Hardware Description Languages
Basic Concepts

Dinesh Sharma

Microelectronics Group, EE Department
IIT Bombay, Mumbai

May 2006

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

The Design Process

We ask our selves the question:
What is Electronic Design?

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

The Design Process

We ask our selves the question:
What is Electronic Design?

Given specifications, we want to develop a circuit by connecting

known electronic devices, such that the circuit meets given
specifications.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

The Design Process

We ask our selves the question:
What is Electronic Design?

Given specifications, we want to develop a circuit by connecting
known electronic devices, such that the circuit meets given
specifications.

“Specifications” refer to the description of the desired behaviour
of the circuit.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

The Design Process

We ask our selves the question:
What is Electronic Design?

Given specifications, we want to develop a circuit by connecting
known electronic devices, such that the circuit meets given
specifications.

“Specifications” refer to the description of the desired behaviour
of the circuit.

“Known” devices are those whose behaviour can be modeled
by known equations or algorithms, with known values of
parameters.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

Electronic Design

Electronic Design is the process of converting
a behavioural description (What happens when ..)

to

a structural description (What is connected to what and how ..)

After conversion to a structural description, we may need to do
“Physical Design” which involves choosing device sizes,
placement of blocks, routing of interconnect lines etc.

This part is already done for us in FPGA based design.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

Conquest over Complexity

m The main challange for modern electronic design is that the
circuits being designed these days are extremely complex.

[(@ While IC technology has moved at a rapid pace,
capabilities of human brain have remained the same :-(

m The human mind cannot handle too many objects at the
same time. So a complex design has to be broken down
into a small number of ‘manageable’ objects.

m If each object is still too complex to handle, the above
process has to be repeated recursively. This leads to
hierarchical design.

m Systematic procedures have to be developed to handle
complexity.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

A page out of the software designer’s book

We must learn from the experience of software designers for
handling complexity.
We must adopt:

m Hierarchical Design.

m Modular architecture.

m Text based, rather than pictorial descriptions.

m Re-use of existing resources

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process

Abstraction Levels

Design Flow

Types and levels of modeling

Structural

Levels of
Abstraction

High

Y chart
Gajski and Kahn

Functional

m Abstraction levels refer to
functional, structural or
geometric views of the design.

m Top down design begins with
higher levels of abstraction.

m As we go to lower levels of
abstraction, the level of detalil
goes up.

m It is advantageous to do as
much work as possible at
higher levels of abstraction,
when thw detail is low.

Dinesh Sharma, May 2006

Hardware Description Languages

The Design Process
Design Flow

Abstraction Levels: Geometric

Typesand levels of modeling

m At high levels of geometric

- - - = Floor Plan abstraction, we view the layout
- - -~ Unit Cells .

ik iagrams as a floor plan with blocks.

- - - Polygons m At lower levels, we look at
basic cells.

m At lower levels still, we view
transistors as stick diagrams.

m At the lowest level, we have to

char
carsand kam worry about all rectangles and
polygons making up the
layout.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process

Design Flow

Abstraction Levels: Structural

Typesand levels of modeling

Structural
7

N
Functional
Blocks
N
N
Registers

" Gates

N Transistors

Y chart
Gajski and Kahn

Dinesh Sharma, May 2006

m At high levels of abstraction,
we view the structure in terms
of functional blocks or IP
cores.

m At lower levels, we see it in
terms of registers, simple
blocks

m At still lower levels, we view it
in terms of logic gates etc.

m At the lowest level, we have to
see full details at transistor
level.

Hardware Description Languages

The Design Process

Design Flow

Abstraction Levels: Functional

Typesand levels of modeling

- Equations

_ Dataand
Control Flow

- - Algorithms

” _ - Specifications

Y chart
Gajski and Kahn

Functional

m At the top level, we have the
functional specifications.

m At lower levels, we view the
design in terms of protocols
and algorithms.

m At Still lower levels, we view it
in terms of data and control
flow etc.

m At the highest level of detall,
we have to worry about all the
governing equations at all
nodes.

Dinesh Sharma, May 2006

Hardware Description Languages

The Design Process
Design Flow

Design Flow: System and logic level

| System Partitioning |‘—‘—

| Block specification |

| Block Level Simulation |

<>

| Logic Design |<—
v

| Logic Simulation |

OK? >

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

Design Flow: Physical level

Il
| Physical Design
!

l Layout, Back extraction ‘

l Resimulation, Timing ‘

| Mask Making |<7

l Fabrication ‘
v

l Test ‘ l Debug

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

Hierarchical Design

m The design process has to be hierarchical.

m A complex circuit is converted to a structural description of
blocks which have not yet been designed - but whose
behaviour can be described.

m Each of these blocks is then designed as if it was an
independent design problem of lower complexity.

m This process is continued till all blocks are broken down
into “known” devices.

m It is essential that any departure from proper operation is
detected early - at a low complexity level.

m A hardware description language must be able to simulate
a system whose components have been designed to
different levels of detail.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

But Hardware is different!

Hardware components are concurrent
(all parts work at the same time).

Whereas (traditional) software is sequential -
(executes an instruction at a time).

Description of hardware behaviour has timing as an integral
part.

Traditional software is not real time sensitive.

Therefore, design of complex hardware involves many more
basic concepts beyond those of programming languages.

Dinesh Sharma, May 2006 Hardware Description Languages

The Design Process
Design Flow

Hardware Description Languages

Hardware description languages need the ability to
m Describe
m Simulate at

m Behavioural
m Structural
m and mixed

level.
m and to synthesize (structure from behaviour).

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Basic HDL concepts

m Timing
m Concurrency

m Hardware Simulation process which involves:

m Analysis
m Elaboration
m and Simulation

m Simulation proceeds in two distinct phases

m Signal update
m Selective re-simulation

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Hardware Description Languages are used for:
m Description of

m Interfaces
m Behaviour
m Structure

m Test Benches
m Synthesis

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

How do we describe delays?

In Delay = 30 SOut
| e =S — Out <= In AFTER 30 uS:

Is this description unambiguous?

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrenc
Simulation of hardware

Delay: Inertial

Out

out

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concur
Simulation of hardware

Delay: Transport

n Optical Fibre out

Delay=30uS

gl
Out r

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Modeling Delay

So the same amount of delay (30 xS in our example), can
result in qualitatively different phenomena!

We have to define two different kinds of delay

Inertial Delay is the RC kind of delay, which swallows pulses
much narrower than the delay amount.

Transport Delay is the optical fibre kind of delay, which lets all
pulses pass through irrespective of their width.

In most hardware description languages, Delays are inertial by
default.
The delay amount is taken to be zero if not specified.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Signal Assignments: Transactions

To represent real hardware, each signal assignment has to be
associated with a delay.

When a value is assigned to a signal, the target signal does not
acquire the assigned value immediately. The value is acquired
after some delay.

Remembering that a signal is scheduled to acquire a value in
the future is called a “Transaction”

Thus, when an assignment is made, we imply that the target
signal will acquire this value after so much delay of this type.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Concept of delta delay

When a transaction is placed on a signal, the default type of
delay is inertial and the default amount of delay is zero.

Zero delay is implemented as a small (¢) delay which goes to
zero in the limit.

This has scheduling implications.
Events occurring at t,t + J,t + 26 are all reported as having
occurred at t, but are time ordered as if 4 were non zero.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Handling Concurrency

Concurrency is handled by following an even driven
architecture.

m In a concurrent system many things can happen at the
same time.

m We can efficiently handle only one thing at a time,

m Therefore we need to ‘control’ the passage of time.

m Time is treated as a global variable. Things which happen
simultaneously are handled one after the other, keeping
the time value the same. Time is incremented explicitly
after all events at the current time have been handled.

m Obviously, the value of the time variable represents the
time during the operation of the concurrent system - and
has nothing to do with the actual time taken by a computer
to simulate the system.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Hardware Simulation

Hardware simulation involves three stages:

Analysis Syntax of hardware description is checked and
interpreted.

Elaboration This is a preparatory step which sets up a
hierarchically described circuit for simulation.

m Flattening the hierarchy: For structural
descriptions, components are expanded, till
the circuit is reduced to an interconnection of
simple components which are described
behaviourally.

m Data structures describing “sensitivity lists” of
all elemental components are built up.

Simulation Event driven simulation is carried out.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

IEWSIS

m Check for Syntax and Semantics

Syntax: Grammar of the language
Semantics: Meaning of the model

m Analyse each design unit separately

m Place analysed units in a working library,
(generally in an implementation dependent internal form to
enhance efficiency).

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Elaboration

This step ‘builds up’ a detailed circuit from a hierarchical
description.
m ‘Flatten’ the design hierarchy

m Create ports (interfaces with other blocks).

m Create signals and processes.

m For each instantiated component, copy the component
‘template’ to the instance.

m Repeat recursively till we are left only with behaviourally
described ‘atomic’ modules.

m The end result of elaboration is a flat collection of signal
nets connected to behaviourally described modules
through defined ports.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Event Driven Simulation

m We maintain a time-ordered queue of signals which are
waiting to acquire their assigned values.

m The time variable is advanced to the earliest entry in this
queue.

m All signals waiting for acquiring their values at this time are
updated.

m If this updating results in a change in the value of a signal,
an Event is said to have occurred on this signal.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Sensitivity List

During the elaboration phase, we determine which pieces of
hardware are affected by (are sensitive to) which event.

This is called a ‘sensitivity list’

The data structure is optimized for reverse look up:
That is, given an event, one can quickly get a list of all
hardware which is sensitive to it.

Notice that hardware could be sensitive to a particular kind of
change- for example to a rising edge of the clock.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

The Simulation Cycle

The time variable is advanced to the earliest time entry in the
time ordered queue of transactions.

The update phase Update all signals which were to acquire
their values at the current time (and then delete
their entry from the queue).

Event handling phase If the value of a signal changes due to
the above update, it is said to have had an event.
All events which resulted at the current time are
handled by a scheduler.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Scheduling

For each event that took place at the current time,

m We re-simulate all modules which are sensitive to this
event.

m As a result of re-simulation, fresh transactions will be
placed on various signals. These are inserted at
appropriate positions in the time ordered queue.

This is done for all events which occurred at the current time.

When all events have been handled, we advance the time to
the earliest entry in the time ordered transactions list and start
the update phase again.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

Nodes: A,B and C
Input A, Output C

| Inverter Delay: 8 units
o w0 NAND delay: 6 units
0 ¢

B' ' Sensitivity List

Event on A Inverter, NAND
Event on B NAND

Time ordered Transaction List;

Time Trans.
0 A=0
20 A=1
50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time =0, update A = 0.
I N Time A B C
. Iniial X X X
(o l® P 0 0 X X
A has an event.
Inverter and NAND are sensitive to A.

Initial After Re-sim
Time Trans. Re-evaluate: glme '(l;ra_ni.
0 A f 0 Inverter: B — 1at8; 8 B=1
ég ﬁ:é NAND: C—1laté 20 A=1
B 50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 6, update C = 1.

I [Timle A B C A —

0 20 50 B x
c 0 0 X X L
(o6 P= 6 0 X 1 R R
C has an event.
No module is sensitive to C.
Timtlamtl%lans. After Re-sim
6 c=1 Re-evaluate: Time Trans.
8 B=1 8 B=1
20 A=1 None Required 20 A=1
50 A=0
50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 8, update B = 1.

I Time A B C A

0 20 50 6 O X 1 B x
A e
0 C C x
(el 8 0 1 1 b b

B has an event.
Only NAND is sensitive to B.

~Initial After Re-sim
Time Trans. Re-evaluate: Time Trans.
8 B=1 14 Cc=1
20 A=1 NAND: C—1latl4 20 A=1
50 A=0 50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 14, update C = 1.

I Time A B C e
B

0 20 50

A 8 0 1 1 i

0 C cx
(o) 14 0 1 1 T

There is no event.
No Sensitivity is triggered.

Initial

) After Re-sim
Time Trans. Re-evaluate: Time Trans.
14 c=1 20 A=1
20 A=1 None Required 50 A=0
50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 20, update A = 1.

| Time A B C A

0A 20 50 14 o 1 1 B ox L
T |65 P 20 1 1 1 ex"
E’ B A has an event. 10 20 30 40 50 60
Inverter and NAND are sensitive to
A.
. After Re-sim
~ Initial Re-evaluate: Time Trans.
Time Trans. 6 c=0
20 A=1 Inverter: B — O at 28; o8 B _ 0
= NAND: C—0at26 -
50 A=0 — 50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 26, update C = 0.

I Time A B C rp—

0 20 50
A 20 1 1 1 e —
0 " C C x
B 26 1 1 0 R

C has an event.
No module is sensitive to C

Initial

. After Re-sim
Time Trans. Re-evaluate: Time Trans.
26 C=0 28 B=0
28 B=0 No update is required. 50 A=0
50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays

Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 28, update B = 0.

I Time A B C (S

0 20 50

A 26 1 1 0 5 x

- -' Cx’—L
'-B 28 1 0 O R

B has an event.
Only NAND is sensitive to B.

Initial) After Re-sim
Time Trans. Re-evaluate: Time Trans.
28 B=0 . 3 C=1
50 A=0 NAND: C —1l1lat34 50 A=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays

Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 34, update C = 1.

I [Timle A B C P

0 20 50
« L
. 28 1 0 0 -
'-B 3 1 0 1 R R

C has an event.
No module is sensitive to C.

Initial)

Time Trans. Re-evaluate: After Re-sim

Time Trans.

34 c=1 _ £5 20
50 A=0 No evaluation needed. =

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 50, update A = 0.

Time A B C N

0A 20 50 34 1 O 1 B x I
° WB S, 50 0 0 1 cx LI
B A has an event. 10 20 30 40 50 60
Inverter and NAND are sensitive to
A.

. - : After Re-sim

o elmtl%lans Re-evaluate: ol nui

— Inverter: B — 1 at 58; 56 C=1

50 A=0 NAND: C—1lat56 58 B=1

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 56, update C = 1.

1 Time A B C AL
. 50 0 0 1 Bx%
H—o C X
'-B 6 0 0 1 O I

There is no event
No Sensitivity is triggered.

Initial Re-evaluate: :
Time Trans. After Re-sim
. Time Trans.
56 c=1 No re-evaluation 58 B=1
58 B=1 required.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays

Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 58, update B = 1.

R Time A B C PP e

. 56 o o 1 Bx’—\—l
X

i) 58 0 1 1 R

B has an event
Only NAND is sensitive to B

Initial Re-evaluate: After Re-sim
Time Trans. Time Trans.
58 B=1 NAND: C — 1at64 64 C=1

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

A Simulation Example

At Time = 64, update C = 1.

I Time A B C P [B

OA 20 50 58 O 1 1 .. r—‘—,*

° X
nide 64 0 1 1 R

There is no event
No sensitivity is triggered.

Initial Re-evaluate: After Re-sim
Time Trans. i isti
5 =1 No re-evaluation Time orderted list is

required. empty.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Scheduling for Delay types

What do we do if there is more than one
transaction waiting for the same signal?
Inertial Delay A transaction scheduled for later time results in

deletion of waiting transactions for a different value
on the same signal.

Transport Delay All transactions are retained and signal
assignments made at their respective times.

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Del
Basic HDL concepts
Simulation of hardware

Inertial Delay Example

Time Transaction
0In:=0

Out
| Inertial 30uS
n 40 =1
45 In:=0
N

0 4045 80 130
30 110 160 80 In 1

130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Del
Basic HDL concepts
Simulation of hardware

Inertial Delay Example

Time Transaction

out 30 out:=0
" 40 e 1
45 In:=0

S |

0 4045 80 130
30 110 160 80 In:=1

130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Del
Basic HDL concepts
Simulation of hardware

Inertial Delay Example

Time Transaction

Out
| Inertial 30uS
n 40 =1
45 In =
N

0 4045 80 130
30 110 160 80 In 1

130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Del
Basic HDL concepts
Simulation of hardware

Inertial Delay Example

Time Transaction

]
J—’—L 45 In:=0
In 70 Out =1

0 4045 80 130
u 30 110 160 80 In:=1
130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Del
Basic HDL concepts
Simulation of hardware

Inertial Delay Example

Time Transaction

S T
o 70 outi= 1

0 4045 80 130
4’—L 75 Out :=0
o ——
u 30 110 160 80 In:=1
130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurre
Simulation of hardware

Inertial Delay Example

Time Transaction

: Out
In Inertial 30uS

0 4045 &0 130
4’—L 75 Out :=0
out —
) 30 110 160 80 In:=1

130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Inertial Delay Example

Time Transaction

: Out
In Inertial 30uS

0 4045 80 130
30 110 160 80 In:=1

130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Inertial Delay Example

Time Transaction

: Out
In Inertial 30uS

0 4045 80 130
30 110 160
110 Out:=1
130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Inertial Delay Example

Time Transaction

: Out
In Inertial 30uS

0 4045 80 130
30 110 160

130 In:=0

Dinesh Sharma, May 2006 Hardware Description Languages

Timing and Delays
Basic HDL concepts concurrency
Simulation of hardware

Inertial Delay Example

Time Transaction

: Out
In Inertial 30uS

0 4045 80 130
30 110 160

160 Out:=0

concurrent Descriptions

. . Sequential Descriptions
Concurrent and sequential Descriptions 1 cri

Concurrent Descriptions

m The order of placing ‘concurrent’ descriptions in a
hardware description language is immaterial.

m As seen in the example described earlier, each concurrent
block is handled when its ‘sensitivity’ is struck, wherever it
is placed in the overall description.

m So what defines the limits of a ‘concurrent block’?
m If it is a single line, there is no problem.

m If the description of a concurrent block needs multiple
lines, How are these lines to be executed?

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

. . Sequential Descriptions
Concurrent and sequential Descriptions 1 © '

Multi-line concurrent descriptions

m A multiline concurrent block has to be executed completely
when its sensitivity is struck.

m Therefore, the multi-line description of a complex
concurrent block must be executed sequentially, line by
line.

m A hardware description language must therefore provide a
syntax to distinguish sequential parts from concurrent
parts.

(After all, a single line of description could be a
stand-alone concurrent description or part of a multi-line
sequential code).

m Multiline descriptions of hardware blocks are concurrent
outside and sequential inside!

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

- - Sequential Descriptions
Concurrent and sequential Descriptions q P

Sequential Descriptions

Describing hardware by sequential code raises a problem!
What happens when the sequential description reaches its
end?

m Hardware blocks are perpetual objects. These cannot
‘terminate’ like software routines.

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

- - Sequential Descriptions
Concurrent and sequential Descriptions q P

Sequential Descriptions

Describing hardware by sequential code raises a problem!
What happens when the sequential description reaches its
end?

m Hardware blocks are perpetual objects. These cannot
‘terminate’ like software routines.

m We can make sequential descriptions perpetual by adding
the convention that a sequential description loops back to
its beginning when it reaches its end.

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

- - Sequential Descriptions
Concurrent and sequential Descriptions q P

Sequential Descriptions

Describing hardware by sequential code raises a problem!
What happens when the sequential description reaches its
end?
m Hardware blocks are perpetual objects. These cannot
‘terminate’ like software routines.

m We can make sequential descriptions perpetual by adding
the convention that a sequential description loops back to
its beginning when it reaches its end.

This, however, leads to yet another problem! (@

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

- - Sequential Descriptions
Concurrent and sequential Descriptions q P

Suspending endless loops

An endless loop will never terminate.
Then how can we handle the next event?

Indeed, when can we advance the time variable?

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

- - Sequential Descriptions
Concurrent and sequential Descriptions q P

Suspending endless loops

An endless loop will never terminate.
Then how can we handle the next event?

Indeed, when can we advance the time variable?

The convention should therefore be that when a sequential
description ends, execution will loop back to the beginning,
and execution of the loop will be suspended here!

The supsended loop will restart only when the sensitivity of this
block is struck again.

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions
Sequential Descriptions

Concurrent and sequential Descriptions

Now we can handle multiple blocks waiting to be handled at any
given time.

We handle each block whose sensitivity has been triggered, till
it is suspended.

Then we handle the next block and so on, till all blocks have
been done.

Now we update the time to the next earliest entry in the time
order queue and go through the next signal update - event
handling cycle.

Dinesh Sharma, May 2006 Hardware Description Languages

concurrent Descriptions

- - Sequential Descriptions
Concurrent and sequential Descriptions q P

Hardware Description Languages

This ends

The first part of the lecture series on

HARDWARE DESCRIPTION LANGUAGES

Fundamental Concepts

Dinesh Sharma, May 2006 Hardware Description Languages

	The Design Process
	Design Flow

	Basic HDL concepts
	Timing and Delays
	concurrency
	Simulation of hardware

	Concurrent and sequential Descriptions
	concurrent Descriptions
	Sequential Descriptions

