
Chapter 1

Some useful techniques

1.1 Background

Thevenin’s theorem: Consider a network consisting of dc independent sources
(current/voltage sources), dependent sources (linear), and resistors. We are interested in the
“port” behaviour of this circuit, i.e., in a simplified description of the circuit as seen from the
port AB (see Fig. 1.1 (a)). Thevenin’s theorem gives us this simplified description (see
Fig. 1.1 (b)) in terms of a single voltage source VTh and a single resistor RTh.
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Figure 1.1: (a) An electrical network, (b) Thevenin equivalent circuit as seen from AB.

To determine VTh for a network, we simply find the open-circuit voltage Voc across AB, i.e.,
the voltage VA − VB when nothing is connected on the right side in Fig. 1.1 (a); then, we have
VTh = Voc.
To find RTh, we can use two methods:

(a) Deactivating the independent sources in the given network is equivalent to deactivating
VTh in its Thevenin equivalent circuit (see Fig. 1.2 (a)), leaving only RTh. Therefore, RTh

is simply the resistance seen from AB in the original network (Fig. 1.1 (a)) with all
independent sources deactivated. Note that deactivating a voltage source amounts to
making Vs = 0 V , i.e., replacing it with a short circuit. Similarly, deactivating a current
source, i.e., making Is = 0 V , is equivalent to replacing it with an open circuit. Note also
that, in the above procedure, the dependent sources are to be left untouched, i.e., they
should not be deactivated.

Once the independent sources in the network are deactivated, the resistance seen from
the port of interest can often be found by inspection. In some cases, we may need to
connect a test voltage source V0, find the current I0 through it (see Fig. 1.2 (b)), and
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Figure 1.2: (a) Deactivating independent sources and its effect on the Thevenin equivalent
circuit, (b) Computation of RTh.

then use RTh = V0/I0. Alternatively, we could connect a test current source I0, find the
voltage V0 across it, and use RTh = V0/I0.

(b) If the port AB is shorted, then the short-circuit current Isc is VTh/RTh (see Figs. 1.3 (a)
and (b)). This gives us an alternate method to find RTh: Obtain the open-circuit voltage
Voc (which is equal to VTh, as seen earlier) and the short-circuit current Isc. Then,
RTh = VTh/Isc.
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Figure 1.3: Short-circuit current Isc (a) for the original network, (b) for the Thevenin equiv-
alent.

Source transformation: Consider the circuit shown in Fig. 1.4 (a). The Thevenin voltage
for this circuit is, VTh = Voc = Is Rp. To find RTh, we deactivate the current source (i.e., replace
it with an open circuit) and view the circuit from AB to get RTh = Rp. In other words, the
circuit in Fig. 1.4 (a) is equivalent to that in Fig. 1.4 (b), which is already in the Thevenin
form, if Rs = Rp and Vs = Is Rp.
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Figure 1.4: Illustration of source transformation.

The “source transformation” described above can be used to convert a Thevenin equivalent
circuit into a “Norton equivalent circuit,” which is of the form shown in Fig. 1.4 (a).
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Superposition: The system of equations that applies to a circuit with resistors, dc
independent sources, and dependent sources is a linear system, and therefore we can use the
principle of superposition to analyse the circuit by performing the following steps.

(a) Denote the independent sources in the circuit by S1, S2, · · · , SN .

(b) For each source Si, compute the variables of interest (currents or voltages), say y1, y2,
· · · , yn, with all other independent sources deactivated. Denote the values of the
variables by, y

(i)
1 , y

(i)
2 , · · · , y

(i)
n .

(c) The net values of y1, y2, · · · , yn are then given by ynet
j =

N
∑

i=1

y
(i)
j .

Maximum power transfer: Consider the power absorbed by RL in the circuit shown in
Fig. 1.5 (a) where VTh, RTh represent the Thevenin equivalent of a general network containing
dc voltage or current sources, dependent sources, and resistors. The power absorbed by RL is

PL = i2L RL =

(

VTh

RTh + RL

)2

RL . (1.1)

By differentiating PL with respect to RL and equating the derivative to zero, it can be shown
that PL is maximum when RL = RTh (see Fig. 1.5 (b)).
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Figure 1.5: Illustration of maximum power transfer.

1.2 Examples

1. For the circuit shown in Fig. 1.6 (a), find the currents i1 and i2 using source
transformation.

Converting the circuit with Is and R2 into an equivalent form (voltage source in series
with a resistance), we get the circuit shown in Fig. 1.6 (b). The computation of i1 now

becomes trivial, viz., i1 =
5 V − 6 V

7 Ω
=−0.143 A. Coming back to the original circuit
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Figure 1.6: (a) Circuit for Example 1, (b) Equivalent circuit after source transformation.

(Fig. 1.6 (a)), we get i2 = i1 + Is = 2.857 A. Note that the source Is is delivering power
while Vs is absorbing power. The reader is encouraged to verify power balance (i.e., the
total power absorbed is equal to the total power delivered).

SEQUEL file: ee101 network 1.sqproj

2. For the circuit shown in Fig. 1.6 (a), find the current i2 by superposition.

(a) (b)
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R2R2 Is

Figure 1.7: Circuit of Fig. 1.6 (a): (a) with Vs active and Is deactivated, (b) with Is active
and Vs deactivated.

Since there are two independent sources (Vs and Is) in the circuit, we consider two cases:

(a) Vs active, Is deactivated: In this case, i
(1)
2 =

Vs

R1 + R2

= 0.714 A (see Fig. 1.7 (a)).

(b) Is active, Vs deactivated: In this case, by current division, we get,

i
(2)
2 = Is ×

R1

R1 + R2

= 2.143 A (see Fig. 1.7 (b)).

Adding the individual contributions, we get, i2 = i
(1)
2 + i

(2)
2 = 2.857 A.

3. For the circuit shown in Fig. 1.8, R1 = 4 Ω, R2 = 2.5 Ω, R3 = 1 Ω, R4 = 4 Ω, Vs1 = 5 V ,
Vs2 = 2 V , Is = 5 A. Find the current iR3 using superposition. How will iR3 change if the
source values are changed to Vs1 = 30 V , Vs2 = 20 V , Is = 15 A.

We have the following three cases to consider, corresponding to the three independent
sources, Vs1, Vs2, Is.

(a) Only Vs1 active (Fig. 1.9 (a)): i
(1)
R3 =−

Vs1

R1 + R2 + R3

=−0.67 A.

(b) Only Vs2 active (Fig. 1.9 (b)): i
(2)
R3 = 0 A.
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Figure 1.8: Circuit for Example 3.

(c) Only Is active (Fig. 1.9 (c)): i
(3)
R3 = Is ×

R1

R1 + R2 + R3

= 2.67 A (by current division

between two resistors in parallel).
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Figure 1.9: Circuit of Fig. 1.8: (a) only Vs1 active, (b) only Vs2 active, (c) only Is active.

The net value of iR3 is therefore iR3 = i
(1)
R3 + i

(2)
R3 + i

(3)
R3 = 2 A.

When the source values are changed to Vs1 = 30 V , Vs2 = 20 V , Is = 15 A, we can find the
new iR3 by using linearity of the circuit. Since Vs1, Vs2, Is have been scaled (with respect
to their earlier values) by factors of 6, 10, 3, respectively, we have

iR3 = 6 i
(1)
R3 + 10 i

(2)
R3 + 3 i

(3)
R3 = 4 A.

SEQUEL file: ee101 network 2.sqproj

4. In the R-2R ladder network shown in Fig. 1.10 (a), find Vo using superposition.
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Figure 1.10: (a)Circuit for Example 4, (b) Circuit redrawn with sources shown explicitly.
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We take up each of the voltage sources separately and then add their contributions:

(a) Vs3 only (Fig. 1.11 (a)): Using Thevenin’s theorem, the circuit can be simplified to

that shown in Fig. 1.11 (b), and we get V
(1)
o = Vs3/2.
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Figure 1.11: Circuit of Fig. 1.10 (a) with only Vs3 active.
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Figure 1.12: Circuit of Fig. 1.10 (a) with only Vs2 active.
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Figure 1.13: Circuit of Fig. 1.10 (a) with only Vs1 active.

(b) Vs2 only: Using Thevenin’s theorem, this case can be simplified to the circuit shown
in Fig. 1.12 (a) and can be further simplified to that shown in Fig. 1.12 (b), giving

V
(2)
o = Vs2/4.

(c) Vs1 only: Using Thevenin’s theorem, this case can be progressively simplified to the

circuits shown in Figs. 1.13 (a), (b), (c), giving V
(3)
o = Vs1/8.

(d) Vs0 only: Using the above procedure, the reader can show that V
(4)
o = Vs0/16.
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The net value of Vo is therefore

Vo =
1

16

(

20 Vs0 + 21 Vs1 + 22 Vs2 + 23 Vs3

)

.

SEQUEL file: ee101 network 3.sqproj

5. For the circuit shown in Fig. 1.14 R1 = 4 Ω, R2 = 2 Ω, R3 = 4 Ω, Is = 3 A, Vs1 = 4 V . Find
the current iR2 by superposition.
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Figure 1.14: Circuit for Example 5.

There are two independent sources in the circuit, and we will consider each of them
separately. Note that the dependent source must be retained in each circuit and not

deactivated.

(a) Is only (Fig. 1.15 (a)): This case is simplified considerably with source
transformation (see Fig. 1.15 (b)). Writing KVL for the simplified circuit, we obtain,
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vx vx vx

iR2

A

B

C

D

iR2 R2

A
C

D

iR2

B

R2

C

D

iR2

B

Ai

R3 R3R3

2

3
vx

R1

2

3
vx

R1

2

3
vx

12 V

R1

Is
Vs1

Vs2 Vs2Vs2

Figure 1.15: (a) Circuit of Fig. 1.14 with only Is active, (b) Circuit of (a) after source
transformation, (c) Circuit of Fig. 1.14 with only Vs1 active.

−12 V + (R1 + R3) i −
2

3
(R3 i) = 0 , (1.2)

which gives i = 2.25 A, and i
(1)
R2 = −3 A.



1.8 M. B. Patil, IIT Bombay

(b) Vs1 only (Fig. 1.15 (c)): Writing KVL for this circuit, we get

Vs1 + (R1 + R3) i −
2

3
(R3 i) = 0 , (1.3)

which gives, i = −0.75 A, and i
(2)
R2 = 1 A.

The net value of iR2 is therefore −2 A.

SEQUEL file: ee101 network 4.sqproj

6. Simplify the circuit shown in Fig. 1.16 (a) using Thevenin’s theorem and find the current
iL.

(a) (b) (c)

0.5 k

3 k 1 k 3 k 1 k

0.5 k
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Figure 1.16: (a) Circuit for Example 6, (b) Computation of Voc, (c) Simplified circuit diagram.

To obtain the Thevenin equivalent circuit as seen from AB (see Fig. 1.16 (a)), we
deactivate (short) the voltage source and obtain RTh = (R1 ‖ R3) + R2 = 2.2 k. VTh = Voc

is obtained from Fig. 1.16 (b) as Voc =
R3

R1 + R3

Vs = 2 V . The simplified circuit is shown

in Fig. 1.16 (c), giving iL =
VTh

RTh + RL

= 0.74 mA.

SEQUEL file: ee101 network 5.sqproj

7. For the circuit shown in Fig. 1.17 (a), find the Thevenin’s equivalent circuit as seen from
AB.
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Figure 1.17: (a) Circuit for Example 7, (b) Computation of VTh = Voc.

The open-circuit voltage Voc is found from Fig. 1.17 (b), by writing KVL:

Vs = R1 i + 6 i (R2 + R3) , (1.4)
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giving i = 0.25 A and VTh = Voc = 6 i R3 = 12 V .

RTh can be obtained in two ways:

(a) We find the short-circuit current Isc as shown in Fig. 1.18 (a). KVL gives

Vs = R1 i + 6 i R2 → i =
5

8
A , (1.5)

leading to Isc = 6 i = 3.75 A, and RTh = Voc/Isc = 3.2 Ω.

(a) (b)
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Figure 1.18: Computation of RTh for the circuit of Fig. 1.17: (a) by computing the
short-circuit current, (b) by using a test source.

(b) We deactivate the independent source (see Fig. 1.18 (b)) and use a test source V0 to
obtain RTh. KVL gives

V0 = (6 i + I0) R3 = −(i R1 + 6 i R2) . (1.6)

Eliminating i from Eq. 1.6 gives RTh = V0/I0 = 3.2 Ω .

How do we check our results with circuit simulation? Consider the circuit in Fig. 1.19 in
which the Thevenin equivalent of a network has been represented by VTh and RTh. KVL
gives

Vs = VTh − Is RTh . (1.7)

If Vs is plotted against Is, the y-intercept gives VTh, and the x-intercept gives
Isc = VTh/RTh. These values can be checked against our computed results for the
network.

VTh

Is

Vs

RTh

Figure 1.19: A general Thevenin equivalent circuit with a test source.

SEQUEL file: ee101 network 6.sqproj
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8. Find the Thevenin equivalent of the network shown in Fig. 1.20 (a), as seen from AB.

(b)(a)
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1 Ω1 Ω

4 Ω

R2
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v1/22 A

v1
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1 Ω1 Ω
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I0

v1/22 A

Figure 1.20: (a) Circuit for Example 8, (b) Computation of Isc.

(a) Computation of Voc: Taking node B as the reference node (i.e., VB as 0 V ), KCL at
node C gives,

VC

R1 + R2

− I0 −
1

2

R2

R1 + R2

VC = 0 , (1.8)

which gives VC = 20 V . Voc is then given by Voc = VA = VC +
v1

2
R3 = 22 V .

(b) Computation of Isc: Again, taking VB = 0 V , KCL at node C gives,

VC

R1 + R2

− I0 +
VC

R3

= 0 , (1.9)

giving VC = 1.67 V . The current Isc is then given by KCL at node A:

Isc =
VC

R3

+
v1

2
= 1.83 A . (1.10)

RTh is therefore equal to Voc/Isc = 12 Ω.

SEQUEL file: ee101 network 7.sqproj

9. For the circuit shown in Fig. 1.21 (a), R1 = 20 Ω, R2 = 40 Ω, RL = 4 Ω, Vs = 50 V .

Find iL using Thevenin’s theorem.

(a) Computation of Voc: Writing KVL for the circuit in Fig. 1.21 (b), we get

−
R2 i1

4
+ (R1 + R2) i1 + Vs = 0 , (1.11)

giving i1 =−1 A, and Voc = R2 i1 + Vs = 10 V .

(b) Computation of Isc: The short-circuit current can be found from Fig. 1.21 (c). In

this case, we have vx =−Vs, i1 =
vx

4

1

R1

=−
5

8
A, i2 =−

Vs

R2

=−
5

4
A, and

Is = i1 − i2 =
5

8
A.
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Figure 1.21: (a) Circuit for Example 9, (b) Computation of Voc, (c) Computation of Isc,
(d) Computation of iL.

From the above values, we get RTh = Voc/Isc = 16 Ω. The original circuit in Fig. 1.21 (a)

is thus equivalent to that shown in Fig. 1.21 (d), giving iL =
VTh

RTh + RL

= 0.5 A.

SEQUEL file: ee101 network 7a.sqproj

1.3 Exercise Set:

1. In the circuit shown in Fig. 1.22 (a), find the current i by superposition. Verify your
result with simulation.

SEQUEL file: ee101 network 8.sqproj

(a) (b)

i3 Ω

1 Ω

12 V 1 A8 Ω

2 Ω

2 Ω

i1
10 V

R2

R3

i1
i2 1 Ω

8 Ω 16 i1

R1

10 Ω5 A

Figure 1.22: (a) Circuit for Exercises 1 and 2, (b) Circuit for Exercise 3.

2. In the circuit shown in Fig. 1.22 (a), find the current i1 by source transformation.

3. In the circuit shown in Fig. 1.22 (b), find the currents i1 and i2 by superposition. Verify
your results with simulation.

SEQUEL file: ee101 network 9.sqproj

4. For the circuit shown in Fig. 1.23 (a),

(a) Find the value of RL for maximum power transfer.

(b) Calculate Pmax
L , the maximum power absorbed by RL.

(c) Obtain a plot PL versus RL by simulation, and verify the answers you obtained for
(a) and (b).
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(d) How will the above plot change if the voltage source is changed from 18 V to 12V ?

SEQUEL file: ee101 network 10.sqproj

(a) (b)

Is0 Is1 Is2 Is3

R1

Vs

18 V

3 k

RL

R26 k
R3

2 k Is

2 mA

R R

2R2R

R

2R 2R2R
2R

i

Figure 1.23: (a) Circuit for Exercises 4. (b) Circuit for Exercise 5.

5. Using superposition, obtain a general expression for the current i (see Fig. 1.23 (b)) in
terms of the source currents Is0, Is1, Is2, Is3. For each of the following combinations,
compute i using your expression, and verify with simulation results.

(a) Is1 = Is0 = 3 mA, others are zero.

(b) Is3 = Is1 = 3 mA, others are zero.

SEQUEL file: ee101 network 11.sqproj


