
Chapter 4

Frequency response and Bode plots

4.1 Background

The transfer function1 H(s) = Vo(s)/Vi(s) of a system conveys important information about
the gain and stability of the system. Bode plots provide an approximate picture of a given
H(s) from which a reasonable idea of the gain of the system and its stability properties can be
obtained. The Bode magnitude and phase plots are graphs of |H(jω)| and ∠H(jω) versus
log ω (or log f), respectively.
With Bode plots, we are interested in tracking variation of ω or |H| over several orders of
magnitude. Linear axes are not appropriate in such cases because all smaller values of ω or |H|
would then get compressed to such an extent that they cannot be resolved satisfactorily. As an
example, consider the linear ω axis shown in Fig. 4.1. If we plot a function (e.g., |H(ω)|) using
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Figure 4.1: A linear ω axis.

this axis, it will be impossible to distinguish, for example, between the function values for
ω = 8 × 101 rad/s and ω = 5 × 102 rad/s because they will both appear very close to the
ω = 0 rad/s point.
Fig. 4.2 shows a logarithmic axis for ω in various formats such that they are vertically aligned.
For example, the points A, B, C represent the same frequency value, viz., ω = 1.8 × 102 rad/s
or f = 1.13 × 103 Hz. Note that each decade in frequency is well resolved with a log axis,
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Figure 4.2: Logarithmic ω axes.

1We will use H(s), H(jω), and H(ω) interchangeably.
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irrespective of whether the frequency values are low or high, allowing good resolution of the
data (|H| or ∠H) at all frequencies.
The magnitude of a typical transfer function |H(s)| also varies by orders of magnitude with ω,
and therefore it makes sense to us a log axis for |H(s)| as well. Fig. 4.3 shows two equivalent
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Figure 4.3: Logarithmic |H| axes.

|H| axes which are horizontally aligned. For example, the points A and B represent the same

value of |H|, viz., |H|= 50 or |H|= 34 dB.
We now discuss how Bode plots are obtained for a given H(ω). Consider H(ω) = H1(ω)H2(ω),
where H(ω) = A(ω) ejφ(ω), H1(ω) = A1(ω) ejφ1(ω), H2(ω) = A2(ω) ejφ2(ω). Multiplying H1(ω) and
H2(ω), we get,

H(ω) = A(ω) ejφ(ω) = A1(ω)A2(ω) ej(φ1(ω)+φ2(ω)), (4.1)

resulting in |H|(ω) = |H1(ω)| × |H2(ω)| , i.e.,

20 log |H(ω)| = 20 log |H1(ω)| + 20 log |H2(ω)| . (4.2)

In other words, the magnitude of H(ω) in dB is the sum of the magnitudes of H1(ω) and
H2(ω) in dB. Also, from Eq. 4.1, it can be seen that

φ(ω) = φ1(ω) + φ2(ω) , (4.3)

i.e., the angle (phase) of H(ω) is the sum of the angles of H1(ω) and H2(ω). These results
enable us to construct the Bode plot for a given H(ω) in terms of the magnitude and angle
plots of its factors, H1(ω), H2(ω), etc. We now look at a few typical factors.

1. H(s) = K (a constant): For this function, the magnitude in dB is a constant, viz.,
20 log |K|. The phase is 0 (if K > 0) or π (if K < 0), irrespective of the frequency.

2. H(s) = s = jω : For this function, |H| = ω, and 20 log |H|= 20 log ω. The following
observations help us in plotting |H(ω)| and ∠H(ω).

(i) For ω = 1 rad/s, |H| (in dB)=20 log (1) = 0 dB.
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(ii) Consider ω1 and ω2 such that ω2 = 10 × ω1. Then
|H(ω2)| (dB) = 20 log ω2 = 20 log 10ω1 = 20 + 20 log ω1 = 20 + |H(ω1)| (dB) ,
which means that, if the frequency is increased by one order of magnitude, |H| in-
creases by 20 dB. Equivalently, the graph of |H| (in dB) versus log ω has a slope of
20 dB/decade.

From (i) and (ii), we conclude that the graph of |H| in dB versus log ω is a straight line
passing through (1 rad/s, 0 dB), with a slope of 20 dB/dec, as shown in Fig. 4.4 (a).

(iii) Since H(jω) = jω, a purely imaginary number, ∠H is always equal to π/2 (see
Fig. 4.4 (b)).
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Figure 4.4: (a) |H| (in dB) and (b) ∠H (in degrees) versus log ω for H(s)= s.

3. H(s) = 1/s = 1/jω : For this function, |H| = 1/ω, giving
20 log |H|= 20 log(1/ω) = −20 log ω, and ∠H is always −π/2, irrespective of the
frequency. Note that |H| is 0 dB for ω = 1 rad/s and goes down by 20 dB as ω is increased
by one order, which means that the plot of |H| (dB) versus log ω is a straight line going
through (1 rad/s, 0 dB), with a slope of −20 dB/dec. The magnitude and angle plots are
shown in Figs. 4.5 (a) and (b), respectively.
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Figure 4.5: (a) |H| (in dB) and (b) ∠H (in degrees) versus log ω for H(s)= 1/s.

4. H(s) = s2 =−ω2 : For this function, the phase is always π (equivalently, −π) rad. For the
magnitude plot, we note that, for ω = 1 rad/s, |H|= 0 dB, and
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|H| (dB) = 20 log ω2 = 40 log ω. If ω is increased by a factor of 10, |H| increases by
40 dB. The plot of |H| (dB) versus log ω is therefore a straight line passing through
(1 rad/s, 0 dB), with a slope of 40 dB/dec. The magnitude and angle plots are shown in
Figs. 4.6 (a) and (b), respectively.
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Figure 4.6: (a) |H| (in dB) and (b) ∠H (in degrees) versus log ω for H(s)= s2.

5. H(s) = 1/s2 =−1/ω2 : For this function, the phase is always π (equivalently, −π) rad.
For the magnitude plot, we note that, for ω = 1 rad/s, |H|= 0 dB, and
|H| (dB) = 20 log (1/ω2) =−40 log ω. If ω is increased by a factor of 10, |H| decreases by
40 dB. The plot of |H| (dB) versus log ω is therefore a straight line passing through
(1 rad/s, 0 dB), with a slope of −40 dB/dec. The magnitude and angle plots are shown in
Figs. 4.7 (a) and (b), respectively.
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Figure 4.7: (a) |H| (in dB) and (b) ∠H (in degrees) versus log ω for H(s)= 1/s2.

6. H(s) = a0 + a1s : Let us first discuss the case where a0 > 0, a1 > 0, and rewrite

H(s) = a0H1(s), where H1(s) = 1 +
a1

a0

s, i.e., H1(jω) = 1 + j
ω

ω0

, with ω0 =
a0

a1

. Note that

∠H(s) = ∠H1(s), since a0 is a positive constant. For the magnitude of H(s), we have

|H(s)| = a0 |H1(s)| = a0

√

1 +

(

ω

ω0

)2

, (4.4)

20 log |H(s)| = 20 log a0 + 20 log |H1(s)| , (4.5)
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i.e., the |H(s)| plot (in dB) is the same as the |H1(s)| plot (in dB) except for an upward
shift2 of 20 log a0. It suffices therefore to consider only H1(s) in the following.

|H1(s)| =

√

1 +

(

ω

ω0

)2







≈ 1 for ω ≪ ω0

≈ ω/ω0 for ω ≫ ω0

(4.6)

Eq. 4.6 gives us the asymptotes for |H1(s)|. In units of dB, |H1(s)| is given by

20 log |H1(s)|







≈ 0 dB for ω ≪ ω0

≈ 20 log
ω

ω0

for ω ≫ ω0

(4.7)

The first asymptote is simply a horizontal line in the magnitude plot, the second is a
straight line going through (ω0, 0 dB) with a slope of 20 dB/dec. The net magnitude plot
for H1(s) is obtained by using asymptote 1 for ω ≤ ω0 and asymptote 2 for ω ≥ ω0 (see
Fig. 4.8 (a)).

asymptote 2
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Figure 4.8: (a) |H1| (in dB) and (b) ∠H1 (in degrees) versus log ω for H1(s)= 1+(s/ω0),
with ω0 = 10 rad/s. Solid line: Bode approximation, Dashed line: exact result

For the phase H1(jω) = 1 + j
ω

ω0

, we have

∠H1(jω) = tan−1

(

ω

ω0

)

. (4.8)

In the limiting case of ω ≪ ω0, ∠H1 ≈ 0 , and in the other limiting case of ω ≫ ω0,
∠H1 ≈ π/2 . In the Bode approximation, we say that

∠H1















= 0 for ω/ω0 ≤ 0.1

= π/2 for ω/ω0 ≥ 10

varies linearly with log ω for 0.1 < ω/ω0 < 10

(4.9)

2If a0 < 1, 20 log a0 < 0, and the shift is actually downward.
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For ω = ω0, i.e., ω/ω0 = 1, ∠H1(jω) is π/4 (see Eq. 4.8). The Bode approximation also
gives π/4 at ω = ω0 (show this). The phase plot is shown in Fig. 4.8 (b).

What happens if H(s) = a0 + a1s as before, but a0 and a1 are not both positive? Let us
take an example of this case, H(s) =−2 + 0.1 s, i.e., H(jω) = 2(−1 + jω/20). For this
function,

|H| = 2

√

1 +

(

ω

ω0

)2

, (4.10)

which is identical in form to Eq. 4.4, and no special consideration is required to handle
the negative sign of a0. For the phase plot, we have

∠H(jω) = ∠(−1 + jω/ω0). (4.11)

The complex number in the brackets now falls in the second quadrant, giving the
following Bode approximation:

∠H















= π for ω/ω0 ≤ 0.1

= π/2 for ω/ω0 ≥ 10

varies linearly with log ω for 0.1 < ω/ω0 < 10

(4.12)

7. H(s) = 1/(b0 + b1s) : Let us first discuss the case where b0 > 0, b1 > 0, and rewrite

H(s) = 1
b0

H1(s), where H1(s) =
1

1 + b1
b0

s
, i.e., H1(jω) =

1

1 + j ω
ω0

, with ω0 = b0
b1

. Note that

∠H(s) = ∠H1(s), since b0 is a positive constant. For the magnitude of H(s), we have

|H(s)| =
1

b0

|H1(s)| =
1

b0

1
√

1 + (ω/ω0)
2
, (4.13)

20 log |H(s)| = −20 log b0 + 20 log |H1(s)| , (4.14)

i.e., the |H(s)| plot (in dB) is the same as the |H1(s)| plot (in dB) except for a downward
shift3 of 20 log b0. It suffices therefore to consider only H1(s) in the following.

|H1(s)| =
1

√

1 + (ω/ω0)
2







≈ 1 for ω ≪ ω0

≈ ω0/ω for ω ≫ ω0

(4.15)

Eq. 4.15 gives us the asymptotes for |H1(s)|. In units of dB, |H1(s)| is given by

20 log |H1(s)|







≈ 0 dB for ω ≪ ω0

≈ − 20 log
ω

ω0

for ω ≫ ω0

(4.16)

The first asymptote is simply a horizontal line in the magnitude plot, the second is a
straight line going through (ω0, 0 dB) with a slope of −20 dB/dec. The net magnitude

3If b0 < 1, 20 log b0 < 0, and the shift is actually upward.
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plot for H1(s) is obtained by using asymptote 1 for ω ≤ ω0 and asymptote 2 for ω ≥ ω0

(see Fig. 4.9 (a)).

For the phase H1(jω) = 1/(1 + jω/ω0) , we have

∠H1(jω) = − tan−1

(

ω

ω0

)

. (4.17)

In the limiting case of ω ≪ ω0, ∠H1 ≈ 0 , and in the other limiting case of ω ≫ ω0,
∠H1 ≈ −π/2 . In the Bode approximation, we say that

∠H1















= 0 for ω/ω0 ≤ 0.1

= − π/2 for ω/ω0 ≥ 10

varies linearly with log ω for 0.1 < ω/ω0 < 10

(4.18)

For ω = ω0, i.e., ω/ω0 = 1, ∠H1(jω) is −π/4 (see Eq. 4.17). The Bode approximation also
gives −π/4 at ω = ω0 (show this). The phase plot is shown in Fig. 4.9 (b).

The case where b0 and b1 are not both positive is left for the reader to work out.
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Figure 4.9: (a) |H1| (in dB) and (b) ∠H1 (in degrees) versus log ω for
H1(s)= 1/(1 + (s/ω0)), with ω0 = 10 rad/s. Solid line: Bode approximation, Dashed
line: exact result

8. H(s) = a0 + a1s + a2s
2 : The nature of the Bode plots for this function depends on

whether ∆ = a2
1 − 4a0a2 is positive, zero, or negative. Let us consider these cases

separately.

(i) ∆ > 0: In this case, the roots of the quadratic r1, r2 are real and unequal, and we
can write

H(s) = a2 (s − r1)(s − r2) . (4.19)

The magnitude and phase Bode plots for H(s) can be obtained by plotting the
three terms separately and adding them up.
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(ii) ∆ = 0: In this case, the roots are real and equal, i.e., r1 = r2 = r, and we have

H(s) = a2 (s − r)(s − r) . (4.20)

Again, the magnitude and phase Bode plots for H(s) can be obtained by plotting
the three terms separately and adding them up.

(iii) ∆ < 0: For this condition, the roots are complex conjugates, and we can write H(s)
as

H(s) = a0

[

1 + 2 ζ (s/ω0) + (s/ω0)
2] ≡ a0H1(s) , (4.21)

where ω0 =
√

a0/a2, and ζ = a1ω0/(2a0). Note that 0 ≤ ζ < 1 since ∆ < 0 (show
this).

(a) ζ = 0: In this case, we have

H1(s) =
[

1 + (s/ω0)
2] =

[

1 − (ω/ω0)
2] . (4.22)

For ω ≪ ω0, we get |H1|= 0 dB, a horizontal line. For ω ≫ ω0, we get
|H1|= 20 log(ω/ω0)

2, a straight line passing through (ω0, 0 dB) with a slope of
40 dB/dec. The phase of H1(s) is 0 if ω/ω0 < 1 or π if ω/ω0 > 1, and no
interpolation is required in the Bode approximation.

(b) ζ 6= 0: In this case, we have from Eq. 4.21,

20 log |H1(s)| =
∣

∣1 − (ω/ω0)
2 + j2 ζ (ω/ω0)

∣

∣







≈ 0 dB for ω ≪ ω0

≈ 40 log
ω

ω0

for ω ≫ ω0

(4.23)
The first asymptote is simply a horizontal line in the magnitude plot, the
second is a straight line going through (ω0, 0 dB) with a slope of 40 dB/dec.
For the phase, we note that

H1(jω) = 1 − (ω/ω0)
2 + j2 ζ (ω/ω0) , (4.24)

∠H1(jω) = tan−1

(

2 ζ ω/ω0

1 − (ω/ω0)2

)

. (4.25)

In the limiting case of ω ≪ ω0, ∠H1 ≈ 0 , and in the other limiting case of
ω ≫ ω0, ∠H1 ≈ π . In the Bode approximation, we say that

∠H1















= 0 for ω/ω0 ≤ 0.1

= π for ω/ω0 ≥ 10

varies linearly with log ω for 0.1 < ω/ω0 < 10

(4.26)

For ω = ω0, i.e., ω/ω0 = 1, ∠H1(jω) is π/2 (see Eq. 4.25). The Bode
approximation also gives π/2 at ω = ω0 (show this).
Fig. 4.10 shows the magnitude and angle plots for H1(s) for ζ 6= 0. The exact
results are also shown for comparison.
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Bode approx.

Bode approx.
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 0.1  1  10  100  1000  0.1  1  10  100  1000
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω0ω0

6
H

1
(d

eg
)

|H
1
|(

d
B

)

ω (rad/s) ω (rad/s)

ω0/10 10 ω0

0

40

80

0

60

180

120

ζ =0.1
ζ =0.5

ζ =0.1

ζ =0.9
ζ =0.9

ζ =0.5

Figure 4.10: (a) |H1| (in dB) and (b) ∠H1 (in degrees) versus log ω for
H1(s)= 1 + 2 ζ(s/ω0) + (s/ω0)

2, with ω0 = 10 rad/s. Solid line: Bode approxima-
tion, Dashed lines: exact result

9. H(s) = 1/(b0 + b1s + b2s
2) : The nature of the Bode plots for this function depends on

whether ∆ = b2
1 − 4b0b2 is positive, zero, or negative. Let us consider these cases

separately.

(i) ∆ > 0: In this case, the roots of the quadratic r1, r2 are real and unequal, and we
can write

H(s) =
1

b2

1

(s − r1)

1

(s − r2)
. (4.27)

The magnitude and phase Bode plots for H(s) can be obtained by plotting the
three terms separately and adding them up.

(ii) ∆ = 0: In this case, the roots are real and equal, i.e., r1 = r2 = r, and we have

H(s) =
1

b2

1

(s − r)

1

(s − r)
. (4.28)

Again, the magnitude and phase Bode plots for H(s) can be obtained by plotting
the three terms separately and adding them up.

(iii) ∆ < 0: For this condition, the roots are complex conjugates, and we can write H(s)
as

H(s) =
1

b0

1
[

1 + 2 ζ (s/ω0) + (s/ω0)
2] ≡

1

b0

H1(s) , (4.29)

where ω0 =
√

b0/b2, and ζ = b1ω0/(2b0). Note that 0 ≤ ζ < 1 since ∆ < 0 (show
this).

(a) ζ = 0: In this case, we have

H1(s) =
1

[

1 + (s/ω0)
2 ] =

1
[

1 − (ω/ω0)
2 ]

.
(4.30)

For ω ≪ ω0, we get |H1|= 0 dB, a horizontal line. For ω ≫ ω0, we get
|H1|=−20 log(ω/ω2)

2, a straight line passing through (ω0, 0 dB) with a slope of
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−40 dB/dec. The phase of H1(s) is 0 if ω/ω0 < 1 or π if ω/ω0 > 1, and no
interpolation is required in the Bode approximation.

(b) ζ 6= 0: In this case, we have from Eq. 4.29,

20 log |H1(s)| =
1

∣

∣1 − (ω/ω0)
2 + j2 ζ (ω/ω0)

∣

∣







≈ 0 dB for ω ≪ ω0

≈ 40 log
ω0

ω
for ω ≫ ω0

(4.31)
The first asymptote is simply a horizontal line in the magnitude plot, the
second is a straight line going through (ω0, 0 dB) with a slope of −40 dB/dec.
For the phase, we note that

H1(jω) =
1

1 − (ω/ω0)
2 + j2 ζ (ω/ω0)

, (4.32)

∠H1(jω) = − tan−1

(

2 ζ ω/ω0

1 − (ω/ω0)2

)

. (4.33)

In the limiting case of ω ≪ ω0, ∠H1 ≈ 0 , and in the other limiting case of
ω ≫ ω0, ∠H1 ≈ −π . In the Bode approximation, we say that

∠H1















= 0 for ω/ω0 ≤ 0.1

= − π for ω/ω0 ≥ 10

varies linearly with log ω for 0.1 < ω/ω0 < 10

(4.34)

For ω = ω0, i.e., ω/ω0 = 1, ∠H1(jω) is −π/2 (see Eq. 4.33). The Bode
approximation also gives −π/2 at ω = ω0 (show this).
Fig. 4.11 shows the magnitude and angle plots for H1(s) for ζ 6= 0. The exact
results are also shown for comparison.

Bode approx.
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imation, Dashed lines: exact result
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4.2 Examples

1. Construct the magnitude and phase Bode plots for H(s) =
20 (s + 10)

(s + 100)
.

To get an idea of the corner frequencies, we rewrite H(s) as

H(s) =
2(1 + (s/10))

(1 + (s/100))
= 2(1 + (s/10))

1

(1 + (s/100))
≡ H1(s)H2(s) . (4.35)

From this expression, it is clear that the corner frequencies are ω01 = 10 rad/s and
ω02 = 100 rad/s. This is an important observation because it enables us to choose the
range of frequencies which we must consider. In this case, frequencies much less than
ω01/10 and much greater than 10ω02 need not be considered since the magnitude and
phase plots would become constant for those frequencies.

Next, we construct the Bode plots for H1(s) and H2(s) separately, and then add them up
to get the plots for H(s), as shown in Fig. 4.12.

SEQUEL file: test filter 6.sqproj

2. Construct the magnitude and phase Bode plots for H(s) =
1000 s2

(s2 + 5s + 100)
.

To get an idea of the corner frequency, we rewrite H(s) as

H(s) =
10 s2

(1 + (s/20) + (s2/100))
= (10 s2)

1

(1 + (s/20) + (s2/100))
≡ H1(s)H2(s) . (4.36)

For H2(s), ∆ is negative, resulting in complex conjugate roots, with ω0 = 10 rad/s and
ζ = 0.25. (see Eq. 4.29).

Next, we construct the Bode plots for H1(s) and H2(s) separately, and then add them up
to get the plots for H(s), as shown in Fig. 4.13.

SEQUEL file: test filter 7.sqproj

4.3 Exercise Set:

Construct the magnitude and phase Bode plots for the following functions, and check your plots
against simulation results. Note that the integer parameter flag asympt provided in SEQUEL
elements can be set to 1 to get asymptotic (Bode) plots for magnitude and phase. If the flag is
set to 0, the exact magnitude and phase are computed. Compare the Bode plots with the exact
results in each case to judge the accuracy of the Bode approximations.

1. H(s) =
100000 s

(s + 1)(s2 + 20 s + 10000)
.

SEQUEL file: test filter 3.sqproj

2. H(s) =
10 (s + 100)

(s + 1)(s2 + 2 s + 100)
.

SEQUEL file: test filter 4.sqproj
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Figure 4.12: Construction of Bode plots for Example 1.

3. H(s) =
10 (s + 100)

(s + 1)(s2 + 25 s + 100)
.

SEQUEL file: test filter 4a.sqproj

4. H(s) =
20 s (s + 100)

(s + 2)(s + 10)
.

SEQUEL file: test filter 5.sqproj

5. H(s) =
5 × 108 s (s + 100)

(s + 20)(s + 1000)3
.

SEQUEL file: test filter 8.sqproj
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Figure 4.13: Construction of Bode plots for Example 2.


