 1 1 1 1	1 0 1 1 1 1 1 1	2 ³ 2 ² 2 ¹ 2 ⁰ 1 0 1 1 1 1 0 0 1 1 1	2 ³ 2 ² 2 ¹ 2 ⁰ weight 1 0 1 1 first number 1 1 1 0 second number 1 1 carry	2 ³ 2 ² 2 ¹ 2 ⁰ weight 1 0 1 1 first number 1 1 1 0 second number 1 1 1 carry	2 ³ 2 ² 2 ¹ 2 ⁰ weight 1 0 1 1 first number 1 1 1 0 second number 1 1 1 carry C _N	2³ 2² 2¹ 20 weight 2N 1 0 1 1 first number + A _N 1 1 1 0 second number + B _N 1 1 carry C _N C _{N-1}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$



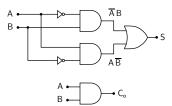
* The rightmost block (corresponding to the LSB) adds two bits A_0 and B_0 ; there is no input carry. This block is called a "half adder."

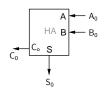

			exam	nple						general p	roce	dure		
	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	weight			2 ^N	! !	2 ²	2 ¹	2 ⁰	weight
		1	0	1	1	first number			A _N		A ₂	A_1	A ₀	first number
Т		1	1	1	0	second number	_	-	B _N		B ₂	B ₁	B ₀	second number
	1	1	1			carry		C_N	C_{N-1}		C ₁	C ₀		carry
	1	1	0	0	1	sum			S _N		S ₂	S ₁	S ₀	sum


- * The rightmost block (corresponding to the LSB) adds two bits A_0 and B_0 ; there is no input carry. This block is called a "half adder."
- * Each of the subsequent blocks adds three bits (A_i, B_i, C_{i-1}) and is called a "full adder."

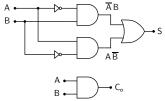


В	S	C _o
0	0	0
1	1	0
0	1	0
1	0	1
	0 1 0	0 0 1 1 0 1

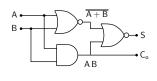



Α	В	S	C_o
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Implementation 1



Α	В	S	C_o
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1


$$S = \overline{A}B + A\overline{B} = A \oplus B$$

$$C_o = AB$$

Implementation 2

Full adder implementation

Α	В	C_i	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full adder implementation

Α	В	C_i	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

	Α	В			
	Ci	00	01	11	10
S:	0	0	1	0	1
	1	1	0	1	0

 $S = \overline{A}\,B\,\overline{C}_i + A\,\overline{B}\,\overline{C}_i + \overline{A}\,\overline{B}\,C_i + A\,B\,C_i$

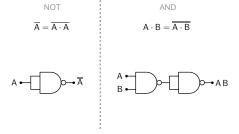
Full adder implementation

Α	В	C_i	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

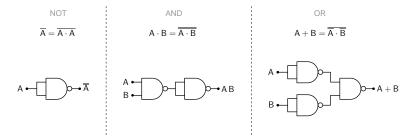
	Α	В			
	Ci	00	01	11	10
S:	0	0	1	0	1
	1	1	0	1	0

$$S = \overline{A}\,B\,\overline{C}_i + A\,\overline{B}\,\overline{C}_i + \overline{A}\,\overline{B}\,C_i + A\,B\,C_i$$

$$C_o = A\,B + B\,C_i + A\,C_i$$


The NOT, AND, OR operations can be realised by using only NAND gates:

NOT


$$\overline{A} = \overline{A \cdot A}$$

$$A \leftarrow \Box \bigcirc \frown \overline{A}$$

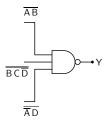
The NOT, AND, OR operations can be realised by using only NAND gates:

The NOT, AND, OR operations can be realised by using only NAND gates:

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A\cdot B=\overline{\overline{A\cdot B}}$$

$$A + B = \overline{A \cdot E}$$

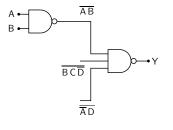

$$Y = \overline{\overline{A\,B} \cdot \overline{B\,C\,\overline{D}} \cdot \overline{A}\,D}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$A\cdot B=\overline{\overline{A\cdot B}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

$$Y = \overline{\overline{A}\,\overline{B}} \cdot \overline{\overline{B}\,\overline{C}\,\overline{D}} \cdot \overline{\overline{A}\,\overline{D}}$$

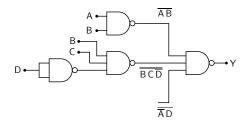


$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A \cdot B}}$$

$$Y = \overline{\overline{A}\,\overline{B}} \cdot \overline{\overline{B}\,\overline{C}\,\overline{D}} \cdot \overline{\overline{A}\,\overline{D}}$$

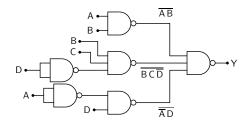


$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$Y = \overline{\overline{A}\,\overline{B}} \cdot \overline{\overline{B}\,\overline{C}\,\overline{D}} \cdot \overline{\overline{A}\,\overline{D}}$$



$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A \cdot B}}$$

$$Y = \overline{\overline{A\,B} \cdot \overline{B\,C\,\overline{D}} \cdot \overline{A}\,D}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

 $Implement \ Y = A + B + C \ using \ only \ 2\text{-input NAND gates}.$

 $\label{eq:matter} \text{Implement } Y = A + B + C \text{ using only 2-input NAND gates}.$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\mathsf{A} \cdot \mathsf{B} = \overline{\overline{\mathsf{A} \cdot \mathsf{B}}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

 $\label{eq:matter} \text{Implement } Y = A + B + C \text{ using only 2-input NAND gates}.$

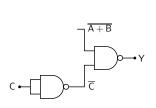
$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} \cdot \mathsf{A}}$$

$$\mathsf{A} \cdot \mathsf{B} = \overline{\overline{\mathsf{A} \cdot \mathsf{B}}}$$

$$A+B=\overline{\overline{A}\cdot\overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{\overline{(A + B)} \cdot \overline{C}}$$

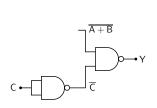


$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A \cdot B}}$$

$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot C}$$

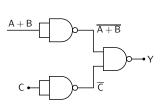


$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$
$$= \overline{\overline{A \cdot \overline{B} \cdot \overline{C}}}$$

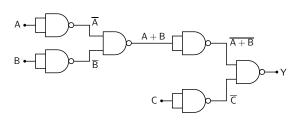


$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

$$Y = (A + B) + C$$
$$= \overline{\overline{(A + B)} \cdot \overline{C}}$$
$$= \overline{\overline{\overline{A} \cdot \overline{B}} \cdot \overline{C}}$$



$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{\overline{A \cdot B}}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

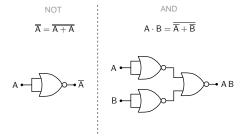
$$Y = (A + B) + C$$
$$= \overline{(A + B) \cdot \overline{C}}$$
$$= \overline{\overline{\overline{A \cdot \overline{B}} \cdot \overline{C}}}$$

$$\overline{A} = \overline{A \cdot A}$$

$$A \cdot B = \overline{A \cdot B}$$

$$A + B = \overline{\overline{A} \cdot \overline{B}}$$

The NOT, AND, OR operations can be realised by using only NOR gates:

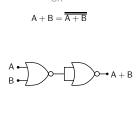

The NOT, AND, OR operations can be realised by using only NOR gates:

NOT

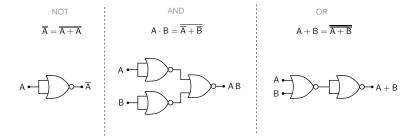
$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$A \leftarrow \overline{A}$$

The NOT, AND, OR operations can be realised by using only NOR gates:



The NOT, AND, OR operations can be realised by using only NOR gates:


NOT AND
$$\overline{A} = \overline{A} + \overline{A}$$

$$A \cdot B = \overline{\overline{A}} + \overline{\overline{B}}$$

$$A \cdot B = \overline{A} + \overline{B}$$

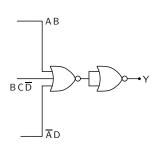
The NOT, AND, OR operations can be realised by using only NOR gates:

Implementation of functions with only NOR (or only NAND) gates is more than a theoretical curiosity. There are chips which provide a "sea of gates" (say, NOR gates) which can be configured by the user (through programming) to implement functions.

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$A + B = \overline{A + B}$$

$$A\cdot B=\overline{\overline{A}+\overline{B}}$$

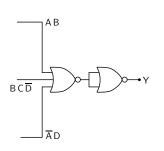

$$Y = \overline{AB + BC\overline{D} + \overline{A}D}$$

$$\overline{\mathsf{A}} = \overline{\mathsf{A} + \mathsf{A}}$$

$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A} + \overline{B}}$$

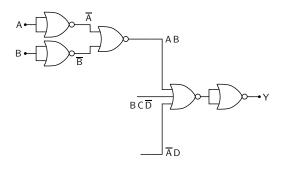
$$Y = \overline{AB + BC\overline{D} + \overline{A}D}$$



$$\overline{A} = \overline{A + A}$$

$$A + B = \overline{\overline{A + B}}$$

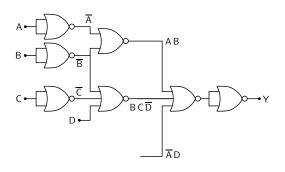
$$A \cdot B = \overline{\overline{A + B}}$$


$$Y = \overline{A B + B C \overline{D} + \overline{A} D}$$
$$= \overline{(\overline{A} + \overline{B}) + (\overline{B} + \overline{C} + D) + (A + \overline{D})}$$

$$\overline{A} = \overline{A + A}$$

$$A + B = \overline{\overline{A + B}}$$

$$Y = \overline{AB + BC\overline{D} + \overline{A}D}$$
$$= \overline{(\overline{A} + \overline{B}) + (\overline{B} + \overline{C} + D) + (A + \overline{D})}$$

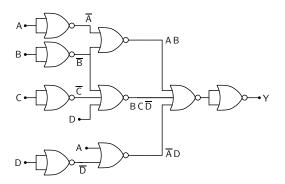


$$\overline{A} = \overline{A + A}$$

$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A} + \overline{B}}$$

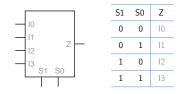
$$Y = \overline{A B + B C \overline{D} + \overline{A} D}$$
$$= \overline{(\overline{A} + \overline{B}) + (\overline{B} + \overline{C} + D) + (A + \overline{D})}$$

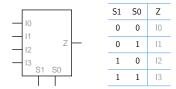


$$\overline{A} = \overline{A + A}$$

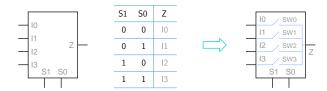
$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A + B}}$$

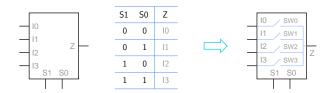

$$Y = \overline{AB + BC\overline{D} + \overline{A}D}$$
$$= \overline{(\overline{A} + \overline{B}) + (\overline{B} + \overline{C} + D) + (A + \overline{D})}$$

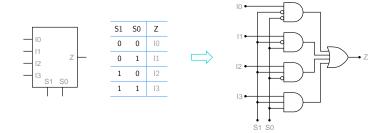


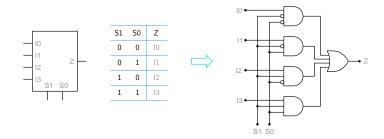
$$\overline{A} = \overline{A + A}$$


$$A + B = \overline{\overline{A + B}}$$

$$A \cdot B = \overline{\overline{A + B}}$$

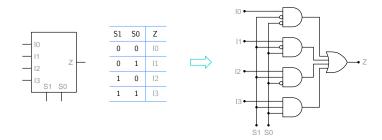



* A multiplexer or data selector (MUX in short) selects one of the 2^N input lines, i.e., it makes the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input lines to the output.



* A multiplexer or data selector (MUX in short) selects one of the 2^N input lines, i.e., it makes the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input lines to the output.

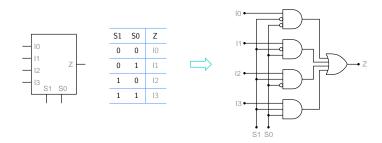
- * A multiplexer or data selector (MUX in short) selects one of the 2^N input lines, i.e., it makes the ouput Z equal to one of the input lines. In other words, a MUX routes one of the input lines to the output.
- * Conceptually, a MUX may be thought of as 2^N switches. For a given combination of the select inputs, only one of the switches closes (makes contact), and the others are open.



st A 4-to-1 MUX can be implemented as,

$$Z = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0.$$

For a given combination of S_1 and S_0 , only one of the terms survives (the others being 0). For example, with $S_1=0$, $S_0=1$, we have $Z=I_1$.

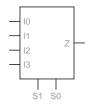


* A 4-to-1 MUX can be implemented as,

$$Z = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0.$$

For a given combination of S_1 and S_0 , only one of the terms survives (the others being 0). For example, with $S_1=0$, $S_0=1$, we have $Z=I_1$.

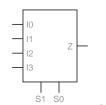
* Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.


* A 4-to-1 MUX can be implemented as,

$$Z = I_0 \, \overline{S_1} \, \overline{S_0} + I_1 \, \overline{S_1} \, S_0 + I_2 \, S_1 \, \overline{S_0} + I_3 \, S_1 \, S_0.$$

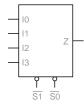
For a given combination of S_1 and S_0 , only one of the terms survives (the others being 0). For example, with $S_1=0$, $S_0=1$, we have $Z=I_1$.

- * Multiplexers are available as ICs, e.g., 74151 is an 8-to-1 MUX.
- * ICs with arrays of multiplexers (and other digital blocks) are also available. These blocks can be configured ("wired") by the user in a programmable manner to realise the functionality of interest.

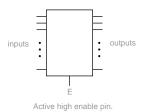

Active high and active low inputs/outputs

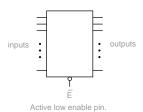
S1	S0	Z
0	0	10
0	1	11
1	0	12
1	1	13

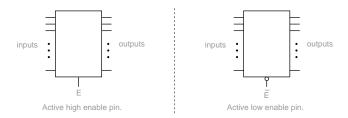
Select inputs are active high.


Active high and active low inputs/outputs

S1	S0	Z
0	0	10
0	1	11
1	0	12
1	1	13


Select inputs are active high.

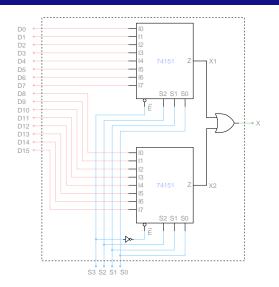




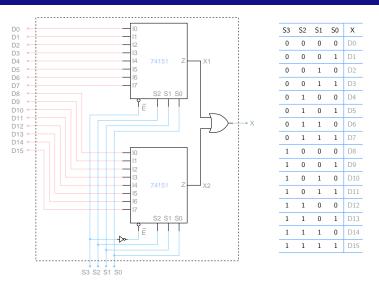
S0	Z
1	10
0	11
1	12
0	13
	1 0 1

Select inputs are active low.

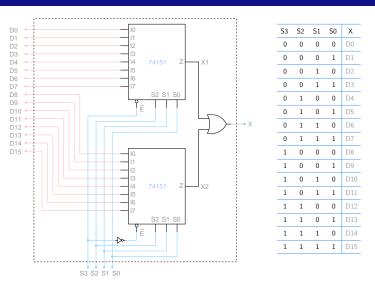
* Many digital ICs have an "Enable" (E) pin. If the Enable pin is active, the IC functions as desired; else, it is "disabled," i.e., the outputs are set to some default values.



- * Many digital ICs have an "Enable" (E) pin. If the Enable pin is active, the IC functions as desired; else, it is "disabled," i.e., the outputs are set to some default values.
- * The Enable pin can be active high or active low.


- * Many digital ICs have an "Enable" (E) pin. If the Enable pin is active, the IC functions as desired; else, it is "disabled," i.e., the outputs are set to some default values.
- * The Enable pin can be active high or active low.
- * If the Enable pin is active low, it is denoted by $\overline{\text{Enable}}$ or $\overline{\text{E}}$. When $\overline{\text{E}}=0$, the IC functions normally; else, it is disabled.

Using two 8-to-1 MUXs to make a 16-to-1 MUX


S3	S2	S1	S0	Х
0	0	0	0	D0
0	0	0	1	D1
0	0	1	0	D2
0	0	1	1	D3
0	1	0	0	D4
0	1	0	1	D5
0	1	1	0	D6
0	1	1	1	D7
1	0	0	0	D8
1	0	0	1	D9
1	0	1	0	D10
1	0	1	1	D11
1	1	0	0	D12
1	1	0	1	D13
1	1	1	0	D14
1	1	1	1	D15

Using two 8-to-1 MUXs to make a 16-to-1 MUX

* When S3 is 0, the upper MUX is enabled, and the lower MUX is disabled (i.e., X2 = 0).

Using two 8-to-1 MUXs to make a 16-to-1 MUX

- * When S3 is 0, the upper MUX is enabled, and the lower MUX is disabled (i.e., X2 = 0).
- * When S3 is 1, the lower MUX is enabled, and the upper MUX is disabled (i.e., X1=0).

Using MUXs to implement logical functions

Implement $X = A \overline{B} \overline{C} D + \overline{A} B \overline{C} \overline{D}$ using a 16-to-1 MUX.

Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	C	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A \, \overline{B} \, \overline{C} \, D = 1$, we want X = 1. $A \, \overline{B} \, \overline{C} \, D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (I9) gets selected.
 - \rightarrow Make I9 = 1.

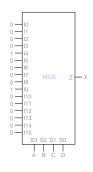
Α	В	C	D	Х	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	0	

- * When $A \, \overline{B} \, \overline{C} \, D = 1$, we want X = 1. $A \, \overline{B} \, \overline{C} \, D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (19) gets selected.
 - \rightarrow Make I9 = 1.

Α	В	C	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A \, \overline{B} \, \overline{C} \, D = 1$, we want X = 1. $A \, \overline{B} \, \overline{C} \, D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (I9) gets selected.
 - \rightarrow Make I9 = 1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make 14 = 1.

Α	В	C	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0


- * When $A \, \overline{B} \, \overline{C} \, D = 1$, we want X = 1. $A \, \overline{B} \, \overline{C} \, D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (I9) gets selected.
 - \rightarrow Make I9 = 1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make I4 = 1.

Α	В	C	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A \, \overline{B} \, \overline{C} \, D = 1$, we want X = 1. $A \, \overline{B} \, \overline{C} \, D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (I9) gets selected.
- \rightarrow Make I9 = 1.
- * Similarly, when $\overline{A} \ B \ \overline{C} \ \overline{D} = 1$, we want X = 1. \rightarrow Make I4 = 1.
- * In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	C	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A \, \overline{B} \, \overline{C} \, D = 1$, we want X = 1. $A \, \overline{B} \, \overline{C} \, D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (I9) gets selected.
 - \rightarrow Make I9 = 1.
- * Similarly, when \overline{A} \overline{B} \overline{C} \overline{D} = 1, we want X = 1. \rightarrow Make I4 = 1.
- * In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	C	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- * When $A \overline{B} \overline{C} D = 1$, we want X = 1. $A \overline{B} \overline{C} D = 1 \rightarrow A = 1$, B = 0, C = 0, D = 1, i.e., the input line corresponding to 1001 (19) gets selected. \rightarrow Make 19 = 1.
- * Similarly, when $\overline{A} B \overline{C} \overline{D} = 1$, we want X = 1. \rightarrow Make |4 = 1.
- * In all other cases, X should be 0.
 → connect all other pins to 0.
- * In this example, since the truth table is organized in terms of *ABCD*, with *A* as the MSB and *D* as the LSB (the same order in which *A*, *B*, *C*, *D* are connected to the select pins), the design is simple: The expected output for 0000, 0001, 0010, etc. is applied to pins I0, I1, I2, etc., respectively.

Α	В	C	Х
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

 $\mbox{Implement } X = A \, \overline{B} \, \overline{C} \, D + \overline{A} \, B \, \overline{C} \, \overline{D} \mbox{ using an 8-to-1 MUX}.$

A B C X 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0
0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0
0 1 0 D 0 1 1 0 1 0 D 1 0 D 1 0 1 0 1 1 0 0
0 1 1 0 1 0 0 D 1 0 1 0 1 1 0 0
1 0 0 D 1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 1 0 0
1 1 1 0

* When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.

(□) (□) (□) (□) (□) (□) (□)

Implement $X = A \, \overline{B} \, \overline{C} \, D + \overline{A} \, B \, \overline{C} \, \overline{D}$ using an 8-to-1 MUX.

Α	В	C	Х
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

* When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.

4□ > 4□ > 4 = > 4 = > = 900

Α	В	C	Х			
0	0	0	0	-10		
0	0	1	0	- 11		
0	1	0	D	12		
0	1	1	0	D — 14	MUX	
1	0	0	D	- 15		
1	0	1	0	16		
1	1	0	0	17	S2 S1 S0	
1	1	1	0		A B C	

- * When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C}=1$, i.e., A=0, B=1, C=0, we have $X=\overline{D}$. \rightarrow connect the input line corresponding to 010 (12) to \overline{D} .

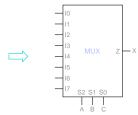
A B C X 0 0 0 0 0 0 1 0 0 1 0 \overline{\textsf{D}} 0 1 1 0 1 0 0 \overline{\textsf{D}} 1 1 0 0 1 1 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 D 0 1 1 0 1 0 D 1 0 D 1 0 D 1 0 1 0
0 1 1 0 1 0 0 D 1 0 1 0 1 1 0 0
1 0 0 D 1 0 1 0 1 1 0 0
1 0 1 0 1 1 0 0
1 1 0 0
1 1 1 0

- * When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C}=1$, i.e., A=0, B=1, C=0, we have $X=\overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .

Α	В	C	Х
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

- * When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A}B\overline{C}=1$, i.e., A=0, B=1, C=0, we have $X=\overline{D}$. \rightarrow connect the input line corresponding to 010 (12) to \overline{D} .
- * In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	C	Х
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0


- * When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A} \, \overline{B} \, \overline{C} = 1$, i.e., A = 0, B = 1, C = 0, we have $X = \overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .
- In all other cases, X should be 0.
 → connect all other pins to 0.

Α	В	C	Х
0	0	0	0
0	0	1	0
0	1	0	D
0	1	1	0
1	0	0	D
1	0	1	0
1	1	0	0
1	1	1	0

- * When $A \overline{B} \overline{C} = 1$, i.e., A = 1, B = 0, C = 0, we have X = D. \rightarrow connect the input line corresponding to 100 (I4) to D.
- * When $\overline{A} B \overline{C} = 1$, i.e., A = 0, B = 1, C = 0, we have $X = \overline{D}$. \rightarrow connect the input line corresponding to 010 (I2) to \overline{D} .
- * In all other cases, X should be 0.
 → connect all other pins to 0.
- * Home work: Implement the same function (X) with S2 = B, S1 = C, S0 = D.

Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Implement the function \boldsymbol{X} with the following truth table using an 8-to-1 MUX.

A B C I 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0
0 1 0
0 1 1 (
0 1 1
1 0 0 0
1 0 0
1 0 1 0
1 0 1
1 1 0 0
1 1 0 1
1 1 1 (
1 1 1 1

* When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.

Implement the function \boldsymbol{X} with the following truth table using an 8-to-1 MUX.

B C D X
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

* When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.

Implement the function \boldsymbol{X} with the following truth table using an 8-to-1 MUX.

Α	В	С	D	Х			
0	0	0	0	1			
0	0	0	1	0			
0	0	1	0	1			
0	0	1	1	1			
0	1	0	0	0		Ē − 10	
0	1	0	1	0		l1	
0	1	1	0	0		12	
0	1	1	1	1		13	MUX 2
1	0	0	0	1	V	— 15	
1	0	0	1	0		-16	
1	0	1	0	1		17 S2	S1 S0
1	0	1	1	1		I A	B C
1	1	0	0	0			
1	1	0	1	0			
1	1	1	0	0			
1	1	1	1	0			

* When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.

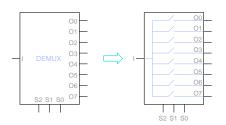
A B C 0 0	D 0	Х
	0	
		1
0 0 0	1	0
0 0 1	0	1
0 0 1	1	1
0 1 0	0	0
0 1 0	1	0
0 1 1	0	0
0 1 1	1	1
1 0 0	0	1
1 0 0	1	0
1 0 1	0	1
1 0 1	1	1
1 1 0	0	0
1 1 0	1	0
1 1 1	0	0
1 1 1	1	0

- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.

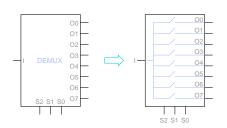
A B C D 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1	
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1	Х
0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1	1
0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0	0
0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1	1
0 1 0 1 0 1 1 0 0 1 1 1	1
0 1 1 0 0 1 1 1	0
0 1 1 1	0
	0
1 0 0 0	1
	1
1 0 0 1	0
1 0 1 0	1
1 0 1 1	1
1 1 0 0	0
1 1 0 1	0
1 1 1 0	0
1 1 1 1	0

- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.

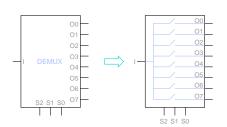
Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0


- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.

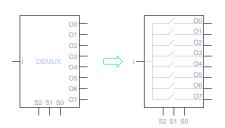
Α	В	C	D	Х
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0


- * When ABC = 000, $X = \overline{D} \rightarrow 10 = \overline{D}$.
- * When ABC = 001, $X = 1 \rightarrow 11 = 1$, and so on.
- * Home work: repeat with S2 = B, S1 = C, S0 = D.

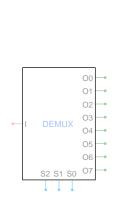
S2	S1	S0	00	01	02	О3	04	O5	06	07
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	Ι	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	- 1	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	-

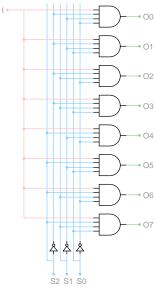


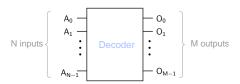
S2	S1	S0	00	01	02	О3	04	O5	O6	07
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	- 1	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	I


* A demultiplexer takes a *single* input (I) and *routes* it to one of the output lines (O0, O1, \cdots).

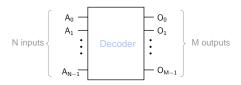
S2	S1	S0	00	01	02	О3	04	O5	06	07
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	- 1	0	0
1	1	0	0	0	0	0	0	0	I	0
1	1	1	0	0	0	0	0	0	0	I


- * A demultiplexer takes a *single* input (I) and *routes* it to one of the output lines $(O0, O1, \cdots)$.
- * For N Select inputs (S0, S1, \cdots), the number of output lines is 2^N .

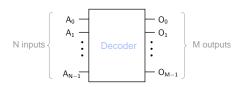

S2	S1	S0	00	01	02	О3	04	O5	06	07
0	0	0	-1	0	0	0	0	0	0	0
0	0	1	0	I	0	0	0	0	0	0
0	1	0	0	0	I	0	0	0	0	0
0	1	1	0	0	0	I	0	0	0	0
1	0	0	0	0	0	0	I	0	0	0
1	0	1	0	0	0	0	0	- 1	0	0
1	1	0	0	0	0	0	0	0	Ι	0
1	1	1	0	0	0	0	0	0	0	I


- A demultiplexer takes a single input (I) and routes it to one of the output lines (O0, O1,···).
- * For N Select inputs (S0, S1, \cdots), the number of output lines is 2^N .
- * Conceptually, a DEMUX can be thought of as 2^N switches. For a given combination of the Select inputs, only one of the switches is closed, all others being open.

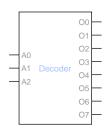
Demultiplexer: gate-level diagram



Decoders



Decoders


* For each input combination, only one output line is active (which means 0 or 1, depending on whether the outputs are active low or active high).

Decoders

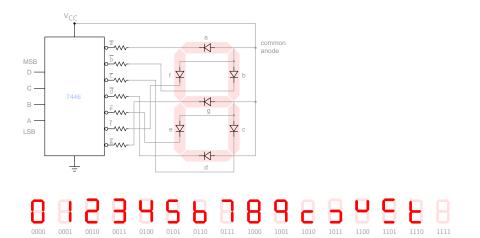
- * For each input combination, only one output line is active (which means 0 or 1, depending on whether the outputs are active low or active high).
- * Since there are 2^N input combinations, there could be 2^N output lines, i.e., $M=2^N$. However, there are decoders with $M<2^N$ as well.

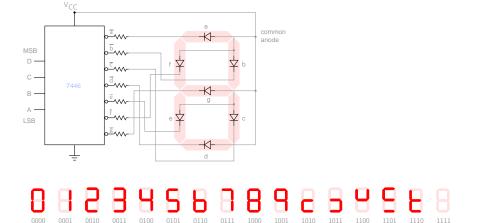
3-to-8 decoder (1-of-8 decoder)


A2	A1	A0	O0	01	02	О3	04	O5	06	07
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

BCD-to-decimal decoder

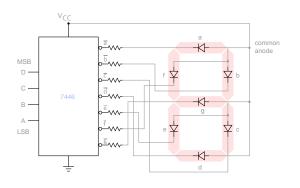
A_3	A_2	A_1	A_0	Active output
0	0	0	0	$\overline{O_0}$
0	0	0	1	$\overline{O_1}$
0	0	1	0	$\overline{O_2}$
0	0	1	1	O ₃
0	1	0	0	O ₄
0	1	0	1	O ₅
0	1	1	0	O ₆
0	1	1	1	O ₇
1	0	0	0	O ₈
1	0	0	1	O ₉
1	0	1	0	none
1	0	1	1	none
1	1	0	0	none
1	1	0	1	none
1	1	1	0	none
1	1	1	1	none


BCD-to-decimal decoder

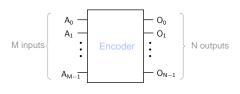

A ₃	A ₂	A ₁	A ₀	Active output
0	0	0	0	O ₀
0	0	0	1	$\overline{O_1}$
0	0	1	0	$\overline{O_2}$
0	0	1	1	O ₃
0	1	0	0	O ₄
0	1	0	1	O ₅
0	1	1	0	O ₆
0	1	1	1	O ₇
1	0	0	0	O ₈
1	0	0	1	O ₉
1	0	1	0	none
1	0	1	1	none
1	1	0	0	none
1	1	0	1	none
1	1	1	0	none
1	1	1	1	none

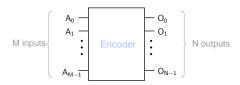
* Note that the combinations $A_3A_2A_1A_0=1010$ onwards are "don't care" conditions since a BCD (binary coded decimal) number is expected to be less than 1010 (i.e., decimal 10).

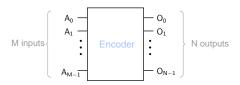
BCD-to-7 segment decoder



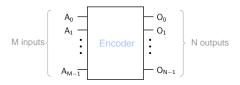
BCD-to-7 segment decoder

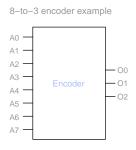

* The resistors serve to limit the diode current. For $V_{CC}=5~V,~V_D=2~V,$ and $I_D=10~\text{mA},~R=300~\Omega.$

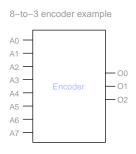

BCD-to-7 segment decoder



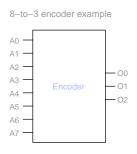
- * The resistors serve to limit the diode current. For $V_{CC}=5~V,~V_D=2~V,$ and $I_D=10~\text{mA},~R=300~\Omega.$
- * Home work: Write the truth table for \overline{c} (in terms of D, C, B, A). Obtain a minimized expression for \overline{c} using a K map.




* Only one input line is assumed to be active. The (unique) binary number corresponding to the active input line appears at the output pins.

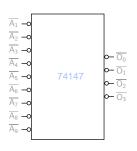

- * Only one input line is assumed to be active. The (unique) binary number corresponding to the active input line appears at the output pins.
- * The N output lines can represent 2^N binary numbers, each corresponding to one of the M input lines, i.e., we can have $M = 2^N$. Some encoders have $M < 2^N$.

- * Only one input line is assumed to be active. The (unique) binary number corresponding to the active input line appears at the output pins.
- * The N output lines can represent 2^N binary numbers, each corresponding to one of the M input lines, i.e., we can have $M = 2^N$. Some encoders have $M < 2^N$.
- * As an example, for N=3, we can have a maximum of $2^3=8$ input lines.

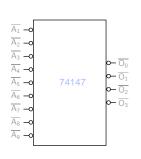


A0	A1	A2	А3	A4	A5	A6	A7	02	01	00
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

A0	Α1	A2	А3	A4	A5	A6	A7	02	01	00
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

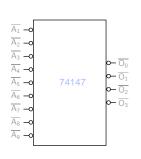

* Note that only one of the input lines is assumed to be active.

	A0	A1	A2	А3	A4	A5	A6	A7	02	01	00
	1	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0	0	1
Ī	0	0	1	0	0	0	0	0	0	1	0
Ī	0	0	0	1	0	0	0	0	0	1	1
	0	0	0	0	1	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	1	0	1
	0	0	0	0	0	0	1	0	1	1	0
Ī	0	0	0	0	0	0	0	1	1	1	1


- * Note that only one of the input lines is assumed to be active.
- * What if two input lines become simultaneously active?
 - ightarrow There are "priority encoders" which assign a *priority* to each of the input lines.

74147 decimal-to-BCD priority encoder

$\overline{A_1}$	$\overline{A_2}$	$\overline{A_3}$	$\overline{A_4}$	$\overline{A_5}$	$\overline{A_6}$	$\overline{A_7}$	$\overline{A_8}$	$\overline{A_9}$	O ₃	$\overline{O_2}$	$\overline{O_1}$	$\overline{O_0}$
1	1	1	1	1	1	1	1	1	1	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
Χ	Χ	Х	Χ	Χ	Χ	Χ	0	1	0	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	1	1	1	0	0	1
Χ	Χ	Χ	Χ	0	1	1	1	1	1	0	1	0
Χ	Χ	Χ	0	1	1	1	1	1	1	0	1	1
Χ	Χ	0	1	1	1	1	1	1	1	1	0	0
Χ	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0


74147 decimal-to-BCD priority encoder

$\overline{A_1}$	$\overline{A_2}$	$\overline{A_3}$	$\overline{A_4}$	$\overline{A_{5}}$	$\overline{A_6}$	$\overline{A_7}$	$\overline{A_8}$	$\overline{A_9}$	O ₃	$\overline{O_2}$	$\overline{O_1}$	00
1	1	1	1	1	1	1	1	1	1	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	1	1	1	0	0	1
Χ	Χ	Χ	Χ	0	1	1	1	1	1	0	1	0
Χ	Χ	Χ	0	1	1	1	1	1	1	0	1	1
Χ	Χ	0	1	1	1	1	1	1	1	1	0	0
Χ	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

* Note that the higher input lines get priority over the lower ones. For example, $\overline{A_7}$ gets priority over $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$. If $\overline{A_7}$ is active (low), the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to decimal 7, irrespective of $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$.

74147 decimal-to-BCD priority encoder

$\overline{A_1}$	$\overline{A_2}$	$\overline{A_3}$	$\overline{A_4}$	$\overline{A_{5}}$	$\overline{A_6}$	$\overline{A_7}$	A ₈	$\overline{A_9}$	O ₃	O_2	O_1	Ο ₀
1	1	1	1	1	1	1	1	1	1	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	1	1	1
Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	1	1	1	0	0	1
Χ	Χ	Χ	Χ	0	1	1	1	1	1	0	1	0
Χ	Χ	Χ	0	1	1	1	1	1	1	0	1	1
Χ	Χ	0	1	1	1	1	1	1	1	1	0	0
Χ	0	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0

- * Note that the higher input lines get priority over the lower ones. For example, $\overline{A_7}$ gets priority over $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$. If $\overline{A_7}$ is active (low), the binary output is 1000 (i.e., 0111 inverted bit-by-bit) which corresponds to decimal 7, irrespective of $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$, $\overline{A_7}$,
 - $\overline{A_1}$, $\overline{A_2}$, $\overline{A_3}$, $\overline{A_4}$, $\overline{A_5}$, $\overline{A_6}$.
- * The lower input lines are therefore shown as "don't care" (X) conditions