
Chapter 2

RC and RL Circuits with Piecewise Constant

Sources

2.1 Background

Consider a circuit consisting of a single capacitor, resistors, dc independent sources, and
controlled sources (assumed to be linear), as shown in Fig. 2.1 (a). Using Thevenin’s theorem,
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Figure 2.1: A linear circuit with a single capacitor.

the circuit can be reduced to that shown in Fig. 2.1 (b), where VTh is a dc source. The
behaviour of this circuit is governed by the Ordinary Differential Equation (ODE),

VTh = i RTh + VC = RTh C
dVC

dt
+ VC , (2.1)

i.e.,
dVC

dt
=

1

τ
(VTh − VC) , (2.2)

where τ = RTh C. The homogeneous part of Eq. 2.1 is,

dVC

dt
= −

VC

τ
, (2.3)

for which the solution is V
(h)
C = Ae−t/τ . The complete solution is VC(t) = V

(h)
C (t) + V

(p)
C (t),

V
(p)
C (t) being a particular solution. In Eq. 2.2, if we substitute VC = K (a constant), we get a

particular solution, viz., VC = K = VTh. In general, the complete solution for VC(t) is therefore
given by,

VC(t) = Ae−t/τ + B , (2.4)
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where A and B are constants, and τ = RTh C is the circuit time constant.
In fact, any current or voltage in the circuit is given by the general form of Eq. 2.4, the
constants A and B depending on the variable under consideration.
For a circuit containing a single inductor, resistors, dc independent sources, and controlled
sources (assumed to be linear), we get (see Fig. 2.2),
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Figure 2.2: A linear circuit with a single inductor.

VTh = RTh i + L
di

dt
, (2.5)

i.e.,
di

dt
= −

i

τ
+

VTh

L
, (2.6)

where τ = L/RTh. The general solution for i (or any other current or voltage in the circuit) is
of the form,

i(t) = Ae−t/τ + B . (2.7)

There are situations in which the independent sources in the circuit of Fig. 2.1 or Fig. 2.2 are
not constant at all times but are piece-wise constant (see Fig. 2.3.) The general form,
x(t) = Ae−t/τ + B is applicable in such cases as well except that the constants A and B need
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Figure 2.3: Examples of a piece-wise constant voltage source.

to be computed in each interval where the source is constant.
If there is a sudden change in the circuit (such as a voltage source changing from 0V to 5 V or
a switch opening or closing), we need to obtain new initial conditions for the quantity of
interest, as illustrated in the following example.
Consider the circuit shown in Fig. 2.4. Suppose the change in the source voltage from 0V to

5 V occurs at time t0. If the capacitor voltage at t−0 and t+0 are different, then
VC(t+0 ) − VC(t−0 )

t+0 − t−0

would be a large quantity. This quantity is in fact
dVC

dt
, as t+0 → t−0 , which means that, if

VC(t+0 ) 6= VC(t−0 ), a large capacitor current would result. In the circuit shown in Fig. 2.4, for
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Figure 2.4: A capacitor circuit with a sudden change in the source voltage.

example, this large capacitor current would cause a large voltage drop across R, violating
Kirchhoff’s Voltage Law (KVL). For this reason, VC(t+0 ) = VC(t−0 ), i.e., the voltage across a
capacitor is a continuous function.
A similar comment applies to an inductor current iL. If there is a sudden change in iL, the
voltage across the inductor would be very large, violating KVL for the circuit under
consideration.
The condition of continuity of a capacitor voltage and an inductor current can be used to
obtain variables (currents/voltages) of interest just after a sudden change in a source voltage
or source current and a sudden opening or closing of a switch, as we shall see in the following
examples.

2.2 Examples

1. For the circuit shown in Fig. 2.5, R1 = 10 kΩ, R2 = 2 kΩ, R3 = 10 kΩ, and C = 0.1 µF .

(a) Find VC(t).

(b) Find i3(t), using VC(t) computed in (a).

(c) Find i3(t) directly, i.e., without using VC(t).

C

1 2 3

0

5 V

0 V
Vs VC

iC

R3

i3

R1 R2

Figure 2.5: Circuit for Example 1.

We assume that the source voltage has been 0V for a long time which means that the
circuit is in a steady state (dc conditions) just before t = 0, i.e., at t = 0−, with no
currents or voltages changing with time. The derivative, dVC/dt is therefore zero, making
the capacitor current equal to zero. Equivalently, the capacitor can be replaced with an
open circuit at t = 0−. This is true in general about circuits involving dc sources and
capacitors in steady state.

The situation at t = 0− is shown in Fig. 2.6 (a). Clearly, the capacitor voltage at t = 0− is
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Figure 2.6: Circuit for Example 1 at t = 0−, t = 0+, and t → ∞.

0 V , and VC(t = 0+) = VC(t = 0−) = 0 V , as shown in Fig. 2.6 (b). As t → ∞, the circuit
reaches steady state, the capacitor is replaced by an open circuit, and

VC(∞) = 5 V ×
R3

R1 + R3

= 2.5 V (see Fig. 2.6 (c)).

Next, we obtain the circuit time constant τ = RTh C for t > 0 (see Fig. 2.7). To obtain
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Figure 2.7: Computation of time constant for the circuit of Example 1 for t > 0.

the Thevenin resistance as seen by the capacitor, we deactivate the independent source
(i.e., short the voltage source), and get RTh = R2 + (R1 ‖ R3) = 7 kΩ. The time constant
of the circuit for t > 0 is therefore τ = RTh C = 0.7 ms.

We are now in a position to obtain an analytical expression for VC(t) for t > 0. Let

VC(t) = Ae−t/τ + B . (2.8)

Using VC(0+) = 0 V and VC(∞) = 2.5 V , we get A =−2.5, B = 2.5. The result of Eq. 2.8
is plotted in Fig. 2.8 (a). Note that, in about five time constants (i.e., 3.5 ms), VC

becomes a constant. This is generally true – if there are no further changes in the source
voltages (or switch conditions), all transients vanish in about five time constants because
e−5 = 0.0067 ≈ 0, or (1 − e−5) = 0.9933 ≈ 1.

Using the above VC(t), we can find i3 for the circuit as (see Fig. 2.5),

i3 =
1

R3

(iC R2 + VC) =
1

R3

(

C
dVC

dt
R2 + VC

)

. (2.9)

Fig. 2.8 (b) shows a plot of i3 versus time using Eq. 2.9.

We can also compute i3 directly, i.e., without using VC(t). Let

i3(t) = A1 e−t/τ + B1 . (2.10)
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Figure 2.8: (a) Vs(t), VC(t), (b) i3(t) for the circuit of Example 1.

The constants A1 and B1 are obtained using the values of i3(0
+) = 0.071 mA and

i3(∞) = 0.25 mA, which are found from Figs. 2.6 (b) and 2.6 (c), respectively.

SEQUEL file: ee101 rc6.sqproj

2. For the circuit shown in Fig. 2.9, R1 = 10 Ω, R2 = 40 Ω, L = 0.8 H, t0 = 0 s, and t1 = 0.1 s.

(a) Find iL(t) and is(t).

(b) Simulate the circuit and verify that the total power absorbed is equal to the total
power delivered at all times.
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Figure 2.9: Circuit for Example 2.

The above problem is equivalent to three problems, each with a DC source, as shown in
Fig. 2.10. The circuit time constant is the same in all cases, since the Thevenin
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Figure 2.10: Circuit of Fig. 2.9 for three intervals: (a) t < t0, (b) t0 < t < t1, and
(c) t > t1.

resistance seen by the inductor remains the same, viz., RTh = R1 ‖ R2 = 8 Ω, giving
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τ = L/RTh = 0.1 s. The general form, x(t) = Ae−t/τ + B, applies in all three cases for any
current or voltage, with the constants A and B computed appropriately for the variable
of interest.

At t = t−0 , since the source has been 0 V for a long time, we have iL(0−) = 0 A, and
therefore iL(0+) = iL(0−) = 0 A. Now, consider the circuit in Fig. 2.10 (b) for t0 < t < t1.
If the voltage source were to remain at 10V beyond t1, then, as t → ∞, we would have1

V = L
diL
dt

= 0 V , and by solving the circuit equations with VL = 0 V , we get

iL(∞) = 10V/R1 = 1 A. Using these values of iL(0+) and iL(∞), we get

iL(t) = 0.1
(

1 − e−t/τ
)

, t0 < t < t1 . (2.11)

With the above equation, we obtain, iL(t−1 ) = 0.632 A. In reality, however, the dc source
changes back to 0V at t = t1, leading to the circuit of Fig. 2.10 (c). We can now use the
condition, iL(t+1 ) = iL(t−1 ) = 0.632 A, to proceed further to the final interval, t > t1. Since
the source voltage is 0V in this interval, we have iL(∞) = 0 A. Using these conditions,
we get, A = iL(t+1 ), B = 0, leading to

iL(t) = Ae−t/τ = iL(t+1 ) e−(t−t1)/τ , t > t1 . (2.12)

Combining Eqs. 2.11 and 2.12, we get the complete solution, as shown in Fig. 2.11.
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Figure 2.11: iL versus time for the circuit of Example 2: (a) t < t1, (b) t > t1, (c)
complete solution.

Having obtained iL(t), we can get the source current, is(t):

is(t) = iL(t) +
1

R2

V = iL(t) +
1

R2

L
diL
dt

. (2.13)

SEQUEL file: ee101 rl1.sqproj

1In simple terms, in the interval t0 < t < t1, the circuit sees a constant voltage source and does not know

that things are going to change at t1. Therefore, up to t = t1, its behaviour is independent of the change that
actually occurs at t = t1.
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3. For the circuit shown in Fig. 2.12, R = 1 kΩ and C = 0.1 µF .

(a) Obtain V2(t), assuming that the diode has a negligible on resistance, infinite off
resistance, and a voltage drop of 0.7 V while conducting.

(b) Repeat (a) with the diode reversed.
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Figure 2.12: Circuit for Example 3.

Since the diode is a non-linear circuit element, it would appear that our analysis would
not be valid for this circuit. However, when the diode is replaced with the approximate
equivalent circuits shown in Figs. 2.13 (a) and (b), the capacitor sees a linear circuit in
both the on and off cases. Our expression x(t) = Ae−t/τ + B is therefore valid in both
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Figure 2.13: Approximate description of the circuit of Fig. 2.12: (a) diode con-
ducting, (b) diode not conducting. (Ron → 0 Ω, Roff → ∞Ω).

cases, the major difference between the two cases being the magnitude of the time
constants. When D conducts (Fig. 2.13 (a)), the Thevenin resistance seen by the
capacitor is RTh = R ‖ Ron ≈ Ron, a very small resistance. When D does not conduct
(Fig. 2.13 (b)), RTh = R ‖ Roff ≈ R. Thus, the time constants τ1 = Ron C and τ2 = R C in
the two cases are vastly different, with τ1 ≪ τ2, and on the time scale of the given
circuit, we can say that τ1 ≈ 0 sec.

When the source voltage rises to 5V , the capacitor charges instantaneously (since
τ1 ≈ 0 s) up to about 4.3 V , i.e., 0.7 V less than 5 V (see Fig. 2.14). Beyond this point,
the diode turns off, and the capacitor charges slowly, with a time constant of
τ2 = R C = 0.1 ms. Since the pulse duration (1 ms) is larger than 5 τ = 0.5 ms, the
charging process is completed, and V2 reaches 5 V .



2.8 M. B. Patil, IIT Bombay

−0.5  0  0.5  1  1.5  2

 0

 5

time (msec)
V

1
,
V

2
(V

ol
ts

)

V2

V1

Figure 2.14: V1 and V2 versus time for the circuit of Example 3.

At t = 1 ms, the capacitor discharges with a time constant τ2 = 0.1 ms, and after about
five time constants, V2 reaches its steady-state value of 0V .

When the diode is reversed, the capacitor gets charged with τ = R C and discharged with
τ ≈ 0 s. The reader is encouraged to work out the waveform for V2 in this case and
compare it with simulation results.
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4. For the circuit shown in Fig. 2.15 (a), the switch opens at t = 0 s. The component values
are R1 = 5 kΩ, R2 = 1 kΩ, R3 = 5 kΩ, and C = 5 µF . Find VC(t) and i(t).
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Figure 2.15: (a) Circuit for Example 4, (b) Circuit for t < 0, (c) Circuit for t > 0.

Assuming that the switch has been closed for a long time before t = 0 s, we have

iC = C
dVC

dt
= 0 A (i.e., the capacitor is an open circuit), leading to

i(0−) =
6 V

R1 + R2

= 1 mA, and VC(0−) = R1 i = 5 V (see Fig. 2.15 (b)). By continuity of VC ,

we get VC(0+) = VC(0−) = 5 V .

At t = 0, the switch opens, and the Thevenin resistance seen by the capacitor for t > 0 is
RTh = R1 + R3 = 10 kΩ, resulting in a time constant τ = RTh C = 50 ms (see
Fig. 2.15 (c)). As t → ∞, VC → 0 V , and i → 0 A.

Let VC(t) = = A1 e−t/τ + B1 for t > 0. Substituting VC(0+) = 5 V and VC(∞) = 0 V , we
can get A1 and B1.
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Let i(t) = A2 e−t/τ + B2 for t > 0. Since VC(0+) = 0 V , we get (see Fig. 2.15 (c)),

i(0+) =
5 V

R1 + R3

= 0.5 mA. Using i(0+) and i(∞), we can get A2 and B2.

Fig. 2.16 shows VC and i as a function of time.
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Figure 2.16: (a) VC(t), (b) i(t) for the circuit of Example 4.

5. For the circuit shown in Fig. 2.17, the switch opens at t = 0 s. The component values are
R1 = 2 Ω, R2 = 5 Ω, R3 = 3 Ω, and C = 1 mF . Find iC(t).
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Figure 2.17: Circuit for Example 5.

We begin by finding VC at t = 0− for which the circuit is shown in Fig. 2.18 (a).
Assuming that the switch has been in the closed state for a long time prior to t = 0 s, We
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Figure 2.18: Circuit of Example 5 for (a) t < 0, (b) t > 0.

have iC = 0 A, i.e., the capacitor is an open circuit. KCL at node 2 gives,

1

R1

(V2 − 24) +
1

R2

V2 − 0.1 V2 = 0 , (2.14)

yielding V2 = 20 V , and VC(0−) = V2 + 0.1 V2 R3 = 26 V . Using continuity of VC , we get
VC(0+) = VC(0−) = 26V .
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To find the time constant of the circuit for t > 0 s (see Fig. 2.18 (b)), we redraw the
circuit as shown Fig. 2.19 (a). The Thevenin resistance as seen by the capacitor can be

2 3
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VX
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0.1 VX

VX
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R2

0.1 VX

V0
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Figure 2.19: (a) Circuit of Fig. 2.18 (b) redrawn, (b) Circuit in (a) with capacitor
replaced with a test voltage source.

obtained by applying a test source as shown in Fig. 2.19 (b) and computing RTh = V0/I0.
Writing KCL at node 3,

−I0 − 0.1 V0
R2

R2 + R3

+
V0

R2 + R3

= 0 , (2.15)

RTh =
V0

I0

=
R2 + R3

1 − 0.1 R2

= 16 Ω . (2.16)

The circuit time constant for t > 0 is then τ = RTh C = 16 ms. Using the conditions,
VC(0+) = 26V and v(∞) = 0 V , we get

VC(t) = 26
(

1 − e−t/τ
)

V t > 0 . (2.17)

The current iC(t) is therefore

iC(t) = C
dVC

dt
= −1.625 e−t/τ A t > 0 . (2.18)

Fig. 2.20 shows VC and iC versus time.
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Figure 2.20: (a) VC(t), (b) iC(t) for the circuit of Example 5.
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2.3 Exercise Set:

1. For the circuit shown in Fig. 2.21,

(a) Find i(0−), i(0+), and i(∞).

(b) Find RTh as seen by the inductor for t > 0.

(c) Obtain an expression for i(t), using the results of (a) and (b). Verify your result
with simulation.
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Vs2
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i
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Figure 2.21: Circuit for Exercise 1.
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2. For the circuit shown in Fig. 2.22, show that the following results hold in the steady
state:

(a) Vmax = V0
1 − k1

1 − k0

, Vmin = k2 Vmax, where k1 = e−T1/τ , k2 = e−T2/τ , k0 = k1 k2, τ = R C.

Hint: Obtain VC(t) in the T1 and T2 intervals, use the condition of periodicity of VC

in the steady state.

(b) The average value of VC is the same as the average value of Vs. i.e.,

1

T

∫ T

0

Vs dt =
1

T

∫ T

0

VC dt.

Hint: write KVL for the circuit and integrate.

With simulation, verify the above results for various values of T1 and T2.

0

21

0

Vs

V0

T2T1

V
C
,V

s

Vs
VC

VC C

R

t

Vmin

Vmax

Figure 2.22: Circuit for Exercise 2.
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3. For the circuit shown in Fig. 2.23,

(a) Obtain VC(t) and hence V1(t).

(b) Find is(0
−), is(0

+), is(∞) from VC(0−), VC(0+), VC(∞), and use them to obtain
is(t) directly.

(c) Verify your results with simulation.
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Figure 2.23: Circuit for Exercise 3.
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