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In this booklet, we review the fundamentals of Semiconductor Physics and basics
of device operation. We shall concentrate largely on elemental semiconducors such
as silicon or germanium, and most numerical values used for examples are specific to
silicon.

1 Semiconductor fundamentals

A semiconductor has two types of mobile charge carriers: negatively charged elec-

trons and positively charged holes. We shall denote the concentrations of these charge
carriers by n and p respectively. The discussions in this booklet apply to elemen-
tal semiconductors (like silicon) which belong to group IV of the periodic table. We
can intentionally add impurities from groups III and V to the semiconductor. These
impurities are called dopants. Impurities from group III are called acceptors while
those from group V are called donors. Each donor atom has an extra electron, which
is very loosely bound to it. At room temperature, there is sufficient thermal energy
present, so that the loosely bound electron breaks free from the donor, leaving the
donor positively charged. This contributes an additional electron to the free charge
carriers in the semiconductor, and a positive ionic charge at a fixed location in the
semiconductor. Similarly, an acceptor atom captures an electron, thus producing a
mobile hole and becoming negatively charged itself. A semiconductor without any
dopants is called intrinsic. An unperturbed semiconductor must be charge neutral as
a whole. If we denote the concentration of ionised donors by N+

d and the concentra-
tion of ionised acceptors by N−

a , we can write for the net charge density at any point
in the semiconductor as:

ρ = q(N+
d − N−

a + p − n) (1)

where q is the absolute value of the electronic charge. In an unperturbed semicon-
ductor, ρ will be zero everywhere. Electrons and holes are generated thermally - the
availability of energy equal to the band gap of the semiconductor results in the gen-
eration of an electron - hole pair. Simultaneously, electrons and holes can recombine
to annihilate each other, giving out energy which is equal to the band gap of the
semiconductor. Thus we have the reversible reaction:

e− + h+ ⇀↽ Eg

Where Eg is the band gap energy of the semiconducor.
Applying the law of mass action to the above reaction, we can write for the equilibrium
concentration of holes and electrons:

n · p = constant

The above relation applies to doped as well as intrinsic semiconductors. But for an
intrinsic semiconductor,

n = p ≡ ni

Therefore, the constant in the equation connecting n and p must be n2
i . Thus, for

a semiconductor in equilibrium,
n · p = n2

i (2)

Since n and p are not independent, but are constrained by the above relation, we can
define a single independent variable, the Fermi potential by

ΦF ≡ KBT

q
ln

p

ni
=

KBT

q
ln

ni

n
(3)
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Where KB is the Boltzmann constant, T is the absolute temperature and q is the
absolute value of the electronic charge. At room temperature, KBT/q is approxi-
mately 26 mV and ni is of the order of 1010/cm3 for silicon. Now electron and hole
concentrations are given by:

n = nie
−

qΦF
KBT

p = nie
qΦF
KBT (4)

To simplify these relations, we define a dimensionless Fermi potential by:

uF ≡ qΦF

KBT
= ln(p/ni) = ln(ni/n)

then:

n = nie
−uF

p = nie
uF (5)

Generally, a semiconductor will be doped with only one kind of impurity. A
semiconductor doped with donors will have many more electrons than holes. This
type of semiconductor is called N type, and electrons are the majority carriers in this
type of semiconductor. Similarly, holes are the majority carriers in a semiconductor
doped with acceptors and it is termed P type. If both types of dopants are present,
the one present in higher concentration determines the ‘type’ of the semiconductor.
The net doping is defined as the difference in the concentrations of the more abundant
and the less abundant dopants.

In most practical cases, the ratio of majority to minority carriers is very high. The
concentration of majority carriers is then very nearly equal to the net dopant concen-
tration. To take a typical example, consider P type silicon with boron concentration
of 1016 atoms/cm3. This gives:

p = Na = 1016/cm3

n = n2
i /p ≈ 1020/1016/cm3 = 104/cm3

p/n ≈ 1012 !

1.1 Band Diagrams

The above concepts are often visualised with the help of band diagrams. The arrange-
ment of atoms in a semiconductor results in certain electron energies which are not
permitted. Thus, the energy range is divided into bands of permitted energy values
alternating with forbidden gaps.

The highest such band which is nearly filled with electrons is called the valance
band. Unoccupied levels in this band correspond to holes. For stability, electrons
seek the lowest energy level available. If a vacancy is available at a lower energy - an
electron at a higher energy will drop to this level. The vacancy thus bubbles up to a
higher level. Therefore, holes seek the highest electron energy available.

The band just above the valance band is called the conduction band. In a semi-
conductor, this is partially filled. Conduction in a semiconducor is caused by electrons
in the conduction band (which are normally to be found at the lowest energy in the

3



conduction band) or holes in the valance band - (found at the highest electron energy
in the valance band). Band diagrams are plots of electron energies as a function of
position in the semiconductor. Typically, the top of the valance band (corresponding
to minimum hole energy) and the bottom of the conduction band are plotted. We can
show the Fermi potential and the corresponding Fermi energy(= -qΦF) in the band
diagram of silicon as a level in the band gap. We use the halfway point between the
conduction and the valence band as the reference for energy and potential. When
n = p = ni, the Fermi potential is 0 (from eq. 3) and correspondingly, the Fermi
energy lies at the intrinsic Fermi level halfway in the band gap. (Actually, this level
can be slightly away from the middle of the band gap depending on the density of
allowed states in the conduction and valance bands - but for now, we’ll ignore this).
When holes are the majority carriers, ΦFis positive and the Fermi energy (= -q ΦF)
lies below the mid gap level, as shown in the adjoining figure. When electrons are the
majority carriers, ΦFis negative, and the Fermi energy lies above the mid gap level.

1.2 A semiconducor in the presence

E
E
E
E

c
i
F
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F−qO

of an electric field

In the presence of an electric field, the elctrostatic potential is different at different
positions.

The energy of an electron has an extra com-
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E iE
cE
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Ev

Figure 1: Potential distribution
and Band Diagram in the pres-
ence of a field

ponent = −qφ where φ is the electrostatic poten-
tial. Consequently in the band diagram the con-
duction, valance and intrinsic levels are bent. In
equilibrium, the Fermi level is still straight. (We
shall see later that in the absence of a current, the
slope of the Fermi level must vanish). Relations
for n and p must now take the electrostatic po-
tential as well as the Fermi potential into account
and the electron and hole concentrations are not
uniform over the semiconductor. If we represent
the concentrations of electrons and holes without
any applied field by n0 and p0 respectively, then
in the presence of a field (but in equilibrium),

n = n0e
qφ

KBT

p = p0e
−

qφ

KBT (6)

where φ is the electrostatic potential.
If we define a dimensionless electrostatic potential by:

u ≡ qφ

KBT
(7)

we can write the above relations as:

n = n0e
u = nie

(u−uF )

p = p0e
−u = nie

−(u−uF ) (8)

Since there is equilibrium, even though electron and hole concentration is not uniform,
the product of n and p is still constant and equal to n2

i everywhere.
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1.3 Non-equilibrium case

The above relations assume a semiconductor in equilibrium. It is possible to create
excess carriers in the semiconductor over those dictated by equilibrium considerations.
For example, if we shine light on a semiconductor, electron-hole pairs will be created.
Since the value of n as well as that of p goes up, the np product will exceed n2

i , till the
equilibrium is restored after the light is turned off (by enhanced recombination). If the
number of excess carriers is small compared to the majority carriers, we may assume
that the carrier concentrations are still described by relations like those given above.
However, the concentrations of electrons and holes are not constrained by relation(2)
any more. Therefore, we cannot use the same value of uF for describing electron as
well as hole concentrations. We now have separate values of ΦF for electrons and holes.
These are called quasi Fermi levels (or imrefs) for electrons and holes, ΦFn

and ΦFp
,

defined by the relations

n = nie
(u−uFn )

p = nie
−(u−uFp) (9)

Where uFn
and uFp

are the dimensionless versions of quasi Fermi levels ΦFn
and

ΦFp
defined as in equation(7)). The np product is now given by

np = n2
i e

(uFp−uFn) (10)

and is no longer constant. Because the number of additional carriers is assumed to be
small compared to the majority carriers, the concentration of majority carriers and
hence its quasi Fermi level is very close to the equilibrium value. The relative change
in the concentration of minority carriers could, however, be large and consequently the
minority carrier quasi Fermi level could be substantially different from the equilibrium
Fermi level.

2 The p-n diode

We shall analyse the abrupt pn junction, in reverse and forward bias.
We assume that the doping density is constant

dpX dnX

NP

E
E
E

E

c
F
i

v
P

N

Figure 2: The abrupt p-n junc-
tion

and its value = Na on the P side and Nd on
the N side, changing abruptly at the metallurgi-
cal junction as shown. Because there is a strong
concentration gradient for electrons and holes at
the junction, there will be a diffusion current of
holes towards the N side and of electrons towards
the P side. As these carriers leave behind ionised
dopants, small regions on either side of the junc-
tion acquire a charge. The P side, from where
positively charged holes have left, (leaving behind
negatively charge acceptor ions), acquires a neg-
ative potential. Similarly, the N side becomes
positively charged. The regions from where mo-
bile charges have left, are called depletion regions.

The potential difference resulting from this charge redistribution (called the built-in
voltage) opposes further diffusion of carriers. A dynamic equilibrium is reached when
the drift current due to this potential difference and the diffusion current due to the
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concentration gradient become equal and opposite. In equilibrium, The electron as
well as hole currents must be zero individually (principle of detailed balance). Writing
the electron and hole current densities as sums of their respective drift and diffusion
current densities:

Jn = nqµn(−∂φ

∂x
) + qDn

∂n

∂x

Jp = pqµp(−
∂φ

∂x
) − qDp

∂p

∂x
(11)

From equation(9)

∂n

∂x
= nie

(u−uFn) ∂

∂x
(u − uFn

)

∂p

∂x
= nie

(uFp−u) ∂

∂x
(uFp

− u)

or

∂n

∂x
= n

q

KBT

∂

∂x
(φ − ΦFn

)

∂p

∂x
= p

q

KBT

∂

∂x
(ΦFp

− φ)

Using Einstein relations ( q
KBT

D = µ), and Substituting in the relations for Jn and Jp,

Jn = −nqµn(
∂φ

∂x
) + nqµn

∂

∂x
(φ − ΦFn

)

Jp = −pqµp(
∂φ

∂x
) − pqµp

∂

∂x
(ΦFp

− φ)

Which leads to

Jn = −nqµn
∂ΦFn

∂x
;

Jp = −pqµp

∂ΦFp

∂x
; (12)

When there is no flow of current, ΦFn
= ΦFp

= ΦF. according to the relations derived
above, the derivative of ΦFmust vanish everywhere for zero current. Thus, the Fermi
level is constant and the same at the two sides of the junction. The Fermi potentials
before being put in contact were:

ΦF = KBT
q

ln(Na/ni) P side : x < 0

ΦF = −KBT
q

ln(Nd/ni) N side : x > 0

The Fermi potential difference was, therefore, KBT
q

ln
(

NdNa

n2
i

)

. Since after being put

in contact, the Fermi levels have equalised on the two sides, the built in voltage must
be equal and opposite to this potential, taking the P side to a negative potential and
the N side to a positive potential. We can write for the magnitude of the built in
voltage:

Vbi =
KBT

q
ln

(

NaNd

n2
i

)

(13)
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2.1 pn Diode in Reverse Bias

The diode is reverse biased when we apply a voltage such that the n side is more
positive as compared to the p side. In this case, the applied voltage is in the same
direction as the built-in field, which opposes the movement of majority carriers and
widens the depletion regions on either side of the junction. We analyse the reverse
biased diode by making the depletion approximation. We assume that in reverse bias,
the depletion regions have zero carrier density, and the field is completely confined to
depletion regions. Solving Poisson’s equation in P region (x < 0) and the N region
(x > 0)

∂2φ

∂x2
= qNa

εsi
(for x < 0)

∂2φ

∂x2
= − qNd

εsi
(for x > 0)

Integrating with respect to x

∂φ

∂x
= qNa

εsi
x + c1 (for x < 0)

∂φ

∂x
= − qNd

εsi
x + c2 (for x > 0)

where c1 and c2 are constants of integration, which can be evaluated from the condition
that the field vanishes at the edge of the depletion regions at -Xdp and at Xdn. This
leads to

∂φ

∂x
= qNa

εsi
(x + Xdp) (for x < 0)

∂φ

∂x
= − qNd

εsi
(x − Xdn) (for x > 0) (14)

Since the value of the field must match at x = 0;

NaXdp = NdXdn (15)

Integrating equation (14) once again with respect to x, we get

φ = qNa

εsi

(

x2

2
+ Xdpx

)

+ c3 (for x < 0)

φ = − qNd

εsi

(

x2

2
− Xdnx

)

+ c4 (for x > 0)

Where the constants of integration c3 and c4 can again be evaluated from the boundary
conditions at -Xdp and Xdn. If we require that the potential is 0 at -Xdp and V at Xdn,

c3 =
qNa

2εsi
X2

dp

c4 = V − qNd

2εsi
X2

dn

Substituting these values, we get:

φ = qNa

εsi

(

x2+X2
dp

2
+ Xdpx

)

(for x < 0)

φ = V − qNd

εsi

(

x2+X2
dn

2
− Xdnx

)

(for x > 0) (16)
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Since the potential at x = 0 should be continuous,

qNa

2εsi
X2

dp = V − qNd

2εsi
X2

dn

so, V =
q

2εsi

(NaX
2
dp + NdX

2
dn) (17)

making use of equation (15), we can write

V =
qNaX

2
dp

2εsiNd
(Nd + Na)

=
qNdX

2
dn

2εsiNa

(Nd + Na)

which leads to

Xdp =

√

2εsiV

q(Nd + Na)

Nd

Na

Xdn =

√

2εsiV

q(Nd + Na)

Na

Nd
(18)

From which the total depletion width can be calculated as:

Xd ≡ Xdp + Xdn =

√

2εsiV

q(Nd + Na)

(
√

Nd

Na
+

√

Na

Nd

)

which gives

Xd =

√

2εsiV

q

(

1

Na

+
1

Nd

)

(19)

The voltage V in the above expressions is the total voltage across the junction. Since
there is a reverse bias of Vbi for a zero applied voltage, that will add (in magnitude)
to the applied reverse voltage. Using equation(13) we can write:

V = Vbi + Vappl = Vappl +
KBT

q
ln

(

NaNd

n2
i

)

(20)

3 The pn diode in forward bias

If we apply an external voltage, such that the P side is made positive with respect
to the N side, the applied voltage will reduce the built in voltage across the junction.
The magnitude of the built-in voltage is such that it balances the drift and diffusion
currents, resulting in zero net current. But if the voltage across the junction is reduced,
a net current will flow through the diode. This is the forward mode of operation.
Because of this flow of current, electrons are injected into the P side and holes into
the N side. Consequently, the concentration of carriers is no longer at the equilibrium
value. We denote the equilibrium value of electron and hole concentrations on P and
N side by np0

, nn0
, pp0

, pn0
respectively. Since the majority carrier concentration in

equilibrium is equal to the doping density, we have:

nn0
≈ Nd, pp0

≈ Na and np0
= n2

i /Na, pn0
= n2

i /Nd
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According to equation(10)
np = n2

i e
(uFp−uFn)

As we make the potential of P type more positive compared to N type, the np product
in forward bias is greater than n2

i . From relations(12), we see that the change in quasi
Fermi levels is small wherever the carrier concentration is high. Thus, we can assume
that the quasi Fermi levels of the majority carriers at either side of the junction remain
at their equilibrium values. Hence the voltage across the junction is given by

V = φFp
− φFn

and therefore the non-equilibrium np product is given by

np = n2
i e

(

qV

KBT

)

therefore,

np =
n2

i

pp

e

(

qV

KBT

)

= np0
e

(

qV

KBT

)

pn =
n2

i

nn
e

(

qV

KBT

)

= pn0
e

(

qV

KBT

)

(21)

(22)

The continuity equation for any particle flow can be written as

∇.(particle current dencity) = − ∂

∂t
(particle concentration)

Applying it to electron and hole currents in 1 dimension on the n side,

∂

∂x

(

Jn

−q

)

= U

∂

∂x

(

Jp

q

)

= U

where U is the net recombination rate. Using relation(11), we have

∂

∂x

(

nnµn
∂φ

∂x
− Dn

∂nn

∂x

)

= U

∂

∂x

(

pnµp
∂φ

∂x
+ Dp

∂pn

∂x

)

= U

or

µn
∂nn

∂x

∂φ

∂x
+ µnnn

∂2φ

∂x2
− Dn

∂2nn

∂x2
= U

µp
∂pn

∂x

∂φ

∂x
+ µppn

∂2φ

∂x2
+ Dp

∂2pn

∂x2
= U

Assuming the regions outside the small depletion regions to be charge neutral,

(nn − nn0
) ≈ (pn − pn0

)
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We define ambipolar diffusion and lifetime by the relations

Da ≡ nn + pn

nn/Dp + pn/Dp
(23)

τa ≡ pn − pn0

U
=

nn − nn0

U
(24)

multiplying the electron continuity equation with µppn and the hole continuity equa-
tion with µnnn and combining, we get

−pn − pn0

τa
+ Da

∂2pn

∂x2
+

nn − pn

nn/µp + pn/µn

∂pn

∂x

∂φ

∂x
= 0 (25)

If we make the low injection assumption (pn << nn ≈ nn0
), this reduces to

−pn − pn0

τp
+ Dp

∂2pn

∂x2
+ µp

∂pn

∂x

∂φ

∂x
= 0 (26)

In the neutral region, ∂φ
∂x

is zero, so the above simplifies further to

∂2pn

∂x2
− pn − pn0

Dpτp

= 0 (27)

This can be solved with the boundary condition given by relation(21) and noting that
pn = pn0

at x = ∞ to give:

pn − pn0
= pn0

(

e
qV

KBT − 1
)

e
x−xn

Lp (28)

where
Lp ≡

√

Dpτp (29)

Evaluating the hole current at Xdn, we get

Jp = −qDp
∂pn

∂x
=

qDppn0

Lp

(

e
qV

KBT − 1
)

(30)

Similarly, we can evaluate the electron current on the p side as

Jn = qDn
∂np

∂x
=

qDnnp0

Ln

(

e
qV

KBT − 1
)

(31)

which gives the total current density as

J = Jp + Jn = Js

(

e
qV

KBT − 1
)

(32)

Where Js ≡ qDppn0

Lp
+

qDnnp0

Ln
(33)

4 The MOS Capacitor

It is important to understand the MOS capacitor in order to understand the behaviour
of the the MOS transistor. Before we describe the MOS structure, it is useful to review
the basic electrostatics as applied to parallel plate capacitors. We shall then go on to
analyse the MOS structure.
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4.1 The Parallel Plate Capacitor

The parallel plate capacitor consists of two parallel metallic plates of area A, separated
by an insulator of thickness ti and dielectric constant ε. If we place a charge Q on the
upper plate, it attracts charges of opposite sign in the bottom plate, while repelling
charges of the same sign.

If the bottom plate is connected to ground, the repelled charge flows to ground.
Now the two capacitor plates hold equal and opposite charge. This charge resides just
next to the insulator on either side of it. This is true, whatever the quantity or sign

of charge placed on the upper plate. The inducing and induced charge are always
separated by the thickness of the insulator, ti. Therefore this structure has a constant

capacitance given by:

Ctotal =
Aε

ti

Since there are no charges inside the dielectric, the electric field in the insulator is
constant and the electrostatic potential changes linearly from one plate to the other.

4.2 The MOS capacitor

+   +   +   +   +   +   +   +

−   −   −   −   −   −   −   −

Q

it
−Q

In a MOS capacitor, we replace the lower plate by a semiconductor. Unlike a metal,
a semiconductor can have charges distributed in its bulk.

For the sake of an example, let us consider

Metal

Insulator (Oxide)

Semiconductor

Depletion region

Metal

a P type semiconductor (Si) doped to 1016atoms /cm3.
As we know, holes outnumber electrons in this
semiconductor by an extremely large factor. If we
place a negative charge on the upper plate, holes
will be attracted by this charge, and will accu-
mulate near the silicon-insulator interface. This
situation is analogous to the parallel plate capac-
itor and thus, the capacitance will be the same as
that for a parallel plate capacitor. If, however, we
place a positive charge on the upper plate, neg-
ative charges will be attracted by it and positive
charges will be repelled. In a P type semiconduc-
tor, there are very few electrons. The negative charge is provided by the ionised
acceptors after the holes have been pushed away from them. But the acceptors are
fixed in their locations and cannot be driven to the edge of the insulator. Therefore,
the distance between the induced and inducing charges increases - so the capacitance
is lower as compared to the parallel plate capacitor. As more and more positive charge
is placed on the upper plate, holes from a thicker slice of the semiconductor are driven
away, and the incremental induced charge is farther from the inducing charge. Thus
the capacitance continues to decrease. This does not, however, continue indefinitely.
We know from the law of mass action that as hole density reduces, the electron density
increases. At some point, the hole density is reduced and electron density increased to
such an extent that electrons now become the “majority” carriers near the interface.
This is called inversion. Beyond this point, more positive charge on the upper plate is
answered by more electrons in the semiconductor. But the electrons are mobile, and
will be attracted to the silicon insulator interface. Therefore, the capacitance quickly
increases to the parallel plate value.
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Figure 3: Low frequency capacitance for a MOS capacitor

4.3 Quantitative Analysis

Consider a one dimensional representation of the MOS structures as shown in the
figure below.

The origin is assumed to be at the silicon-oxide

Xo

M O S M
interface and the positive x direction is into the
bulk of silicon. Using a one dimensional analysis,
we want to relate the semiconductor charge to the
applied gate voltage. In a practical case, there is a
potential difference between two dissimilar mate-
rials in contact. Also, the silicon - oxide interface
will have some fixed charge sitting there. How-
ever, we consider the ideal case first - where there

is no built in contact potential between the semiconductor and the metal, and there
is no interface charge.

4.3.1 Ideal Case

Let the back surface of Si be at zero potential and the voltage applied to the gate
terminal be Vg. Let the electrostatic potential at any point x be denoted by φ(x) and
let the potential at the silicon-oxide interface be φs.

We construct a Gaussian box passing through

M O S M

Gaussean Box

the interface and extending to +∞. According
to Gauss law, the integral of the outward point-
ing D vector around the box should be equal to
the charge contained inside. The only boundary
where D is non zero is the one passing through
the interface. Therefore,

Area × εox
φs − Vg

tox
= Total Charge in silicon

If we define Qsi to be the semiconductor charge
per unit area, and Cox to be the parallel plate capacitance per unit area, we get

Vg = φs −
Qsi

Cox

Thus, the surface potential and the applied gate voltage can be related to each other.
If the surface potential is known, we can evaluate the semiconductor charge by inte-
grating the Poisson’s equation in the semiconductor, once.
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We can write the Poisson’s equation in the semiconductor as

∇ · D = ρ

or

−εsi
∂2φ

∂x2
= q(N+

d − N−

a + p − n)

Since the electrostatic potential is dependent only on x, we can change partial deriva-
tives to total derivatives.

−d2φ

dx2
=

d

dx

(

−dφ

dx

)

=
d

dx
(E)

where E is the electrostatic field. Changing the variable from x to φ.

−d2φ

dx2
=

dE
dx

=

(

dφ

dx

)

d

dφ
(E) = −E d

dφ
(E) = −1

2

d

dφ

(

E2
)

If we define
u ≡ βφ where β ≡ q

KBT

We get

−d2φ

dx2
= −1

2

d

dφ

(

E2
)

= −β

2

d

du

(

E2
)

(34)

The right hand side of the Posson’s equation represents the charge density. In the
absence of an applied voltage, this must be zero everywhere. Therefore,

q(N+
d − N−

a + p0 − n0) = 0

where p0 and n0 represent the hole and electron density in the absence of an applied
field. therefore,

N+
d − N−

a = −(p0 − n0)

Sustituting equation(34) and the above in the Poisson’s equation,

−βεsi

2

d

du

(

E2
)

= q [p − p0 − (n − n0)]

so
d

du

(

E2
)

= −2qp0

βεsi

[

p

p0

− 1 − n0

p0

(

n

n0

− 1
)

]

From equation(8)
n = n0e

u and p = p0e
−u

So,
d

du

(

E2
)

= −2qp0

βεsi

[

e−u − 1 − n0

p0

(eu − 1)

]

This can be integrated from x = ∞ (where E = 0 and u = 0) to x to give

E2 =
2qp0

βεsi

[

e−u − 1 + u − n0

p0

(eu − 1 − u)

]

Therefore

E = ±
√

2qp0

βεsi

[

e−u − 1 + u − n0

p0
(eu − 1 − u)

] 1
2
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And thus, the displacement vector D can be evaluated as:

D = εsiE = ±
√

2qp0εsi

β

[

e−u − 1 + u − n0

p0
(eu − 1 − u)

] 1
2

(35)

This equation permits us to calculate D (= − εsi

β
∂u
∂x

) from u. In fact if u is very small,
the exponentials in u can be exapanded to second order. The first two terms cancel
with 1 and u, leaving

∂u

∂x
' ∓

√

qβp0

εsi

(

1 +
n0

p0

)

u

if we take n0 << p0, we get exponential solutions for u with a characteristic length
LD =

√

εsi

qβp0
This implies that small local perturbations in potential tend to decrease

exponentially, with this characteristic length. This length is known as the extrinsic
Debye Length.

By putting u = us in eq. 35, we get the D vector at the surface. We construct
a Gaussean box passing through the interface and enclosing the semiconductor (as
desribed in section 4.3.1) The charge contained in the box is then the integral of
the outward pointing D vector over the surface of the box. D is non zero only at
the interface. The outward pointing D is along the negative x axis. Therefore by
application of Gauss theorem,

Sem. Charge = Area × (−D)

Hence the charge in the semiconductor per unit area is:

Qsi = ∓
√

2εsi

βLD

[

e−us − 1 + us +
n0

p0
(eus − 1 − us)

] 1
2

(36)

where us ≡ βφs

β ≡ q

KBT

and LD ≡
√

εsi

qβp0
= The Extrinsic Debye Length

Notice that Qsi is the charge in the semiconductor per unit area. In this treatment,
we shall use symbols of the type Q and C with various subscripts to denote the cor-
responding charges and capacitance values per unit area. Qsi consists of mobile as
well as fixed charge. The mobile charge is contributed by holes when us < 0 and
by electrons when us > 0 (for a P type semiconductor). As we shall see later, the
mobile electron charge is substantial only when the positive surface potential exceeds
a threshold value.

The fixed charge is contributed by the depletion charge when the surface potential
is positive. The depletion charge per unit area can be calculated by the depletion
formula.

Qdepl = −qNaXd =
√

2qNaεsiφs (φs > 0)

A somewhat more accurate expression for depletion charge accounts for slightly lower
charge density at the edge of the depletion region by subtracting KBT/q from φs.

Qdepl = −qNaXd =
√

2qNaεsi(φs − KBT/q) (φs > KBT/q) (37)
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Figure 4: semiconductor charge as a function of surface potential

Calculated values for the total semiconductor charge per unit area (ie. inclusive
of depletion and mobile charge) and just the depletion charge per unit area have
been plotted in figure 4 for a P type semiconductor doped to 1016/cm3. For small
positive surface potential, the total semiconductor charge contains only depletion
charge. However, beyond a surface potential near 2ΦF, the total charge exceeds the
depletion charge very rapidly. This additional charge is due to mobile minority carriers
(in this case, electrons).

4.3.2 Practical case

A practical MOS structure will differ from the ideal case assumed above in a few
respects. There is a built-in potential difference between the metal used and Si, due
to the difference between their work functions. This shifts the relationship between
Vgand φs. Also, there is a fixed oxide charge which resides essentially at the silicon-
oxide interface. Thus, the total charge in the Gaussian box includes this fixed charge
and the semiconductor charge. These two non-idealities can be accounted for by
modifying the relationship between Vgand φsto be

Vg = Φms + φs −
Qsi + Qox

Cox
(38)

Where Φms is the metal to semiconductor work function difference.
Figure 5 shows the surface potential as a function of applied voltage for a MOS

capacitor with oxide thickness of 22.5 nm, substrate doping of 1016/cc, oxide charge
of 4 × 1010q and aluminium as the gate metal. The surface potential changes quite
slowly as a function of gate voltage in the accumulation and inversion regions.
The absolute value of semiconductor charge has been plotted as a function of applied

gate voltage in figure 6. (The charge is actually negative for positive gate voltages).
As one can see, for small positive gate voltages, the entire semiconductor charge
is depletion charge. As the voltage exceeds a threshold voltage, the total charge
becomes much larger than the depletion charge. The excess charge is provided by
mobile electron charges. This is the inversion region of operation, where electrons
become the majority carriers near the surface in a p type semiconductor. Notice that
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Figure 5: Surface potential as a function of gate voltage
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Figure 6: Semiconductor charge as a function of gate voltage

the depletion charge is practically constant in this region. This region begins when
the surface potential exceeds 2ΦF.

5 The MOS Transistor

Inversion converts a p type semiconductor to n type at the surface. We can use this
fact to construct a transistor. We place semiconductor regions strongly doped to N
type on either side of a MOS capacitor made using P type silicon. Now if we try

P type Si
n+ n+

DS GATE

Figure 7: A MOS Transistor

to pass a current between these two N regions when inversion has not occurred, we
encounter series connected NP and PN diodes on the way. Whatever the polarity of
the voltage applied to pass current, one of these will be reverse biased and practically
no current will flow.
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However, after inversion, the intervening P region would have been converted to
N type. Now there are no junctions as the whole surface region is n type. Current
can now be easily passed between the two n regions. This structure is an n channel
MOS transistor. PMOS transistors can be similarly made using P regions on either
side of a MOS capacitor made on n type silicon. When current flows in an n channel
transistor, electrons are supplied by the more negative of the two n+ contacts. This
is called the source electrode. The more positive n+ contact collects the electrons and
is called the drain. The current in the transistor is controlled by the metal electrode
on top of the oxide. This is called the gate electrode.

6 I-V characteristics of a MOS transistor

A quantitative derivation of the current-voltage characteristics of the MOS device is
complicated by the fact that it is inherently a two dimensional device. The vertical

field due to the gate voltage sets up a mobile charge density in the channel region as
seen in figure 6. The horizontal field due to source-drain voltage causes these charges
to move, and this constitutes the drain current. Therefore, a two dimensional analysis
is required to calculate the transistor current, which can be quite complex. However,
reasonably simple models can be derived by making several simplifying assumptions.

6.1 A simple MOS model

We make the following simplifying assumptions:

• The vertical field is much larger than the horizontal field. Then, the resultant
field is nearly vertical, and the results derived for the 1 dimensional analysis
for the MOS capacitor can be used to calculate the point-wise charge density
in the channel. This is known as the gradual channel approximation. Accurate
numerical simulations have shown that this approximation is valid in most cases.

• The source is shorted to the bulk.

• The gate and drain voltages are such that a continuous inversion region exists
all the way from the source to the drain.

• The depletion charge is constant along the channel.

• The total current is dominated by drift current.

• The mobility of carriers is constant along the channel.

Figure 8 shows the co-ordinate system used for evaluating the drain current. The x
axis points into the semiconductor, the y axis is from source to the drain and the
z axis is along the width of the transistor. The origin is at the source end of the
channel. We represent the channel voltage as V(y), which is 0 at the source end and
Vd at the drain end. We assume the current to be made up of just the drift current.
Since we are carrying out a quasi 2 dimensional analysis, all variables are assumed
to be constant along the z axis. Let n(x,y) be the concentration of mobile carriers
(electrons for an n channel device) at the position x,y (for any z). The drift current
density at a point is

J = no. of carriers × charge per carrier × velocity

17
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Figure 8: Coordinate system used for analysing the MOS transistor

= n(x, y) × (−q) × µ ×
(

−∂V (y)

∂y

)

= µn(x, y)q
∂V (y)

∂y

Integrating the current density over a semi-infinite plane at the channel position y (as
shown in the figure 8) will then give the drain current.

Id =
∫

∞

x=0

∫ W

z=0
µn(x, y)q

∂V (y)

∂y
dzdx

Since there is no dependence on z, the z integral just gives a multiplication by W.
Therefore,

Id = µWq
∫

∞

x=0
n(x, y)

∂V (y)

∂y
dx

the value of n(x,y) is non zero in a very narrow channel near the surface. We can

assume that ∂V (y)
∂y

is constant over this depth. Then,

Id = µWq
∂V (y)

∂y

∫

∞

x=0
n(x, y)dx

but q
∫

∞

x=0 n(x, y)dx = −Q
n
(y) where Q

n
(y) is the electron charge per unit area in the

semiconductor at point y in the channel. (Q
n
(y) is negative, of course). therefore

Id = −µW
∂V (y)

∂y
Q

n
(y)

(39)

Integrating the drain current along the channel gives
∫ L

0
Iddy = −µW

∫ L

0
Q

n
(y)

∂V (y)

∂y
dy

Id × L = −µW
∫ Vd

0
Q

n
(y)dV (y)

So, Id = −µ
W

L

∫ Vd

0
Q

n
(y)dV (y)

18



We now use the assumption that the surface potential due to the vertical field saturates
around 2ΦFif we are in the inversion region. Therefore, the total surface potential at
point y is V(y) + 2 ΦF. Now, by Gauss law and continuity of normal component of
D at the interface,

Cox

(

Vg − ΦMS − φs

)

= − (Qsi + Qox)

therefore,
−Qsi = Cox

(

Vg − ΦMS − V (y) − 2ΦF + Qox/Cox

)

However,
Qsi = Q

n
+ Q

depl

So

−Q
n
(y) = −Qsi(y) + Q

depl

= Cox

(

Vg − ΦMS − V (y) − 2ΦF + (Qox + Q
depl

)/Cox

)

We have assumed the depletion charge to be constant along the channel. Let us define

VT ≡ ΦMS + 2ΦF −
(Qox + Q

depl
)

Cox

then
−Q

n
(y) = Cox(Vg − VT − V (y))

and therefore,

Id = µCox
W

L

∫ Vd

0
(Vg − VT − V (y))dV (y)

= µCox
W

L
[(Vg − VT)Vd −

1

2
V 2

d ] (40)

This derivation gives a very simple expression for the drain current. However, it
requires a lot of simplifying assumptions, which limit the accuracy of this model.
If we do not assume a constant depletion charge along the channel, we can apply the
depletion formula to get its dependence on V(y).

Q
depl

= −
√

2εsiqNa(V (y) + 2ΦF)

then,

−Q
n

= Cox

(

Vg − ΦMS − V (y) − 2ΦF

)

+ Qox −
√

2εsiqNa(V (y) + 2ΦF)

which leads to

Id = µCox
W

L

[(

Vg − ΦMS − 2ΦF +
Qox

Cox

)

Vd −
1

2
V 2

d

−2

3

√
2εsiqNa

Cox

(

(Vd + 2ΦF)
3/2 − (2ΦF)

3/2
)

]

This is a more complex expression, but gives better accuracy.
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6.2 Modeling the saturation region

The treatment in the previous section is valid only if there is an inversion layer all the
way from the source to the drain. For high drain voltage, the local vertical field near
the drain is not adequate to take the semiconductor into inversion. Several models
have been used to describe the transistor behaviour in this regime. The simplest of
these defines a saturation voltage at which the channel just pinches off at the drain
end. The current calculated for this voltage by the above models is then supposed
to remain constant at this value for all higher drain voltages. The pinchoff voltage is
the drain voltage at which the channel just vanishes near the drain end. Therefore,
at this point the gate voltage Vg is just less than a threshold voltage above the drain
voltage Vd. Thus, at this point,

Vdsat = Vg − VT

The current calculated at Vdsat will be denoted as Idss. Thus,

Idss = µCox
W

L
[(Vg − VT)2 − 1

2
(Vg − VT)2]

for the simple transistor model. Thus

Idss =
1

2
µCox

W

L
(Vg − VT)2 (41)

The drain current is supposed to remain constant at this Vd independent value for all
drain voltages > Vg − VT .

6.2.1 Early Voltage approach

Assuming a constant current in the saturation region leads to an infinite output resis-
tance. This can lead to exaggerated estimates of gain from an amplifier. Therefore,
we need a more realistic model for the transistor current in the saturation region.
One of these is a generalisation of the model proposed by James Early for bipolar
transistors. This model is not strictly applicable to MOS transistors. However, due
to its numerical simplicity, it is often used in compact models for circuit simulation.

A geometrical interpretation of the Early model states that the drain current
increases linearly in the saturation region with drain voltage, and if saturation char-
acteristics for different gate voltages are produced backwards, they will all cut the
drain voltage axis at the same (negative) drain voltage point. The absolute value of
this voltage is called the Early Voltage VE.

The current equations in saturation mode now become:

Idss ≡ Id(Vg, Vdss)

Id = Idss
Vd + VE

Vdss + VE

For Vd > Vdss (42)

Any model can be used for calculating the drain current for Vd < Vdss. The value of
Vdss will be determined by considerations of continuity of the drain current and its
derivative at the changeover point from linear to saturation regime. For example, if
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we use the simple model described in eq. 40,

∂Id

∂Vd
= µCox

W

L
(Vg − VT − Vd) For Vd ≤ Vdss

And
∂Id

∂Vd
=

Idss

Vdss + VE
For Vd ≥ Vdss

Where Idss ≡ µCox
W

L

[

(Vg − VT )Vdss −
1

2
V 2

dss

]

On matching the value of ∂Id

∂Vd
on both sides of Vdss, we get

Vdss = VE





√

1 +
2 (Vg − VT )

VE
− 1





In practice, VE is much larger than Vg − VT . If we expand the above expression, we
find that to first order the value of Vdss remains the same as the one used in the simple
model - that is, Vg − VT . Expansion to second order gives

Vdss ' (Vg − VT )
(

1 − Vg − VT

2VE

)

(43)

6.2.2 Simulation Model

Since the value of Vdss does not change substantially from the ideal saturation case,
a simpler approach can be tried. The drain current is calculated using the ideal
saturation model and its value is multiplied by a correction factor = (1 + λVd) in
saturation as well as in linear regime. This automatically assures continuity of Id and
its derivative. λ is a fit parameter, whose value is ≈ 1/VE. This approach is used in
SPICE, a popular circuit simulation program.
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