EE101: Sinusoidal steady state analysis

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

Sinusoidal steady state

Sinusoidal steady state

Sinusoidal steady state

$$
\begin{equation*}
R\left(C V_{c}^{\prime}\right)+V_{c}=V_{m} \cos \omega t, \quad t>0 . \tag{1}
\end{equation*}
$$

The solution $V_{c}(t)$ is made up of two components, $V_{c}(t)=V_{c}^{(h)}(t)+V_{c}^{(p)}(t)$.

Sinusoidal steady state

$$
\begin{equation*}
R\left(C V_{c}^{\prime}\right)+V_{c}=V_{m} \cos \omega t, \quad t>0 . \tag{1}
\end{equation*}
$$

The solution $V_{c}(t)$ is made up of two components, $V_{c}(t)=V_{c}^{(h)}(t)+V_{c}^{(p)}(t)$. $V_{c}^{(h)}(t)$ satisfies the homogeneous differential equation,

$$
\begin{equation*}
R C V_{c}^{\prime}+V_{c}=0, \tag{2}
\end{equation*}
$$

from which, $V_{c}^{(h)}(t)=A \exp (-t / \tau)$, with $\tau=R C$.

Sinusoidal steady state

$$
\begin{equation*}
R\left(C V_{c}^{\prime}\right)+V_{c}=V_{m} \cos \omega t, \quad t>0 . \tag{1}
\end{equation*}
$$

The solution $V_{c}(t)$ is made up of two components, $V_{c}(t)=V_{c}^{(h)}(t)+V_{c}^{(p)}(t)$. $V_{c}^{(h)}(t)$ satisfies the homogeneous differential equation,

$$
\begin{equation*}
R C V_{c}^{\prime}+V_{c}=0, \tag{2}
\end{equation*}
$$

from which, $V_{c}^{(h)}(t)=A \exp (-t / \tau)$, with $\tau=R C$.
$V_{c}^{(p)}(t)$ is a particular solution of (1). Since the forcing function is $V_{m} \cos \omega t$, we try
$V_{c}^{(p)}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$.

Sinusoidal steady state

$$
\begin{equation*}
R\left(C V_{c}^{\prime}\right)+V_{c}=V_{m} \cos \omega t, \quad t>0 . \tag{1}
\end{equation*}
$$

The solution $V_{c}(t)$ is made up of two components, $V_{c}(t)=V_{c}^{(h)}(t)+V_{c}^{(p)}(t)$. $V_{c}^{(h)}(t)$ satisfies the homogeneous differential equation,

$$
\begin{equation*}
R C V_{c}^{\prime}+V_{c}=0, \tag{2}
\end{equation*}
$$

from which, $V_{c}^{(h)}(t)=A \exp (-t / \tau)$, with $\tau=R C$.
$V_{c}^{(p)}(t)$ is a particular solution of (1). Since the forcing function is $V_{m} \cos \omega t$, we try $V_{c}^{(p)}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$.
Substituting in (1), we get,

$$
\omega R C\left(-C_{1} \sin \omega t+C_{2} \cos \omega t\right)+C_{1} \cos \omega t+C_{2} \sin \omega t=V_{m} \cos \omega t
$$

Sinusoidal steady state

The solution $V_{c}(t)$ is made up of two components, $V_{c}(t)=V_{c}^{(h)}(t)+V_{c}^{(p)}(t)$. $V_{c}^{(h)}(t)$ satisfies the homogeneous differential equation,

$$
\begin{equation*}
R C V_{c}^{\prime}+V_{c}=0 \tag{2}
\end{equation*}
$$

from which, $V_{c}^{(h)}(t)=A \exp (-t / \tau)$, with $\tau=R C$.
$V_{c}^{(p)}(t)$ is a particular solution of (1). Since the forcing function is $V_{m} \cos \omega t$, we try $V_{c}^{(p)}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$.
Substituting in (1), we get,

$$
\omega R C\left(-C_{1} \sin \omega t+C_{2} \cos \omega t\right)+C_{1} \cos \omega t+C_{2} \sin \omega t=V_{m} \cos \omega t
$$

C_{1} and C_{2} can be found by equating the coefficients of $\sin \omega t$ and $\cos \omega t$ on the left and right sides.

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

* The complete solution is $V_{c}(t)=A \exp (-t / \tau)+C_{1} \cos \omega t+C_{2} \sin \omega t$.

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

* The complete solution is $V_{c}(t)=A \exp (-t / \tau)+C_{1} \cos \omega t+C_{2} \sin \omega t$.
* As $t \rightarrow \infty$, the exponential term becomes zero, and we are left with $V_{c}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$.

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

* The complete solution is $V_{c}(t)=A \exp (-t / \tau)+C_{1} \cos \omega t+C_{2} \sin \omega t$.
* As $t \rightarrow \infty$, the exponential term becomes zero, and we are left with $V_{c}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$.
* This is known as the "sinusoidal steady state" response since all quantities (currents and voltages) in the circuit are sinusoidal in nature.

Sinusoidal steady state

(SEQUEL file: ee101_rc5.sqproj)

* The complete solution is $V_{c}(t)=A \exp (-t / \tau)+C_{1} \cos \omega t+C_{2} \sin \omega t$.
* As $t \rightarrow \infty$, the exponential term becomes zero, and we are left with $V_{c}(t)=C_{1} \cos \omega t+C_{2} \sin \omega t$.
* This is known as the "sinusoidal steady state" response since all quantities (currents and voltages) in the circuit are sinusoidal in nature.
* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and current sources (of the same frequency), dependent (linear) sources behaves in a similar manner, viz., each current and voltage in the circuit becomes purely sinusoidal as $t \rightarrow \infty$.

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$, with the following interpretation in the time domain.

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$, with the following interpretation in the time domain. $x(t)=\operatorname{Re}\left[\mathbf{X} e^{j \omega t}\right]$

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$, with the following interpretation in the time domain.

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[\mathbf{X} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j \theta} e^{j \omega t}\right]
\end{aligned}
$$

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$,
with the following interpretation in the time domain.

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[\mathbf{X} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j \theta} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j(\omega t+\theta)}\right]
\end{aligned}
$$

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$,
with the following interpretation in the time domain.

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[\mathbf{X} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j \theta} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j(\omega t+\theta)}\right] \\
& =X_{m} \cos (\omega t+\theta)
\end{aligned}
$$

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$, with the following interpretation in the time domain.

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[\mathbf{X} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} \mathrm{e}^{j \theta} \mathrm{e}^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} \mathrm{e}^{j(\omega t+\theta)}\right] \\
& =X_{m} \cos (\omega t+\theta)
\end{aligned}
$$

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.

Sinusoidal steady state: phasors

* In the sinusoidal steady state, "phasors" can be used to represent currents and voltages.
* A phasor is a complex number, $\mathbf{X}=X_{m} \angle \theta=X_{m} \exp (j \theta)$,
with the following interpretation in the time domain.

$$
\begin{aligned}
x(t) & =\operatorname{Re}\left[\mathbf{X} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j \theta} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[X_{m} e^{j(\omega t+\theta)}\right] \\
& =X_{m} \cos (\omega t+\theta)
\end{aligned}
$$

* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.
* Note that a phasor can be written in the polar form or rectangular form, $\mathbf{X}=X_{m} \stackrel{\Delta \theta}{ }=X_{m} \exp (j \theta)=X_{m} \cos \theta+j X_{m} \sin \theta$.
The term ωt is always implicit.

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	

Time domain	Frequency domain			
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$			
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$				
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$				
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$		\quad		
:---:	:---:			

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain		
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$		
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$			
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$			
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$		$\quad \mathrm{I}=1.5 \angle(-2 \pi / 3) \mathrm{A}, \quad . \quad$	
:---			
$\mathrm{v}_{2}(\mathrm{t})=-0.1 \cos (\omega \mathrm{t}) \mathrm{V}$	\quad		
:---:	:---:		

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$	
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$	

Time domain	Frequency domain		
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$		
$\mathrm{i}(\mathrm{t})=-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A}$			
$=1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A}$			
$=1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A}$		\quad	$\mathrm{I}=1.5 \angle(-2 \pi / 3) \mathrm{A}$
---:			
$\mathrm{v}_{2}(\mathrm{t})$ $=-0.1 \cos (\omega \mathrm{t}) \mathrm{V}$ $=0.1 \cos (\omega \mathrm{t}+\pi) \mathrm{V}$			
$\mathrm{i}_{2}(\mathrm{t})=0.18 \sin (\omega \mathrm{t}) \mathrm{A}$ $=0.18 \cos (\omega \mathrm{t}-\pi / 2) \mathrm{A}$			
$\mathrm{V}_{2}=0.1 \angle \pi \mathrm{~V}$	\quad	$\mathrm{I}_{2}=0.18 \angle(-\pi / 2) \mathrm{A}$	
---:			

Time domain	Frequency domain
$\mathrm{v}_{1}(\mathrm{t})=3.2 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{V}$	$\mathrm{V}_{1}=3.2 \angle 30^{\circ}=3.2 \exp (\mathrm{j} \pi / 6) \mathrm{V}$
$\begin{aligned} \mathrm{i}(\mathrm{t}) & =-1.5 \cos \left(\omega \mathrm{t}+60^{\circ}\right) \mathrm{A} \\ & =1.5 \cos (\omega \mathrm{t}+\pi / 3-\pi) \mathrm{A} \\ & =1.5 \cos (\omega \mathrm{t}-2 \pi / 3) \mathrm{A} \end{aligned}$	$\mathrm{I}=1.5 \angle(-2 \pi / 3) \mathrm{A}$
$\begin{aligned} \mathrm{v}_{2}(\mathrm{t}) & =-0.1 \cos (\omega \mathrm{t}) \mathrm{V} \\ & =0.1 \cos (\omega \mathrm{t}+\pi) \mathrm{V} \end{aligned}$	$\mathrm{V}_{2}=0.1 \angle \pi \mathrm{~V}$
$\begin{aligned} \mathrm{i}_{2}(\mathrm{t}) & =0.18 \sin (\omega \mathrm{t}) \mathrm{A} \\ & =0.18 \cos (\omega \mathrm{t}-\pi / 2) \mathrm{A} \end{aligned}$	$\mathrm{I}_{2}=0.18 \angle(-\pi / 2) \mathrm{A}$
$\mathrm{i}_{3}(\mathrm{t})=\sqrt{2} \cos \left(\omega \mathrm{t}+45^{\circ}\right) \mathrm{A}$	$\begin{aligned} \mathrm{I}_{3} & =1+\mathrm{j} 1 \mathrm{~A} \\ & =\sqrt{2} \angle 45^{\circ} \mathrm{A} \end{aligned}$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Now consider addition of the phasors corresponding to $v_{1}(t)$ and $v_{2}(t)$. $\mathbf{V}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$
$=V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Now consider addition of the phasors corresponding to $v_{1}(t)$ and $v_{2}(t)$.
$\mathbf{V}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}$

$$
=V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}
$$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with $\tilde{v}(t)=\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right]$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Now consider addition of the phasors corresponding to $v_{1}(t)$ and $v_{2}(t)$.

$$
\begin{aligned}
\mathbf{V} & =\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}} \\
& =V_{m 1} \mathrm{e}^{\theta_{1}}+V_{m 2} e^{j \theta_{2}}
\end{aligned}
$$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with

$$
\begin{aligned}
\tilde{v}(t) & =\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[\left(V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}\right) e^{j \omega t}\right]
\end{aligned}
$$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Now consider addition of the phasors corresponding to $v_{1}(t)$ and $v_{2}(t)$.

$$
\begin{aligned}
\mathbf{V} & =\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{2} \\
& =V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}
\end{aligned}
$$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with

$$
\begin{aligned}
\tilde{v}(t) & =\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[\left(V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}\right) e^{j \omega t}\right] \\
& =\operatorname{Re}\left[V_{m 1} e^{j\left(\omega t+\theta_{1}\right)}+V_{m 2} e^{\left(\omega t+j \theta_{2}\right)}\right]
\end{aligned}
$$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Now consider addition of the phasors corresponding to $v_{1}(t)$ and $v_{2}(t)$.

$$
\begin{aligned}
\mathbf{V} & =\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}} \\
& =V_{m 1} \mathrm{e}^{\theta_{1}}+V_{m 2} e^{j \theta_{2}}
\end{aligned}
$$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with

$$
\begin{aligned}
\tilde{v}(t) & =\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[\left(V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}\right) e^{j \omega t}\right] \\
& =\operatorname{Re}\left[V_{m 1} e^{j\left(\omega t+\theta_{1}\right)}+V_{m 2} e^{\left(\omega t+j \theta_{2}\right)}\right] \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Addition of phasors

Consider addition of two sinusoidal quantities:

$$
\begin{aligned}
v(t) & =v_{1}(t)+v_{2}(t) \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

Now consider addition of the phasors corresponding to $v_{1}(t)$ and $v_{2}(t)$.

$$
\begin{aligned}
\mathbf{V} & =\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{2} \\
& =V_{m 1} \mathrm{e}^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}
\end{aligned}
$$

In the time domain, \mathbf{V} corresponds to $\tilde{v}(t)$, with

$$
\begin{aligned}
\tilde{v}(t) & =\operatorname{Re}\left[\mathbf{V} e^{j \omega t}\right] \\
& =\operatorname{Re}\left[\left(V_{m 1} e^{j \theta_{1}}+V_{m 2} e^{j \theta_{2}}\right) e^{j \omega t}\right] \\
& =\operatorname{Re}\left[V_{m 1} e^{j\left(\omega t+\theta_{1}\right)}+V_{m 2} e^{\left(\omega t+j \theta_{2}\right)}\right] \\
& =V_{m 1} \cos \left(\omega t+\theta_{1}\right)+V_{m 2} \cos \left(\omega t+\theta_{2}\right)
\end{aligned}
$$

which is the same as $v(t)$.

Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition of the corresponding phasors in the sinusoidal steady state.

Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition of the corresponding phasors in the sinusoidal steady state.
* The KCL and KVL equations,
$\sum i_{k}(t)=0$ at a node, and
$\sum v_{k}(t)=0$ in a loop,
amount to addition of sinusoidal quantities and can therefore be replaced by the corresponding phasor equations,
$\sum \mathbf{I}_{k}=\mathbf{0}$ at a node, and
$\sum \mathbf{V}_{k}=\mathbf{0}$ in a loop.

Impedance of a resistor

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=R i(t)$

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=R i(t)$
$=R I_{m} \cos (\omega t+\theta)$

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=R i(t)$
$=R I_{m} \cos (\omega t+\theta)$
$\equiv V_{m} \cos (\omega t+\theta)$.

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=R i(t)$
$=R I_{m} \cos (\omega t+\theta)$
$\equiv V_{m} \cos (\omega t+\theta)$.
The phasors corresponding to $i(t)$ and $v(t)$ are, respectively, $\mathbf{I}=I_{m} \underline{\theta}, \quad \mathbf{V}=R \times I_{m} \underline{\Delta \theta}$.

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=R i(t)$
$=R I_{m} \cos (\omega t+\theta)$
$\equiv V_{m} \cos (\omega t+\theta)$.
The phasors corresponding to $i(t)$ and $v(t)$ are, respectively, $\mathbf{I}=I_{m} \underline{\theta}, \quad \mathbf{V}=R \times I_{m} \underline{\theta}$.
We have therefore the following relationship between \mathbf{V} and $\mathbf{I}: \mathbf{V}=R \times \mathbf{I}$.

Impedance of a resistor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=R i(t)$
$=R I_{m} \cos (\omega t+\theta)$
$\equiv V_{m} \cos (\omega t+\theta)$.
The phasors corresponding to $i(t)$ and $v(t)$ are, respectively, $\mathbf{I}=I_{m} \underline{\theta}, \quad \mathbf{V}=R \times I_{m} \underline{\Delta \theta}$.
We have therefore the following relationship between \mathbf{V} and $\mathbf{I}: \mathbf{V}=R \times \mathbf{I}$.
Thus, the impedance of a resistor, defined as, $\mathbf{Z}=\mathbf{V} / \mathbf{I}$, is

$$
\mathbf{Z}=R+j 0
$$

Impedance of a capacitor

Impedance of a capacitor

Let $v(t)=V_{m} \cos (\omega t+\theta)$.

Impedance of a capacitor

Let $v(t)=V_{m} \cos (\omega t+\theta)$.
$i(t)=C \frac{d v}{d t}=-C \omega V_{m} \sin (\omega t+\theta)$.

Impedance of a capacitor

Let $v(t)=V_{m} \cos (\omega t+\theta)$.
$i(t)=C \frac{d v}{d t}=-C \omega V_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$i(t)=C \omega V_{m} \cos (\omega t+\theta+\pi / 2)$.

Impedance of a capacitor

Let $v(t)=V_{m} \cos (\omega t+\theta)$.
$i(t)=C \frac{d v}{d t}=-C \omega V_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$i(t)=C \omega V_{m} \cos (\omega t+\theta+\pi / 2)$.
In terms of phasors, $\mathbf{V}=V_{m} \angle \theta, \mathbf{I}=\omega C V_{m}\langle(\theta+\pi / 2)$.

Impedance of a capacitor

Let $v(t)=V_{m} \cos (\omega t+\theta)$.
$i(t)=C \frac{d v}{d t}=-C \omega V_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$i(t)=C \omega V_{m} \cos (\omega t+\theta+\pi / 2)$.
In terms of phasors, $\mathbf{V}=V_{m} \angle \theta, \mathbf{I}=\omega C V_{m} \angle(\theta+\pi / 2)$.
I can be rewritten as,
$\mathbf{I}=\omega C V_{m} e^{j(\theta+\pi / 2)}=\omega C V_{m} e^{j \theta} e^{j \pi / 2}=j \omega C\left(V_{m} e^{j \theta}\right)=j \omega C \mathbf{V}$

Impedance of a capacitor

Let $v(t)=V_{m} \cos (\omega t+\theta)$.
$i(t)=C \frac{d v}{d t}=-C \omega V_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$i(t)=C \omega V_{m} \cos (\omega t+\theta+\pi / 2)$.
In terms of phasors, $\mathbf{V}=V_{m} \angle \theta, \mathbf{I}=\omega C V_{m} \angle(\theta+\pi / 2)$.
I can be rewritten as,
$\mathbf{I}=\omega C V_{m} e^{j(\theta+\pi / 2)}=\omega C V_{m} e^{j \theta} e^{j \pi / 2}=j \omega C\left(V_{m} e^{j \theta}\right)=j \omega C \mathbf{V}$
Thus, the impedance of a capacitor, $\mathbf{Z}=\mathbf{V} / \mathbf{I}$, is $\mathbf{Z}=1 /(j \omega C)$,
and the admittance of a capacitor, $\mathbf{Y}=\mathbf{I} / \mathbf{V}$, is $\mathbf{Y}=j \omega C$.

Let $i(t)=I_{m} \cos (\omega t+\theta)$.

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=L \frac{d i}{d t}=-L \omega I_{m} \sin (\omega t+\theta)$.

Impedance of an inductor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=L \frac{d i}{d t}=-L \omega I_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$v(t)=L \omega I_{m} \cos (\omega t+\theta+\pi / 2)$.

Impedance of an inductor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=L \frac{d i}{d t}=-L \omega I_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$v(t)=L \omega I_{m} \cos (\omega t+\theta+\pi / 2)$.
In terms of phasors, $\mathbf{I}=I_{m} \angle \theta, \mathbf{V}=\omega L I_{m} \angle(\theta+\pi / 2)$.

Impedance of an inductor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=L \frac{d i}{d t}=-L \omega I_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$v(t)=L \omega I_{m} \cos (\omega t+\theta+\pi / 2)$.
In terms of phasors, $\mathbf{I}=I_{m} \angle \theta, \mathbf{V}=\omega L I_{m} \angle(\theta+\pi / 2)$.
\mathbf{V} can be rewritten as,
$\mathbf{V}=\omega L I_{m} e^{j(\theta+\pi / 2)}=\omega L I_{m} e^{j \theta} e^{j \pi / 2}=j \omega L\left(I_{m} e^{j \theta}\right)=j \omega L \mathbf{I}$

Impedance of an inductor

Let $i(t)=I_{m} \cos (\omega t+\theta)$.
$v(t)=L \frac{d i}{d t}=-L \omega I_{m} \sin (\omega t+\theta)$.
Using the identity, $\cos (\phi+\pi / 2)=-\sin \phi$, we get
$v(t)=L \omega I_{m} \cos (\omega t+\theta+\pi / 2)$.
In terms of phasors, $\mathbf{I}=I_{m} \angle \theta, \mathbf{V}=\omega L I_{m} \angle(\theta+\pi / 2)$.
\mathbf{V} can be rewritten as,
$\mathbf{V}=\omega L I_{m} e^{j(\theta+\pi / 2)}=\omega L I_{m} e^{j \theta} e^{j \pi / 2}=j \omega L\left(I_{m} e^{j \theta}\right)=j \omega L \mathbf{I}$
Thus, the impedance of an indcutor, $\mathbf{Z}=\mathbf{V} / \mathbf{I}$, is $\mathbf{Z}=j \omega L$,
and the admittance of an inductor, $\mathbf{Y}=\mathbf{I} / \mathbf{V}$, is $\mathbf{Y}=1 /(j \omega L)$.

Sources

* An independent sinusoidal current source, $i_{s}(t)=I_{m} \cos (\omega t+\theta)$, can be represented by the phasor $I_{m} \angle \theta$ (i.e., a constant complex number).

* An independent sinusoidal current source, $i_{s}(t)=I_{m} \cos (\omega t+\theta)$, can be represented by the phasor $I_{m} \angle \theta$ (i.e., a constant complex number).
* An independent sinusoidal voltage source, $v_{s}(t)=V_{m} \cos (\omega t+\theta)$, can be represented by the phasor $V_{m} \angle \theta$ (i.e., a constant complex number).

* An independent sinusoidal current source, $i_{s}(t)=I_{m} \cos (\omega t+\theta)$, can be represented by the phasor $I_{m} \angle \theta$ (i.e., a constant complex number).
* An independent sinusoidal voltage source, $v_{s}(t)=V_{m} \cos (\omega t+\theta)$, can be represented by the phasor $V_{m} \angle \theta$ (i.e., a constant complex number).
* Dependent (linear) sources can be treated in the sinusoidal steady state in the same manner as a resistor, i.e., by the corresponding phasor relationship. For example, for a CCVS, we have, $v(t)=r i_{c}(t)$ in the time domain. $\mathbf{V}=r \mathbf{I}_{\mathbf{c}}$ in the frequency domain.

Use of phasors in circuit analysis

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_{k}(t)=0$ and $\sum v_{k}(t)=0$ can be written as $\sum \mathbf{I}_{k}=\mathbf{0}$ and $\sum \mathbf{V}_{k}=\mathbf{0}$ in the frequency domain.

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_{k}(t)=0$ and $\sum v_{k}(t)=0$ can be written as $\sum \mathbf{I}_{k}=\mathbf{0}$ and $\sum \mathbf{V}_{k}=\mathbf{0}$ in the frequency domain.
* Resistors, capacitors, and inductors can be described by $\mathbf{V}=\mathbf{Z I}$ in the frequency domain, which is similar to $V=R I$ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_{k}(t)=0$ and $\sum v_{k}(t)=0$ can be written as $\sum \mathbf{I}_{k}=\mathbf{0}$ and $\sum \mathbf{V}_{k}=\mathbf{0}$ in the frequency domain.
* Resistors, capacitors, and inductors can be described by $\mathbf{V}=\mathbf{Z I}$ in the frequency domain, which is similar to $V=R I$ in DC conditions (except that we are dealing with complex numbers in the frequency domain).
* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., $\mathbf{V}_{\mathbf{s}}=$ constant (a complex number).

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_{k}(t)=0$ and $\sum v_{k}(t)=0$ can be written as $\sum \mathbf{I}_{k}=\mathbf{0}$ and $\sum \mathbf{V}_{k}=\mathbf{0}$ in the frequency domain.
* Resistors, capacitors, and inductors can be described by $\mathbf{V}=\mathbf{Z I}$ in the frequency domain, which is similar to $V=R I$ in DC conditions (except that we are dealing with complex numbers in the frequency domain).
* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., $\mathbf{V}_{\mathbf{s}}=$ constant (a complex number).
* For dependent sources, a time-domain relationship such as $i(t)=\beta i_{c}(t)$ translates to $\mathbf{I}=\beta \mathbf{I}_{\mathbf{c}}$ in the frequency domain.

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_{k}(t)=0$ and $\sum v_{k}(t)=0$ can be written as $\sum \mathbf{I}_{k}=\mathbf{0}$ and $\sum \mathbf{V}_{k}=\mathbf{0}$ in the frequency domain.
* Resistors, capacitors, and inductors can be described by $\mathbf{V}=\mathbf{Z I}$ in the frequency domain, which is similar to $V=R I$ in DC conditions (except that we are dealing with complex numbers in the frequency domain).
* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., $\mathbf{V}_{\mathbf{s}}=$ constant (a complex number).
* For dependent sources, a time-domain relationship such as $i(t)=\beta i_{c}(t)$ translates to $\mathbf{I}=\beta \mathbf{I}_{\mathbf{c}}$ in the frequency domain.
* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with independent and dependent sources, and resistors.

Use of phasors in circuit analysis

* The time-domain KCL and KVL equations $\sum i_{k}(t)=0$ and $\sum v_{k}(t)=0$ can be written as $\sum \mathbf{I}_{k}=\mathbf{0}$ and $\sum \mathbf{V}_{k}=\mathbf{0}$ in the frequency domain.
* Resistors, capacitors, and inductors can be described by $\mathbf{V}=\mathbf{Z I}$ in the frequency domain, which is similar to $V=R I$ in DC conditions (except that we are dealing with complex numbers in the frequency domain).
* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., $\mathbf{V}_{\mathbf{s}}=$ constant (a complex number).
* For dependent sources, a time-domain relationship such as $i(t)=\beta i_{c}(t)$ translates to $\mathbf{I}=\beta \mathbf{I}_{\mathbf{c}}$ in the frequency domain.
* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with independent and dependent sources, and resistors.
* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin's and Norton's theorems can be directly applied to circuits in the sinusoidal steady state.

$R L$ circuit

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
In the time domain, $i(t)=I_{m} \cos (\omega t-\theta)$, which lags the source voltage since the peak (or zero) of $i(t)$ occurs $t=\theta / \omega$ seconds after that of the source voltage.

RL circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
In the time domain, $i(t)=I_{m} \cos (\omega t-\theta)$, which lags the source voltage since the peak (or zero) of $i(t)$ occurs $t=\theta / \omega$ seconds after that of the source voltage.

For $R=1 \Omega, L=1.6 \mathrm{mH}, f=50 \mathrm{~Hz}, \theta=26.6^{\circ}, t_{\text {lag }}=1.48 \mathrm{~ms}$.
(SEQUEL file: ee101_rl_ac_1.sqproj)

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
In the time domain, $i(t)=I_{m} \cos (\omega t-\theta)$, which lags the source voltage since the peak (or zero) of $i(t)$ occurs $t=\theta / \omega$ seconds after that of the source voltage.

For $R=1 \Omega, L=1.6 \mathrm{mH}, f=50 \mathrm{~Hz}, \theta=26.6^{\circ}, t_{\text {lag }}=1.48 \mathrm{~ms}$.
(SEQUEL file: ee101_rl_ac_1.sqproj)

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.

$R L$ circuit

$$
\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta),
$$

where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle(-\theta)$,
$\mathbf{V}_{\mathbf{L}}=\mathbf{I} \times j \omega L=\omega I_{m} L \angle(-\theta+\pi / 2)$,

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle(-\theta)$,
$\mathbf{V}_{\mathbf{L}}=\mathbf{I} \times j \omega L=\omega I_{m} L \angle(-\theta+\pi / 2)$,
The KVL equation, $\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{R}}+\mathbf{V}_{\mathbf{L}}$, can be represented in the complex plane by a "phasor diagram."

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle(-\theta)$,
$\mathbf{V}_{\mathbf{L}}=\mathbf{I} \times j \omega L=\omega \mathbf{I}_{m} L \angle(-\theta+\pi / 2)$,
The KVL equation, $\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{R}}+\mathbf{V}_{\mathbf{L}}$, can be represented in the complex plane by a "phasor diagram."

$R L$ circuit

$\mathbf{I}=\frac{V_{m} \angle 0}{R+j \omega L} \equiv I_{m} \angle(-\theta)$,
where $I_{m}=\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}}$, and $\theta=\tan ^{-1}(\omega L / R)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle(-\theta)$,
$\mathbf{V}_{\mathbf{L}}=\mathbf{I} \times j \omega L=\omega \mathbf{I}_{m} L \angle(-\theta+\pi / 2)$,
The KVL equation, $\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{R}}+\mathbf{V}_{\mathbf{L}}$, can be represented in the complex plane by a "phasor diagram."

If $R \gg|j \omega L|, \theta \rightarrow 0,\left|\mathbf{V}_{\mathbf{R}}\right| \simeq\left|\mathbf{V}_{\mathbf{s}}\right|=V_{m}$.
If $R \ll|j \omega L|, \theta \rightarrow \pi / 2,\left|\mathbf{V}_{\mathbf{L}}\right| \simeq\left|\mathbf{V}_{\mathbf{s}}\right|=V_{m}$.

$$
\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta,
$$

where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.
In the time domain, $i(t)=I_{m} \cos (\omega t+\theta)$, which leads the source voltage since the peak (or zero) of $i(t)$ occurs $t=\theta / \omega$ seconds before that of the source voltage.

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.
In the time domain, $i(t)=I_{m} \cos (\omega t+\theta)$, which leads the source voltage since the peak (or zero) of $i(t)$ occurs $t=\theta / \omega$ seconds before that of the source voltage.

For $R=1 \Omega, C=5.3 \mathrm{mF}, f=50 \mathrm{~Hz}, \theta=31^{\circ}$, $t_{\text {lead }}=1.72 \mathrm{~ms}$.
(SEQUEL file: ee101_rc_ac_1.sqproj)

$$
\mathrm{R}=1 \Omega
$$

$$
\mathrm{C}=5.3 \mathrm{mF}
$$

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.
In the time domain, $i(t)=I_{m} \cos (\omega t+\theta)$, which leads the source voltage since the peak (or zero) of $i(t)$ occurs $t=\theta / \omega$ seconds before that of the source voltage.

For $R=1 \Omega, C=5.3 \mathrm{mF}, f=50 \mathrm{~Hz}, \theta=31^{\circ}$, $t_{\text {lead }}=1.72 \mathrm{~ms}$.
(SEQUEL file: ee101_rc_ac_1.sqproj)

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.

$$
\begin{aligned}
& \mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta, \\
& \text { where } I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}, \text { and } \theta=\pi / 2-\tan ^{-1}(\omega R C) . \\
& \mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle \theta, \\
& \mathbf{V}_{\mathrm{C}}=\mathbf{I} \times(1 / j \omega C)=\left(I_{m} / \omega C\right) \angle(\theta-\pi / 2),
\end{aligned}
$$

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle \theta$,
$\mathbf{V}_{\mathbf{C}}=\mathbf{I} \times(1 / j \omega C)=\left(I_{m} / \omega C\right) \angle(\theta-\pi / 2)$,
The KVL equation, $\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{R}}+\mathbf{V}_{\mathbf{C}}$, can be represented in the complex plane by a "phasor diagram."

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle \theta$,
$\mathbf{V}_{\mathrm{C}}=\mathbf{I} \times(1 / j \omega C)=\left(I_{m} / \omega C\right) \angle(\theta-\pi / 2)$,
The KVL equation, $\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{R}}+\mathbf{V}_{\mathbf{C}}$, can be represented in the complex plane by a "phasor diagram."

$\mathbf{I}=\frac{V_{m} \angle 0}{R+1 / j \omega C} \equiv I_{m} \angle \theta$,
where $I_{m}=\frac{\omega C V_{m}}{\sqrt{1+(\omega R C)^{2}}}$, and $\theta=\pi / 2-\tan ^{-1}(\omega R C)$.
$\mathbf{V}_{\mathbf{R}}=\mathbf{I} \times R=R I_{m} \angle \theta$,
$\mathbf{V}_{\mathrm{C}}=\mathbf{I} \times(1 / j \omega C)=\left(I_{m} / \omega C\right) \angle(\theta-\pi / 2)$,
The KVL equation, $\mathbf{V}_{\mathbf{s}}=\mathbf{V}_{\mathbf{R}}+\mathbf{V}_{\mathbf{C}}$, can be represented in the complex plane by a "phasor diagram."
If $R \gg|1 / j \omega C|, \theta \rightarrow 0,\left|\mathbf{V}_{\mathbf{R}}\right| \simeq\left|\mathbf{V}_{\mathbf{s}}\right|=V_{m}$.
If $R \ll|1 / j \omega C|, \theta \rightarrow \pi / 2,\left|\mathbf{V}_{\mathbf{C}}\right| \simeq\left|\mathbf{V}_{\mathbf{s}}\right|=V_{m}$.

Series/parallel connections

Series/parallel connections

Series/parallel connections

Series/parallel connections

$$
\begin{aligned}
Z & =\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} \\
& =\frac{(j 25) \times(-j 100)}{j 25-j 100} \\
& =\frac{25 \times 100}{-j 75} \\
& =j 33.3 \Omega
\end{aligned}
$$

Impedance example

Obtain Z in polar form.

Impedance example

Method 1:

Obtain Z in polar form.

$$
\begin{aligned}
Z & =\frac{10 \times j 10}{10+j 10}=\frac{j 10}{1+j} \\
& =\frac{j 10}{1+j} \times \frac{1-j}{1-j} \\
& =\frac{10+j 10}{2}=5+j 5 \Omega
\end{aligned}
$$

Convert to polar form $\rightarrow Z=7.07 \angle 45^{\circ} \Omega$

Impedance example

Method 1:

Obtain Z in polar form.

$$
\begin{aligned}
Z & =\frac{10 \times j 10}{10+j 10}=\frac{j 10}{1+j} \\
& =\frac{j 10}{1+j} \times \frac{1-j}{1-j} \\
& =\frac{10+j 10}{2}=5+j 5 \Omega
\end{aligned}
$$

Convert to polar form $\rightarrow Z=7.07 \angle 45^{\circ} \Omega$

Method 2:

$$
\begin{aligned}
Z & =\frac{10 \times j 10}{10+j 10}=\frac{100 \angle \pi / 2}{10 \sqrt{2} \angle \pi / 4} \\
& =5 \sqrt{2} \angle(\pi / 2-\pi / 4)=7.07 \angle 45^{\circ} \Omega
\end{aligned}
$$

Circuit example

Circuit example

Circuit example

Circuit example

$$
\mathbf{Z}_{3}=\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega
$$

Circuit example

$$
\begin{aligned}
& \mathbf{Z}_{3}=\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega \\
& \mathbf{Z}_{4}=2 \pi \times 50 \times 15 \times 10^{-3}=j 4.7 \Omega
\end{aligned}
$$

Circuit example

$$
\begin{aligned}
& \mathbf{Z}_{3}=\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega \\
& \mathbf{Z}_{4}=2 \pi \times 50 \times 15 \times 10^{-3}=j 4.7 \Omega \\
& \mathbf{Z}_{E Q}=\mathbf{Z}_{1}+\mathbf{Z}_{3} \|\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)
\end{aligned}
$$

Circuit example

$$
\begin{aligned}
\mathbf{Z}_{3} & =\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega \\
\mathbf{Z}_{4} & =2 \pi \times 50 \times 15 \times 10^{-3}=j 4.7 \Omega \\
\mathbf{Z}_{E Q} & =\mathbf{Z}_{1}+\mathbf{Z}_{3} \|\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right) \\
& =2+(-j 1.6) \|(10+j 4.7)=2+\frac{(-j 1.6) \times(10+j 4.7)}{-j 1.6+10+j 4.7}
\end{aligned}
$$

Circuit example

$$
\begin{aligned}
\mathbf{Z}_{3} & =\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega \\
\mathbf{Z}_{4} & =2 \pi \times 50 \times 15 \times 10^{-3}=j 4.7 \Omega \\
\mathbf{Z}_{E Q} & =\mathbf{Z}_{1}+\mathbf{Z}_{3} \|\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right) \\
& =2+(-j 1.6) \|(10+j 4.7)=2+\frac{(-j 1.6) \times(10+j 4.7)}{-j 1.6+10+j 4.7} \\
& =2+\frac{1.6 \angle\left(-90^{\circ}\right) \times 11.05 \angle\left(25.2^{\circ}\right)}{10.47 \angle\left(17.2^{\circ}\right)}=2+\frac{17.7 \angle\left(-64.8^{\circ}\right)}{10.47 \angle\left(17.2^{\circ}\right)}
\end{aligned}
$$

Circuit example

$$
\begin{aligned}
\mathbf{Z}_{3} & =\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega \\
\mathbf{Z}_{4}= & 2 \pi \times 50 \times 15 \times 10^{-3}=j 4.7 \Omega \\
\mathbf{Z}_{E Q} & =\mathbf{Z}_{1}+\mathbf{Z}_{3} \|\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right) \\
& =2+(-j 1.6) \|(10+j 4.7)=2+\frac{(-j 1.6) \times(10+j 4.7)}{-j 1.6+10+j 4.7} \\
& =2+\frac{1.6 \angle\left(-90^{\circ}\right) \times 11.05 \angle\left(25.2^{\circ}\right)}{10.47 \angle\left(17.2^{\circ}\right)}=2+\frac{17.7 \angle\left(-64.8^{\circ}\right)}{10.47 \angle\left(17.2^{\circ}\right)} \\
& =2+1.69 \angle\left(-82^{\circ}\right)=2+(0.235-j 1.67)
\end{aligned}
$$

Circuit example

$$
\begin{aligned}
\mathbf{Z}_{3} & =\frac{1}{j \times 2 \pi \times 50 \times 2 \times 10^{-3}}=-j 1.6 \Omega \\
\mathbf{Z}_{4}= & 2 \pi \times 50 \times 15 \times 10^{-3}=j 4.7 \Omega \\
\mathbf{Z}_{E Q} & =\mathbf{Z}_{1}+\mathbf{Z}_{3} \|\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right) \\
& =2+(-j 1.6) \|(10+j 4.7)=2+\frac{(-j 1.6) \times(10+j 4.7)}{-j 1.6+10+j 4.7} \\
& =2+\frac{1.6 \angle\left(-90^{\circ}\right) \times 11.05 \angle\left(25.2^{\circ}\right)}{10.47 \angle\left(17.2^{\circ}\right)}=2+\frac{17.7 \angle\left(-64.8^{\circ}\right)}{10.47 \angle\left(17.2^{\circ}\right)} \\
& =2+1.69 \angle\left(-82^{\circ}\right)=2+(0.235-j 1.67) \\
& =2.235-j 1.67=2.79 \angle\left(-36.8^{\circ}\right) \Omega
\end{aligned}
$$

Circuit example (continued)

Circuit example (continued)

Circuit example (continued)

$\mathbf{I}_{s}=\frac{\mathbf{V}_{s}}{\mathbf{Z}_{E Q}}=\frac{10 \angle\left(0^{\circ}\right)}{2.79 \angle\left(-36.8^{\circ}\right)}=3.58 \angle\left(36.8^{\circ}\right) \mathrm{A}$
$\mathbf{I}_{C}=\frac{\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)}{\mathbf{Z}_{3}+\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)} \times \mathbf{I}_{5}=3.79 \angle\left(44.6^{\circ}\right) \mathrm{A}$

Circuit example (continued)

$\mathbf{I}_{s}=\frac{\mathbf{V}_{s}}{\mathbf{Z}_{E Q}}=\frac{10 \angle\left(0^{\circ}\right)}{2.79 \angle\left(-36.8^{\circ}\right)}=3.58 \angle\left(36.8^{\circ}\right) \mathrm{A}$
$\mathbf{I}_{C}=\frac{\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)}{\mathbf{Z}_{3}+\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)} \times \mathbf{I}_{s}=3.79 \angle\left(44.6^{\circ}\right) \mathrm{A}$
$\mathbf{I}_{L}=\frac{\mathbf{Z}_{3}}{\mathbf{Z}_{3}+\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)} \times \mathbf{I}_{s}=0.546 \angle\left(-70.6^{\circ}\right) \mathrm{A}$

Circuit example (continued)

$\mathbf{I}_{s}=\frac{\mathbf{V}_{s}}{\mathbf{Z}_{E Q}}=\frac{10 \angle\left(0^{\circ}\right)}{2.79 \angle\left(-36.8^{\circ}\right)}=3.58 \angle\left(36.8^{\circ}\right) \mathrm{A}$
$\mathbf{I}_{C}=\frac{\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)}{\mathbf{Z}_{3}+\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)} \times \mathbf{I}_{s}=3.79 \angle\left(44.6^{\circ}\right) \mathrm{A}$
$\mathbf{I}_{L}=\frac{\mathbf{Z}_{3}}{\mathbf{Z}_{3}+\left(\mathbf{Z}_{2}+\mathbf{Z}_{4}\right)} \times \mathbf{I}_{s}=0.546 \angle\left(-70.6^{\circ}\right) \mathrm{A}$

M. B. Patil, IIT Bombay

Sinusoidal steady state: power computation

Sinusoidal steady state: power computation

$$
\text { Let } \begin{aligned}
v(t) & =V_{m} \cos (\omega t+\theta), \text { i.e., } \mathbf{V}=V_{m} \angle \theta, \\
i(t) & =I_{m} \cos (\omega t+\phi), \text { i.e., } \mathbf{I}=I_{m} \angle \phi
\end{aligned}
$$

Sinusoidal steady state: power computation

Let $v(t)=V_{m} \cos (\omega t+\theta)$, i.e., $\mathbf{V}=V_{m} \angle \theta$, $i(t)=I_{m} \cos (\omega t+\phi)$, i.e., $\mathbf{I}=I_{m} \angle \phi$.
The instantaneous power absorbed by \mathbf{Z} is,

$$
\begin{align*}
P(t) & =v(t) i(t) \\
& =V_{m} I_{m} \cos (\omega t+\theta) \cos (\omega t+\phi) \\
& =\frac{1}{2} V_{m} I_{m}[\cos (2 \omega t+\theta+\phi)+\cos (\theta-\phi)] \tag{1}
\end{align*}
$$

Sinusoidal steady state: power computation

Let $v(t)=V_{m} \cos (\omega t+\theta)$, i.e., $\mathbf{V}=V_{m} \angle \theta$, $i(t)=I_{m} \cos (\omega t+\phi)$, i.e., $\mathbf{I}=I_{m} \angle \phi$.
The instantaneous power absorbed by \mathbf{Z} is,

$$
\begin{align*}
P(t) & =v(t) i(t) \\
& =V_{m} I_{m} \cos (\omega t+\theta) \cos (\omega t+\phi) \\
& =\frac{1}{2} V_{m} I_{m}[\cos (2 \omega t+\theta+\phi)+\cos (\theta-\phi)] \tag{1}
\end{align*}
$$

The average power absorbed by \mathbf{Z} is
$P=\frac{1}{T} \int_{0}^{T} P(t) d t$, where $T=2 \pi / \omega$.

Sinusoidal steady state: power computation

Let $v(t)=V_{m} \cos (\omega t+\theta)$, i.e., $\mathbf{V}=V_{m} \angle \theta$,

$$
i(t)=I_{m} \cos (\omega t+\phi) \text {, i.e., } \mathbf{I}=I_{m} \angle \phi
$$

The instantaneous power absorbed by \mathbf{Z} is,

$$
\begin{align*}
P(t) & =v(t) i(t) \\
& =V_{m} I_{m} \cos (\omega t+\theta) \cos (\omega t+\phi) \\
& =\frac{1}{2} V_{m} I_{m}[\cos (2 \omega t+\theta+\phi)+\cos (\theta-\phi)] \tag{1}
\end{align*}
$$

The average power absorbed by \mathbf{Z} is
$P=\frac{1}{T} \int_{0}^{T} P(t) d t$, where $T=2 \pi / \omega$.
The first term in Eq. (1) has an average value of zero and does not contribute to P.
Therefore,

Sinusoidal steady state: power computation

Let $v(t)=V_{m} \cos (\omega t+\theta)$, i.e., $\mathbf{V}=V_{m} \angle \theta$,

$$
i(t)=I_{m} \cos (\omega t+\phi) \text {, i.e., } \mathbf{I}=I_{m} \angle \phi
$$

The instantaneous power absorbed by \mathbf{Z} is,

$$
\begin{align*}
P(t) & =v(t) i(t) \\
& =V_{m} I_{m} \cos (\omega t+\theta) \cos (\omega t+\phi) \\
& =\frac{1}{2} V_{m} I_{m}[\cos (2 \omega t+\theta+\phi)+\cos (\theta-\phi)] \tag{1}
\end{align*}
$$

The average power absorbed by \mathbf{Z} is
$P=\frac{1}{T} \int_{0}^{T} P(t) d t$, where $T=2 \pi / \omega$.
The first term in Eq. (1) has an average value of zero and does not contribute to P. Therefore,
$P=\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)$ gives the average power absorbed by \mathbf{Z}.

Average power for R, L, C

$$
\begin{array}{l|l}
+\mathbf{V}- & \begin{array}{l}
\text { General formula: } \\
\mathbf{I} \\
\mathbf{Z}
\end{array} \\
\begin{array}{l}
\mathrm{Z}=\mathrm{V}_{\mathrm{m}} \angle \theta, \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \phi \\
\mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos (\theta-\phi)
\end{array}
\end{array}
$$

Average power for R, L, C

$\begin{aligned} & +\mathrm{V}- \\ & \overrightarrow{\mathrm{I}} \mathrm{Z} \end{aligned}$	General formula: $\begin{aligned} & \mathrm{V}=\mathrm{V}_{\mathrm{m}} \angle \theta, \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \phi \\ & \mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos (\theta-\phi) \end{aligned}$
$\xrightarrow[\mathrm{l}]{+\mathrm{V}} \underset{\mathrm{R}}{\mathrm{~V}}$	$\begin{aligned} & \mathrm{V}=\mathrm{RI} \\ & \text { For } \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \alpha, \mathrm{~V}=\mathrm{RI}_{\mathrm{m}} \angle \alpha, \\ & \mathrm{P}=\frac{1}{2}\left(\mathrm{R} \mathrm{I}_{\mathrm{m}}\right) \mathrm{I}_{\mathrm{m}} \cos (\alpha-\alpha)=\frac{1}{2} \mathrm{I}_{\mathrm{m}}^{2} \mathrm{R}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}}^{2} / \mathrm{R} \end{aligned}$

Average power for R, L, C

$\xrightarrow[\mathrm{l}]{+\mathrm{V}}$	General formula: $\begin{aligned} & \mathrm{V}=\mathrm{V}_{\mathrm{m}} \angle \theta, \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \phi \\ & \mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos (\theta-\phi) \end{aligned}$
$\overrightarrow{\mathrm{I}}_{\mathrm{R}}^{+\mathrm{V}-}$	$\mathrm{V}=\mathrm{RI}$ For $\mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \alpha, \mathrm{V}=\mathrm{R} \mathrm{I}_{\mathrm{m}} \angle \alpha$, $\mathrm{P}=\frac{1}{2}\left(\mathrm{R} \mathrm{I}_{\mathrm{m}}\right) \mathrm{I}_{\mathrm{m}} \cos (\alpha-\alpha)=\frac{1}{2} \mathrm{I}_{\mathrm{m}}^{2} \mathrm{R}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}}^{2} / \mathrm{R}$
$\begin{aligned} & +\mathbf{v}- \\ & \overrightarrow{\mathbf{l}} \underset{L}{m} \end{aligned}$	$\begin{aligned} & \mathrm{V}=\mathrm{j} \omega \mathrm{LI} \\ & \text { For } \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \alpha, \mathrm{~V}=\omega \mathrm{L} \mathrm{I}_{\mathrm{m}} \angle(\alpha+\pi / 2), \\ & \mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos [(\alpha+\pi / 2)-\alpha]=0 \end{aligned}$

Average power for R, L, C

$\underset{\mathbf{l}}{+}$	General formula: $\begin{aligned} & \mathrm{V}=\mathrm{V}_{\mathrm{m}} \angle \theta, \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \phi \\ & \mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos (\theta-\phi) \end{aligned}$
	$\begin{aligned} & \mathrm{V}=\mathrm{RI} \\ & \text { For } \mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \alpha, \mathrm{~V}=\mathrm{RI}_{\mathrm{m}} \angle \alpha \\ & \mathrm{P}=\frac{1}{2}\left(\mathrm{R} \mathrm{I}_{\mathrm{m}}\right) \mathrm{I}_{\mathrm{m}} \cos (\alpha-\alpha)=\frac{1}{2} \mathrm{I}_{\mathrm{m}}^{2} \mathrm{R}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}}^{2} / \mathrm{R} \end{aligned}$
	$V=j \omega L I$ For $\mathrm{I}=\mathrm{I}_{\mathrm{m}} \angle \alpha, \mathrm{V}=\omega \mathrm{L} \mathrm{I}_{\mathrm{m}} \angle(\alpha+\pi / 2)$, $\mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos [(\alpha+\pi / 2)-\alpha]=0$
	$\begin{aligned} & \mathrm{I}=\mathrm{j} \omega \mathrm{CV} \\ & \text { For } \mathrm{V}=\mathrm{V}_{\mathrm{m}} \angle \alpha, \mathrm{I}=\omega \mathrm{CV}_{\mathrm{m}} \angle(\alpha+\pi / 2) \\ & \mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos [\alpha-(\alpha+\pi / 2)]=0 \end{aligned}$

Average power: example

Given: $I=2 \angle 45^{\circ} \mathrm{A}$
Find the average power absorbed.

Average power: example

Given: $I=2 \angle 45^{\circ} \mathrm{A}$
Find the average power absorbed.

Method 1:

$$
\begin{aligned}
\mathbf{V} & =(50+j 25) \times 2 \angle 45^{\circ} \\
& =55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ} \\
& =111.8 \angle\left(45^{\circ}+26.6^{\circ}\right)
\end{aligned}
$$

Average power: example

Given: $I=2 \angle 45^{\circ} \mathrm{A}$
Find the average power absorbed.

Method 1:

$$
\begin{aligned}
\mathbf{V} & =(50+j 25) \times 2 \angle 45^{\circ} \\
& =55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ} \\
& =111.8 \angle\left(45^{\circ}+26.6^{\circ}\right) \\
P & =\frac{1}{2} \times 111.8 \times 2 \times \cos \left(26.6^{\circ}\right)=100 \mathrm{~W}
\end{aligned}
$$

Average power: example

Given: $\mathrm{I}=2 \angle 45^{\circ} \mathrm{A}$
Find the average power absorbed.

Method 1:

$$
\begin{aligned}
\mathbf{V} & =(50+j 25) \times 2 \angle 45^{\circ} \\
& =55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ} \\
& =111.8 \angle\left(45^{\circ}+26.6^{\circ}\right) \\
P & =\frac{1}{2} \times 111.8 \times 2 \times \cos \left(26.6^{\circ}\right)=100 \mathrm{~W}
\end{aligned}
$$

Method 2:

No average power is absorbed by the inductor.
$\Rightarrow P=P_{R}$ (average power absorbed by R)

Average power: example

Given: $I=2 \angle 45^{\circ} \mathrm{A}$
Find the average power absorbed.

Method 1:

$$
\begin{aligned}
\mathbf{V} & =(50+j 25) \times 2 \angle 45^{\circ} \\
& =55.9 \angle 26.6^{\circ} \times 2 \angle 45^{\circ} \\
& =111.8 \angle\left(45^{\circ}+26.6^{\circ}\right) \\
P & =\frac{1}{2} \times 111.8 \times 2 \times \cos \left(26.6^{\circ}\right)=100 \mathrm{~W}
\end{aligned}
$$

Method 2:

No average power is absorbed by the inductor.
$\Rightarrow P=P_{R}$ (average power absorbed by R)

$$
\begin{aligned}
& =\frac{1}{2} I_{m}^{2} R=\frac{1}{2} \times 2^{2} \times 50 \\
& =100 \mathrm{~W}
\end{aligned}
$$

Maximum power transfer

Maximum power transfer

Let $\mathbf{Z}_{L}=R_{L}+j X_{L}, \mathbf{Z}_{T h}=R_{T h}+j X_{T h}$, and $\mathbf{I}=I_{m} \angle \phi$.

Maximum power transfer

Let $\mathbf{Z}_{L}=R_{L}+j X_{L}, \mathbf{Z}_{T h}=R_{T h}+j X_{T h}$, and $\mathbf{I}=I_{m} \angle \phi$.
The power absorbed by \mathbf{Z}_{L} is,

$$
P=\frac{1}{2} I_{m}^{2} R_{L}
$$

$$
=\frac{1}{2}\left|\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}\right|^{2} R_{L}
$$

$$
=\frac{1}{2} \frac{\left|\mathbf{V}_{T h}\right|^{2}}{\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}} R_{L} .
$$

Maximum power transfer

Let $\mathbf{Z}_{L}=R_{L}+j X_{L}, \mathbf{Z}_{T h}=R_{T h}+j X_{T h}$, and $\mathbf{I}=I_{m} \angle \phi$.
The power absorbed by \mathbf{Z}_{L} is,

$$
\begin{aligned}
P & =\frac{1}{2} I_{m}^{2} R_{L} \\
& =\frac{1}{2}\left|\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}\right|^{2} R_{L} \\
& =\frac{1}{2} \frac{\left|\mathbf{V}_{T h}\right|^{2}}{\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}} R_{L} .
\end{aligned}
$$

For P to be maximum, $\left(X_{T h}+X_{L}\right)$ must be zero. $\Rightarrow X_{L}=-X_{T h}$.

Maximum power transfer

Let $\mathbf{Z}_{L}=R_{L}+j X_{L}, \mathbf{Z}_{T h}=R_{T h}+j X_{T h}$, and $\mathbf{I}=I_{m} \angle \phi$.
The power absorbed by \mathbf{Z}_{L} is,

$$
\begin{aligned}
P & =\frac{1}{2} I_{m}^{2} R_{L} \\
& =\frac{1}{2}\left|\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}\right|^{2} R_{L} \\
& =\frac{1}{2} \frac{\left|\mathbf{V}_{T h}\right|^{2}}{\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}} R_{L} .
\end{aligned}
$$

For P to be maximum, $\left(X_{T h}+X_{L}\right)$ must be zero. $\Rightarrow X_{L}=-X_{T h}$.
With $X_{L}=-X_{T h}$, we have,
$P=\frac{1}{2} \frac{\left|\mathbf{V}_{T h}\right|^{2}}{\left(R_{T h}+R_{L}\right)^{2}} R_{L}$,
which is maximum for $R_{L}=R_{T h}$.

Maximum power transfer

Let $\mathbf{Z}_{L}=R_{L}+j X_{L}, \mathbf{Z}_{T h}=R_{T h}+j X_{T h}$, and $\mathbf{I}=I_{m} \angle \phi$.
The power absorbed by \mathbf{Z}_{L} is,

$$
\begin{aligned}
P & =\frac{1}{2} I_{m}^{2} R_{L} \\
& =\frac{1}{2}\left|\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}\right|^{2} R_{L} \\
& =\frac{1}{2} \frac{\left|\mathbf{V}_{T h}\right|^{2}}{\left(R_{T h}+R_{L}\right)^{2}+\left(X_{T h}+X_{L}\right)^{2}} R_{L} .
\end{aligned}
$$

For P to be maximum, $\left(X_{T h}+X_{L}\right)$ must be zero. $\Rightarrow X_{L}=-X_{T h}$.
With $X_{L}=-X_{T h}$, we have,
$P=\frac{1}{2} \frac{\left|\mathbf{V}_{T h}\right|^{2}}{\left(R_{T h}+R_{L}\right)^{2}} R_{L}$,
which is maximum for $R_{L}=R_{\text {Th }}$.
Therefore, for maximum power transfer to the load \mathbf{Z}_{L}, we need,
$R_{L}=R_{T h}, X_{L}=-X_{T h}$, i.e., $\mathbf{Z}_{L}=\mathbf{Z}_{T h}^{*}$.

Maximum power transfer: example

Maximum power transfer: example

Maximum power transfer: example

$$
\mathbf{Z}_{\text {Th }}=(-j 6) \|(4+j 3)=5.76-j 1.68 \Omega .
$$

Maximum power transfer: example

$\mathbf{Z}_{\text {Th }}=(-j 6) \|(4+j 3)=5.76-j 1.68 \Omega$.
For maximum power transfer, $\mathbf{Z}_{L}=\mathbf{Z}_{T h}^{*}=5.76+j 1.68 \Omega \equiv R_{L}+j X_{L}$.

Maximum power transfer: example

$\mathbf{Z}_{T h}=(-j 6) \|(4+j 3)=5.76-j 1.68 \Omega$.
For maximum power transfer, $\mathbf{Z}_{L}=\mathbf{Z}_{T h}^{*}=5.76+j 1.68 \Omega \equiv R_{L}+j X_{L}$.
$\mathbf{V}_{T h}=16 \angle 0^{\circ} \times \frac{-j 6}{(4+j 3)+(-j 6)}=19.2 \angle\left(-53.13^{\circ}\right)$.

Maximum power transfer: example

$\mathbf{Z}_{\text {Th }}=(-j 6) \|(4+j 3)=5.76-j 1.68 \Omega$.
For maximum power transfer, $\mathbf{Z}_{L}=\mathbf{Z}_{T h}^{*}=5.76+j 1.68 \Omega \equiv R_{L}+j X_{L}$.
$\mathbf{v}_{T h}=16 \angle 0^{\circ} \times \frac{-j 6}{(4+j 3)+(-j 6)}=19.2 \angle\left(-53.13^{\circ}\right)$.
$\mathbf{I}=\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}=\frac{\mathbf{V}_{T h}}{2 R_{L}}$.

Maximum power transfer: example

$\mathbf{Z}_{T h}=(-j 6) \|(4+j 3)=5.76-j 1.68 \Omega$.
For maximum power transfer, $\mathbf{Z}_{L}=\mathbf{Z}_{T h}^{*}=5.76+j 1.68 \Omega \equiv R_{L}+j X_{L}$.
$\mathbf{V}_{T h}=16 \angle 0^{\circ} \times \frac{-j 6}{(4+j 3)+(-j 6)}=19.2 \angle\left(-53.13^{\circ}\right)$.
$\mathbf{I}=\frac{\mathbf{V}_{T h}}{\mathbf{Z}_{T h}+\mathbf{Z}_{L}}=\frac{\mathbf{V}_{T h}}{2 R_{L}}$.
$P=\frac{1}{2} I_{m}^{2} R_{L}=\frac{1}{2}\left(\frac{19.2}{2 R_{L}}\right)^{2} \times R_{L}=\frac{1}{2} \frac{(19.2)^{2}}{4 R_{L}}=8 \mathrm{~W}$.

Effective (rms) values of voltage/current

time-varying v and i
$+V_{\text {eff }}-$

constant v and i

Consider a periodic current $i(t)$ passing through R.

Effective (rms) values of voltage/current

time-varying v and i

constant v and i

Consider a periodic current $i(t)$ passing through R.
The average power absorbed by R is,
$P_{1}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T}[i(t)]^{2} R d t$,
where t_{0} is some reference time (we will take t_{0} to be 0).

Effective (rms) values of voltage/current

time-varying v and i

constant v and i

Consider a periodic current $i(t)$ passing through R.
The average power absorbed by R is,
$P_{1}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T}[i(t)]^{2} R d t$,
where t_{0} is some reference time (we will take t_{0} to be 0).
The average power absorbed by R in the DC case is, $P_{2}=I_{\text {eff }}^{2} R$.

Effective (rms) values of voltage/current

time-varying v and i

constant v and i

Consider a periodic current $i(t)$ passing through R.
The average power absorbed by R is,
$P_{1}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T}[i(t)]^{2} R d t$,
where t_{0} is some reference time (we will take t_{0} to be 0).
The average power absorbed by R in the DC case is,
$P_{2}=I_{\text {eff }}^{2} R$.
$I_{\text {eff }}$, the effective value of $i(t)$, is defined such that $P_{1}=P_{2}$, i.e.,
$l_{\text {eff }}^{2} R=\frac{1}{T} \int_{0}^{T}[i(t)]^{2} R d t$,
$I_{e f f}=\sqrt{\frac{1}{T} \int_{0}^{T}[i(t)]^{2} d t}$.

Effective (rms) values of voltage/current

time-varying v and i
$+\mathrm{V}_{\text {eff }}-$

constant v and i
$I_{\text {eff }}=\sqrt{\frac{1}{T} \int_{0}^{T}[i(t)]^{2} d t}$.
$I_{\text {eff }}$ is called the root-mean-square (rms) value of $i(t)$ because of the operations (root, mean, and square) involved in its computation.

Effective (rms) values of voltage/current

$$
\xrightarrow[\mathrm{i}(\mathrm{t}) \mathrm{R}]{+\mathrm{v}(\mathrm{t})-}
$$

time-varying v and i

$$
+V_{\text {eff }}-
$$

constant v and i
$l_{\text {eff }}=\sqrt{\frac{1}{T} \int_{0}^{T}[i(t)]^{2} d t}$.
$I_{\text {eff }}$ is called the root-mean-square (rms) value of $i(t)$ because of the operations (root, mean, and square) involved in its computation.
If $i(t)$ is sinusoidal, i.e., $i(t)=I_{m} \cos (\omega t+\phi)$,

$$
\begin{aligned}
I_{e f f} & =\sqrt{\frac{1}{T} \int_{0}^{T} I_{m}^{2} \cos ^{2}(\omega t+\phi) d t}=I_{m} \sqrt{\frac{1}{T} \int_{0}^{T} \frac{1}{2}[1+\cos (2 \omega t+2 \phi)] d t} \\
& =I_{m} \sqrt{\frac{1}{T} \frac{1}{2} T}=I_{m} / \sqrt{2} .
\end{aligned}
$$

Effective (rms) values of voltage/current

$$
\xrightarrow[\mathrm{i}(\mathrm{t}) \mathrm{R}]{+\mathrm{v}(\mathrm{t})-}
$$

time-varying v and i

$$
+V_{\text {eff }}-
$$

constant v and i
$l_{\text {eff }}=\sqrt{\frac{1}{T} \int_{0}^{T}[i(t)]^{2} d t}$.
$I_{\text {eff }}$ is called the root-mean-square (rms) value of $i(t)$ because of the operations (root, mean, and square) involved in its computation.
If $i(t)$ is sinusoidal, i.e., $i(t)=I_{m} \cos (\omega t+\phi)$,

$$
\begin{aligned}
I_{\text {eff }} & =\sqrt{\frac{1}{T} \int_{0}^{T} I_{m}^{2} \cos ^{2}(\omega t+\phi) d t}=I_{m} \sqrt{\frac{1}{T} \int_{0}^{T} \frac{1}{2}[1+\cos (2 \omega t+2 \phi)] d t} \\
& =I_{m} \sqrt{\frac{1}{T} \frac{1}{2} T}=I_{m} / \sqrt{2} .
\end{aligned}
$$

Similarly, $V_{\text {eff }}=V_{m} / \sqrt{2}$.

The average ("real") power absorbed by \mathbf{Z} is,

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi)(\text { Watts })
\end{aligned}
$$

The average ("real") power absorbed by \mathbf{Z} is,

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi)(\text { Watts })
\end{aligned}
$$

Apparent power is defined as $P_{\text {app }}=V_{\text {eff }} l_{\text {eff }}$ (Volt-Amp).

The average ("real") power absorbed by \mathbf{Z} is,

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi)(\text { Watts })
\end{aligned}
$$

Apparent power is defined as $P_{\text {app }}=V_{\text {eff }} l_{\text {eff }}$ (Volt-Amp).
Power factor is defined as P.F. $=\frac{\text { Average power }}{\text { Apparent power }}=\cos (\theta-\phi)$.

The average ("real") power absorbed by \mathbf{Z} is,

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi)(\text { Watts })
\end{aligned}
$$

Apparent power is defined as $P_{\text {app }}=V_{\text {eff }} l_{\text {eff }}$ (Volt-Amp).
Power factor is defined as P.F. $=\frac{\text { Average power }}{\text { Apparent power }}=\cos (\theta-\phi)$.
$(\theta-\phi)>0: i(t)$ lags $v(t)$, the P. F. is called a lagging P. F. (inductive impedance)

The average ("real") power absorbed by \mathbf{Z} is,

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi)(\text { Watts })
\end{aligned}
$$

Apparent power is defined as $P_{\text {app }}=V_{\text {eff }} l_{\text {eff }}$ (Volt-Amp).
Power factor is defined as P.F. $=\frac{\text { Average power }}{\text { Apparent power }}=\cos (\theta-\phi)$.
$(\theta-\phi)>0: i(t)$ lags $v(t)$, the P. F. is called a lagging P. F. (inductive impedance)
$(\theta-\phi)<0: i(t)$ leads $v(t)$, the P. F. is called a leading P. F. (capacitive impedance)

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}$ (rms), $\mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$. Find $P_{\text {app }}$, P.F., and P.

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}$ (rms), $\mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.

$$
P_{a p p}=120 \times 2=240 V-A .
$$

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}(\mathrm{rms}), \mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{\text {app }}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging $($ since \mathbf{I} lags $\mathbf{V})$.

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}(\mathrm{rms}), \mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{a p p}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging (since \mathbf{I} lags $\left.\mathbf{V}\right)$.
$P=P_{a p p} \times$ P.F. $=192 \mathrm{~W}$.

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}$ (rms), $\mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{\text {app }}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging (since \mathbf{I} lags $\left.\mathbf{V}\right)$.
$P=P_{\text {app }} \times$ P.F. $=192 \mathrm{~W}$.
2. Given: $P=50 \mathrm{~kW}, \mathrm{P} . \mathrm{F} .=0.95$ (lagging), $\mathbf{V}=480 \angle 0^{\circ} \mathrm{V}$ (rms).

Find I.

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}(\mathrm{rms}), \mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{\text {app }}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging (since \mathbf{I} lags $\left.\mathbf{V}\right)$.
$P=P_{\text {app }} \times$ P.F. $=192 \mathrm{~W}$.
2. Given: $P=50 \mathrm{~kW}, \mathrm{P} . \mathrm{F} .=0.95$ (lagging), $\mathbf{V}=480 \angle 0^{\circ} \mathrm{V}$ (rms).

Find I.
$V_{\text {eff }} \times I_{\text {eff }} \times$ P.F $=50 \times 10^{3}$

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}(\mathrm{rms}), \mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{\text {app }}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging (since \mathbf{I} lags $\left.\mathbf{V}\right)$.
$P=P_{\text {app }} \times$ P.F. $=192 \mathrm{~W}$.
2. Given: $P=50 \mathrm{~kW}$, P.F. $=0.95$ (lagging), $\mathbf{V}=480 \angle 0^{\circ} \mathrm{V}$ (rms).

Find I.
$V_{\text {eff }} \times I_{\text {eff }} \times \mathrm{P} . \mathrm{F}=50 \times 10^{3}$
$l_{\text {eff }}=\frac{50 \times 10^{3}}{480 \times 0.95}=109.6 \mathrm{~A}$.

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}(\mathrm{rms}), \mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{\text {app }}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging (since \mathbf{I} lags $\left.\mathbf{V}\right)$.
$P=P_{\text {app }} \times$ P.F. $=192 \mathrm{~W}$.
2. Given: $P=50 \mathrm{~kW}$, P.F. $=0.95$ (lagging), $\mathbf{V}=480 \angle 0^{\circ} \mathrm{V}(\mathrm{rms})$.

Find I.
$V_{\text {eff }} \times I_{\text {eff }} \times \mathrm{P} . \mathrm{F}=50 \times 10^{3}$
$l_{\text {eff }}=\frac{50 \times 10^{3}}{480 \times 0.95}=109.6 \mathrm{~A}$.
Since P.F. is 0.95 (lagging), I lags \mathbf{V} by $\cos ^{-1}(0.95)=18.2^{\circ}$.

Power factor: examples

1. Given: $\mathbf{V}=120 \angle 0^{\circ} \mathrm{V}(\mathrm{rms}), \mathbf{I}=2 \angle\left(-36.9^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Find $P_{\text {app }}$, P.F., and P.
$P_{\text {app }}=120 \times 2=240 V-A$.
P.F. $=\cos \left(0^{\circ}-\left(-36.9^{\circ}\right)\right)=0.8$ lagging (since \mathbf{I} lags $\left.\mathbf{V}\right)$.
$P=P_{\text {app }} \times$ P.F. $=192 \mathrm{~W}$.
2. Given: $P=50 \mathrm{~kW}$, P.F. $=0.95$ (lagging), $\mathbf{V}=480 \angle 0^{\circ} \mathrm{V}(\mathrm{rms})$.

Find I.
$V_{\text {eff }} \times I_{\text {eff }} \times \mathrm{P} . \mathrm{F}=50 \times 10^{3}$
$l_{\text {eff }}=\frac{50 \times 10^{3}}{480 \times 0.95}=109.6 \mathrm{~A}$.
Since P.F. is 0.95 (lagging), I lags \mathbf{V} by $\cos ^{-1}(0.95)=18.2^{\circ}$.
$\Rightarrow \mathbf{I}=109.6 \angle\left(-18.2^{\circ}\right) \mathrm{A}(\mathrm{rms})$.

Why is power factor important?

Consider a simplified model of a power system consisting of a generator $\left(\mathbf{V}_{s}\right)$, transmission line (R), and load (\mathbf{Z}_{L}).
The load is specified as $P=50 \mathrm{~kW}$, P.F. $=0.6$ (lagging), $\mathbf{V}_{L}=480 \angle 0^{\circ} V$ (rms).
Note: lagging power factors are typical of industrial loads (motors).

Why is power factor important?

Consider a simplified model of a power system consisting of a generator $\left(\mathbf{V}_{s}\right)$, transmission line (R), and load (\mathbf{Z}_{L}).
The load is specified as $P=50 \mathrm{~kW}$, P.F. $=0.6$ (lagging), $\mathbf{V}_{L}=480 \angle 0^{\circ} V$ (rms).
Note: lagging power factors are typical of industrial loads (motors).

$$
P=50 \times 10^{3} \mathrm{~W}=\left|\mathbf{V}_{L}\right| \times\left|\mathbf{I}_{L}\right| \times \text { P.F. } \Rightarrow\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.6}=173.6 A(\mathrm{rms}) .
$$

Why is power factor important?

Consider a simplified model of a power system consisting of a generator $\left(\mathbf{V}_{s}\right)$, transmission line (R), and load (\mathbf{Z}_{L}).
The load is specified as $P=50 \mathrm{~kW}$, P.F. $=0.6$ (lagging), $\mathbf{V}_{L}=480 \angle 0^{\circ} V$ (rms).
Note: lagging power factors are typical of industrial loads (motors).
$P=50 \times 10^{3} \mathrm{~W}=\left|\mathbf{V}_{L}\right| \times\left|\mathbf{I}_{L}\right| \times$ P.F. $\Rightarrow\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.6}=173.6 \mathrm{~A}(\mathrm{rms})$.
Power loss in the transmission line $P_{\text {loss }}=\left|\mathbf{I}_{L}\right|^{2} R=(173.6)^{2} \times 0.1=\underline{3 \mathrm{~kW}}$.

Why is power factor important?

Consider a simplified model of a power system consisting of a generator $\left(\mathbf{V}_{s}\right)$, transmission line (R), and load (\mathbf{Z}_{L}).
The load is specified as $P=50 \mathrm{~kW}$, P.F. $=0.6$ (lagging), $\mathbf{V}_{L}=480 \angle 0^{\circ} V$ (rms).
Note: lagging power factors are typical of industrial loads (motors).
$P=50 \times 10^{3} \mathrm{~W}=\left|\mathbf{V}_{L}\right| \times\left|\mathbf{I}_{L}\right| \times$ P.F. $\Rightarrow\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.6}=173.6 \mathrm{~A}(\mathrm{rms})$.
Power loss in the transmission line $P_{\text {loss }}=\left|\mathbf{I}_{\mathrm{L}}\right|^{2} R=(173.6)^{2} \times 0.1=\underline{3 \mathrm{~kW}}$.
If the load power factor was 0.95 (lagging), we would have
$\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.95}=109.6 \mathrm{~A}(\mathrm{rms})$, and $P_{\text {loss }}=(109.6)^{2} \times 0.1=\underline{1.2 \mathrm{~kW}}$.

Why is power factor important?

Consider a simplified model of a power system consisting of a generator $\left(\mathbf{V}_{s}\right)$, transmission line (R), and load (\mathbf{Z}_{L}).
The load is specified as $P=50 \mathrm{~kW}$, P.F. $=0.6$ (lagging), $\mathbf{V}_{L}=480 \angle 0^{\circ} V$ (rms). Note: lagging power factors are typical of industrial loads (motors).
$P=50 \times 10^{3} \mathrm{~W}=\left|\mathbf{V}_{L}\right| \times\left|\mathbf{I}_{L}\right| \times$ P.F. $\Rightarrow\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.6}=173.6 \mathrm{~A}(\mathrm{rms})$.
Power loss in the transmission line $P_{\text {loss }}=\left|\mathbf{I}_{L}\right|^{2} R=(173.6)^{2} \times 0.1=\underline{3 \mathrm{~kW}}$.
If the load power factor was 0.95 (lagging), we would have
$\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.95}=109.6 \mathrm{~A}(\mathrm{rms})$, and $P_{\text {loss }}=(109.6)^{2} \times 0.1=\underline{1.2 \mathrm{~kW}}$.
Thus, a higher power factor can substantially reduce transmission losses.

Why is power factor important?

Consider a simplified model of a power system consisting of a generator $\left(\mathbf{V}_{s}\right)$, transmission line (R), and load (\mathbf{Z}_{L}).
The load is specified as $P=50 \mathrm{~kW}$, P.F. $=0.6$ (lagging), $\mathbf{V}_{L}=480 \angle 0^{\circ} V$ (rms).
Note: lagging power factors are typical of industrial loads (motors).
$P=50 \times 10^{3} \mathrm{~W}=\left|\mathbf{V}_{L}\right| \times\left|\mathbf{I}_{L}\right| \times$ P.F. $\Rightarrow\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.6}=173.6 \mathrm{~A}(\mathrm{rms})$.
Power loss in the transmission line $P_{\text {loss }}=\left|\mathbf{I}_{L}\right|^{2} R=(173.6)^{2} \times 0.1=\underline{3 \mathrm{~kW}}$.
If the load power factor was 0.95 (lagging), we would have
$\left|\mathbf{I}_{L}\right|=\frac{50 \times 10^{3}}{480 \times 0.95}=109.6 \mathrm{~A}(\mathrm{rms})$, and $P_{\text {loss }}=(109.6)^{2} \times 0.1=\underline{1.2 \mathrm{~kW}}$.
Thus, a higher power factor can substantially reduce transmission losses.
The effective power factor of an inductive load can be improved by connecting a suitable capacitance in parallel.

Power computation: home work

* Find $\mathbf{I}_{1}, \mathbf{I}_{2}, \mathbf{I}_{s}$.
* Compute the average power absorbed by each element.
* Verify power balance.
(SEQUEL file: ee101_phasors_2.sqproj)

