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Chapter 1

Transistor Models

In this booklet, we shall use simple analytical models for MOS transistors. We
use a sign convention according to which, voltage and current symbols associated
with the pMOS transistor (such as VTp) have positive values. Then, the n channel
formulae can be used for both transistors and we shall assign signs to quantities
explicitly.
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Figure 1.1: MOS characteristics according to the simple analytic model

The model we use is described by the following equations:
for Vgs ≤ VT,

Ids = 0 (1.1)
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for Vgs > VT and Vds ≤ Vgs − VT,

Ids = K
[

(Vgs − VT )Vds −
1

2
V 2

ds

]

(1.2)

and for Vgs > VT and Vds > Vgs − VT,

Ids = K
(Vgs − VT )2

2
(1.3)

The saturation region equation is somewhat oversimplified because it assumes that
the current is independent of Vds. In reality, the current has a weak dependence
on Vds in this region.

In order to model the saturation region more accurately, we adopt an “Early
Voltage” like formalism.
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Figure 1.2: MOS characteristics with non zero conductance in saturation

It is assumed that the current increases linearly in the saturation region. All linear
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characteristics in saturation can be produced backwards towards negative drain
voltages and will intersect the drain voltage axis at a single point at -VE. (This
is, at best, an approximation). Because the conductance in saturation is now
non zero, the onset of saturation has to be redefined, so that the current and its
derivative are continuous at the boundary of linear and saturation regimes. The
current equations are given by:
For Vgs > VT and Vds ≤ Vdss,

Ids = K
[

(Vgs − VT )Vds −
1

2
V 2

ds

]

(1.4)

and for Vgs > VT and Vds > Vdss,

Ids = Idss

Vd + VE

Vdss + VE

(1.5)

Where VE is the ‘Early Voltage’. Here Vdss and Idss are saturation drain voltage
and drain current respectively. Since the current values must match at either side
of Vds = Vdss, we must have:

Idss ≡ K
[

(Vgs − VT )Vdss −
1

2
V 2

dss

]

. (1.6)

For the curve to be smooth and continuous at Vd = Vdss, the value of the first
derivative should match on either side of Vdss. Therefore,

K(Vgs − VT − Vdss) =
Idss

Vdss + VE

So,

K(Vgs − VT − Vdss)(Vdss + VE) = K
[

(Vgs − VT )Vdss −
1

2
V 2

dss

]

(1.7)

This leads to a quadratic equation in Vdss

1

2
V 2

dss + VEVdss − (Vgs − VT )VE = 0 (1.8)

Solving this quadratic, we get

Vdss = VE





√

1 +
2(Vgs − VT )

VE

− 1



 (1.9)

For VE >> Vgs − VT this reduces to

Vdss ≃ (Vgs − VT )
(

1 −
Vgs − VT

2VE

)

(1.10)
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Characteristics of a MOS transistor using this model are shown in fig.1.2. While
accurate modeling of the output conductance is essential for linear design, the
simpler model assuming constant Id in saturation is often adequate for preliminary
digital design. In any case, final designs will have to be validated with detailed
simulations. In this booklet, we shall use the simple model for MOS devices to
keep the algebra simple.
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Chapter 2

Static CMOS Logic Design

Static logic circuits are those which can hold their output logic levels for indefinite
periods as long as the inputs are unchanged. Circuits which depend on charge
storage on capacitors are called dynamic circuits and will be discussed in a later
chapter.

2.1 Static CMOS Design style

The most common design style in modern VLSI design is the Static CMOS logic
style. In this, each logic stage contains pull up and pull down networks which are
controlled by input signals. The pull up network contains p channel transistors,
whereas the pull down network is made of n channel transistors. The networks are
so designed that the pull up and pull down networks are never ‘on’ simultaneously.
This ensures that there is no static power consumption.

2.2 CMOS Inverter

The simplest of such logic structures is the CMOS inverter. In fact, for any CMOS
logic design, the CMOS inverter is the basic gate which is first analyzed and
designed in detail. Thumb rules are then used to convert this design to other more
complex logic. The basic CMOS inverter is shown in fig. 2.1. We shall develop
the characteristics of CMOS logic through the inverter structure, and later discuss
ways of converting this basic structure more complex logic gates.

2.2.1 Static Characteristics

The range of input voltages can be divided into several regions.
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Vi Vo

Vdd

Figure 2.1: The basic CMOS inverter

nMOS ‘off’, pMOS ‘on’

For 0 < Vi < VTn the n channel transistor is ‘off’, the p channel transistor is ‘on’
and the output voltage = Vdd. This is the normal digital operation range with
input = ‘0’ and output = ‘1’.

nMOS saturated, pMOS linear

In this regime, both transistors are ‘on’. The input voltage Vi is > VTn, but is
small enough so that the n channel transistor is in saturation, and the p channel
transistor is in the linear regime. In static condition, the output voltage will adjust
itself such that the currents through the n and p channel transistors are equal. The
absolute value of gate-source voltage on the p channel transistor is Vdd- Vi, and
therefore the “over voltage” on its gate is Vdd- Vi- VTp. The drain source voltage
of the pMOS has an absolute value Vdd-Vo. Therefore,

Id = Kp

[

(Vdd − Vi − VTp)(Vdd − Vo) −
1

2
(Vdd − Vo)

2

]

=
Kn

2
(Vi − VTn)2 (2.1)

Where symbols have their usual meanings.

We define β ≡ Kn/Kp. We make the substitution Vdp ≡ Vdd − Vo, where Vdpis
the absolute value of the drain-source voltage for the p channel transistor. Then,

(Vdd − Vi − VTp)Vdp −
1

2
V 2

dp =
β

2
(Vi − VTn)2 (2.2)

Which gives the quadratic

1

2
V 2

dp − Vdp(Vdd − Vi − VTp) +
β

2
(Vi − VTn)2 = 0 (2.3)

Solutions to the quadratic are:

Vdp = (Vdd − Vi − VTp) ±
√

(Vdd − Vi − VTp)2 − β(Vi − VTn)2 (2.4)
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These equations are valid only when the pMOS is in its linear regime. This requires
that

Vdp ≡ Vdd − Vo ≤ Vdd − Vi − VTp

Therefore, we must choose the negative sign. Thus

Vdd − Vo = (Vdd − Vi − VTp) −
√

Vdd − Vi − VTp)2 − β(Vi − VTn)2 (2.5)

Therefore,

Vo = Vi + VTp +
√

(Vdd − Vi − VTp)2 − β(Vi − VTn)2 (2.6)

Since Vo must be ≥ Vi +VTp, the limit of applicability of the above result is given
by

(Vdd − Vi − VTp)
2 = β(Vi − VTn)2

That is, the solution for Vo is valid for

Vi ≤
Vdd +

√
βVTn − VTp

1 +
√

β
(2.7)

In the case where we size the n and p channel transistors such that

Kn = Kp; so β = 1

we have

Vo = (Vi + VTp) +
√

(Vdd − VTn − VTp)(Vdd − 2Vi + VTn − VTp) (2.8)

with

Vi ≤
Vdd + VTn − VTp

2

nMOS saturated, pMOS saturated

At the limit of applicability of eq. 2.7, when the input voltage is exactly at

Vi =
Vdd +

√
βVTn − VTp

1 +
√

β
(2.9)

both transistors are saturated. Since the currents of both transistors are indepen-
dent of their drain voltages in this condition, we do not get a unique solution for
Vo by equating drain currents. The currents will be equal for all values of Vo in
the range

Vi − VTn ≤ Vo ≤ Vi + VTp

Thus the transfer curve of an inverter shows a drop of VTn+ VTp at a voltage near
Vdd/2. This is actually an artifact of the simple transistor model chosen for this
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Figure 2.2: Transfer Curve of a CMOS inverter

analysis, which assumes perfect saturation of drain current. In a real case, the
drain current does depend on the drain voltage (albeit weakly) in the saturation
region. If the model incorporates an Early Voltage like effect, the drop near the
middle of the characteristic is more gradual.

nMOS linear, pMOS saturated

At the gate voltage given by eq. 2.9, both transistors are saturated. As we increase
Vi beyond this value, such that

Vdd +
√

βVTn − VTp

1 +
√

β
< Vi < Vdd − VTp

both transistors are still ‘on’, but nMOS enters the linear regime while pMOS gets
saturated. Equating currents in this condition,

Id =
Kp

2
(Vdd − Vi − VTp)

2 = Kn

[

(Vi − VTn)Vo −
1

2
V 2

o

]

(2.10)

From this, we get the quadratic equation

1

2
V 2

o − (Vi − VTn)Vo +
(Vdd − Vi − VTp)

2

2β
= 0 (2.11)
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This has solutions

Vo = (Vi − VTn) ±
√

(Vi − VTn)2 −
(Vdd − Vi − VTp)2

β
(2.12)

Since the equations are valid only when the n channel transistor is in the linear
regime (Vo < Vi − VTn), we choose the negative sign. This gives,

Vo = (Vi − VTn) −
√

(Vi − VTn)2 −
(Vdd − Vi − VTp)2

β
(2.13)

Again, in the special case where β = 1, we have

Vo = (Vi − VTn) −
√

(Vdd − VTn − VTp)(2Vi − Vdd − VTn + VTp) (2.14)

nMOS ‘on’, pMOS ‘off’

As we increase the input voltage beyond Vdd- VTp, the p channel transistor turns
‘off’, while the n channel conducts strongly. As a result, the output voltage falls
to zero. This is the normal digital operation range with input = ‘1’ and output =
‘0’.

The figure below shows the transfer curve of an inverter with Vdd= 3V, VTn=
0.6V and VTp= 0.5V, and β = 1.
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The plot produced by SPICE for this circuit with realistic models is quite similar.

2.2.2 Noise margins

The requirement from a digital circuit is that it should distinguish logic levels,
but be insensitive to the exact analog voltage at the input. This implies that
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the flat portions of the transfer curve (where ∂Vo

∂Vi
is small) are suitable for digital

logic. We select two points on the transfer curve where the slope (∂Vo

∂Vi
) is -1.0.

The coordinates of these two points define the values of (ViL,VoH) and (ViH ,VoL).
Robust digital design requires that the output high level be higher than what is
acceptable as a high level at the input (VoH > ViH). The difference between these
two levels is the ‘high’ noise margin. This is the amount of noise that can ride
on the worst case ‘high’ output and still be accepted as a ‘high’ at the input of
the next gate. Similarly, we require VoL < ViL. The difference, ViL − VoL is the
‘low’ noise margin. Obviously, it is of interest to evaluate the values of these noise
margins. For the discussion which follows, we shall use the expressions derived
earlier for β = 1 to keep the algebra simple.

Calculation of ViL and VoH

from eq. (2.8)

Vo = (Vi + VTp) +
√

(Vdd − VTn − VTp)(Vdd + VTn − VTp − 2Vi)

From this, we can evaluate ∂Vo

∂Vi
and set it = -1.

∂Vo

∂Vi

= −1 = 1 −
√

Vdd − VTn − VTp

Vdd + VTn − VTp − 2Vi

(2.15)

This gives

ViL =
3Vdd + 5VTn − 3VTp

8
(2.16)

Substituting this in eq.(2.8), we get

VoH =
7Vdd + VTn + VTp

8
= Vdd −

Vdd − VTn − VTp

8
(2.17)

Calculation of ViH and VoL

When the input is ‘high’, we should use eq.(2.14).

Vo = (Vi − VTn) −
√

(Vdd − VTn − VTp)(2Vi − Vdd − VTn + VTp)

Differentiating with respect to Vi gives

∂Vo

∂Vi

= −1 = 1 −
√

Vdd − VTn − VTp

2Vi − Vdd − VTn + VTp

(2.18)

From where, we get

ViH =
5Vdd + 3VTn − 5VTp

8
(2.19)
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and

VoL =
Vdd − VTn − VTp

8
(2.20)

Calculation of Noise Margins

The high noise margin is given by

VoH − ViH =
Vdd − VTn + 3VTp

4
(2.21)

Similarly, the Low noise margin is

ViL − VoL =
Vdd + 3VTn − VTp

4
(2.22)

The two noise margins can be made equal by choosing equal values for VTn and
VTp.

2.2.3 Dynamic Considerations

In this section, we analyze the dynamic behaviour of the inverter. For the calcu-
lation of rise and fall times, we shall assume that only one of the two transistors
in the inverter is ‘on’. (Notice that this is more conservative than the input high
and low conditions determined by slope considerations in eq.2.19 and 2.16). We
shall continue to use the simple model described at the beginning of this booklet.

Rise time

When the input is low, the n channel transistor is ‘off’, while the p channel tran-
sistor is ‘on’. The equivalent circuit in this condition is shown in fig. 2.3. From

ViL

Vo

Vdd

Figure 2.3: CMOS inverter with the nMOS ‘off’
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Kirchoff’s current law at the output node,

Idp = C
dVo

dt

so,
dt

C
=

dVo

Idp

This separates the variables, with the LHS independent of operating voltages and
the RHS independent of time. Integrating both sides, we get

τrise

C
=
∫ VoH

0

dVo

Idp

Till the output rises to ViL+ VTp, the p channel transistor is in saturation. Since
the current is constant, the integration is trivial. If VoH > ViL + VTp (which is
normally the case), the integration range can be broken into saturation and linear
regimes. Thus

τrise

C
=

∫ ViL+VTp

0

dVo

Kp

2
(Vdd − ViL − VTp)2

+
∫ VoH

ViL+VTp

dVo

Kp

[

(Vdd − ViL − VTp)(Vdd − Vo) − 1

2
(Vdd − Vo)2

]

We define V1 ≡ Vdd − Vo and V2 ≡ Vdd − ViL − VTp, so dVo = −dV1.
We get

Kpτrise

2C
=

ViL + VTp

V 2
2

−
∫ Vdd−VoH

V2

dV1

2V1V2 − V 2
1

The integral can be evaluated as

I ≡ −
∫ Vdd−VoH

V2

dV1

2V1V2 − V 2
1

=
1

2V2

∫ V2

Vdd−VoH

(

1

V1

+
1

2V2 − V1

)

dV1

=
1

2V2

[

ln
V1

2V2 − V1

]V2

Vdd−VoH

=
1

2V2

ln
2V2 − Vdd + VoH

Vdd − VoH

Therefore,
Kpτrise

2C
=

ViL + VTp

V 2
2

+
1

2V2

ln
2V2 − Vdd + VoH

Vdd − VoH
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or

Kpτrise

2C
=

ViL + VTp

(Vdd − ViL − VTp)2
+

1

2(Vdd − ViL − VTp)
ln

2V2 − Vdd + VoH

Vdd − VoH

Thus,

τrise =
C(ViL + VTp)

Kp

2
(Vdd − ViL − VTp)2

+
C

Kp(Vdd − ViL − VTp)
ln

Vdd + VoH − 2ViL − 2VTp

Vdd − VoH

(2.23)

The first term is just the constant current charging of the load capacitor. The
second term represents the charging by the pMOS in its linear range. This can be
compared with resistive charging, which would have taken a charge time of

τ = RC ln
Vdd − ViL − VTp

Vdd − VoH

to charge from ViL+ VTp to VoH .

Fall time

When the input is high, the n channel transistor is ‘on’ and the p channel transistor
is ‘off’. If the output was initially ‘high’, it will be discharged to ground through

Vo

Vi H

Figure 2.4: CMOS inverter with the pMOS ‘off’

the nMOS. To analysis the fall time, we apply Kirchoff’s current law to the output
node. This gives

Idn = −C
dVo

dt

Again, separating variables and integrating from the initial voltage (= Vdd) to some
terminal voltage VoL gives

τfall

C
= −

∫ voL

Vdd

dVo

Idn

15



The n channel transistor will be in saturation till the output voltage falls to Vi- VTn.
Below this voltage, the transistor will be in its linear regime. Thus, we can divide
the integration range in two parts.

τfall

C
= −

∫ Vi−VTn

Vdd

dVo

Idn

−
∫ VoL

Vi−VTn

dVo

Idn

=
∫ Vdd

Vi−VTn

dVo

Kn

2
(Vi − VTn)2

+
∫ Vi−VTn

VoL

dVo

Kn[(Vi − VTn)Vo − 1

2
V 2

o

Therefore

Knτfall

2C
=

Vdd − Vi + VTn

(Vi − VTn)2
+
∫ Vi−VTn

VoL

dVo

2Vo(Vi − VTn) − V 2
o

=
Vdd − Vi + VTn

(Vi − VTn)2
+

1

2(Vi − VTn)

∫ Vi−VTn

VoL

dVo

(

1

Vo

+
1

2(Vi − VTn) − Vo

)

Which gives

Knτfall

2C
=

Vdd − Vi + VTn

(Vi − VTn)2
+

1

2(Vi − VTn)

[

ln
Vo

2(Vi − VTn) − Vo

]Vi−VTn

VoL

=
Vdd − Vi + VTn

(Vi − VTn)2
+

1

2(Vi − VTn)
ln

2(Vi − VTn) − VoL

VoL

and therefore

τfall =
C(Vdd − Vi + VTn)

Kn

2
(Vi − VTn)2

+
C

Kn(Vi − VTn)
ln

2(Vi − VTn) − VoL

VoL

(2.24)

Again, the first term represents the time taken to discharge at constant current in
the saturation regime, whereas the second term is the quasi-resistive discharge in
the linear regime.

2.2.4 Trade off between power, speed and robustness

As we scale technologies, we improve speed and power consumption. However,
as we can see from the expression for noise margins, (eq 2.21 and eq 2.22) the
noise margin becomes worse. We can improve noise margins by choosing relatively
higher threshold voltages. However, this will reduce speeds. We could also increase
Vdd- but that would increase power dissipation. Thus we have a trade off between
power, speed and noise margins.

This choice is made much more complicated by process variations, because we
have to design for the worst case.
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2.2.5 CMOS Inverter Design Flow

The CMOS inverter forms the basis of most static CMOS logic design. More com-
plex logic can be designed from it by simple thumb rules. A common (though not
universal) design requirement is symmetric charge and discharge behaviour and
equal noise margins for high and low logic values. This requires matched values
of Kn and Kp and equal values of VTnand VTp. For a constant load capacitance,
rise and fall times depend linearly on Kn and Kp. Thus it is a straightforward
calculation to determine transistor geometries if speed requirements and techno-
logical parameters are given. However, as transistor geometries are made larger,
self loading can become significant. We now have to model the load capacitance
as

CLoad = Cext + αKn

where we have assumed that β = Kn/Kp is kept constant. α is a technological
constant. We use the expressions for Kτ/C which depend only on voltages. Once
these values are calculated, the geometry can be determined.

In the extreme case, when self capacitance dominates the load capacitance, K/C
becomes constant and τ becomes geometry independent. There is no advantage
in using wider transistors in this regime to increase the speed. It is better to use
multi-stage logic with tapered buffers in this regime. This will be discussed in the
module on Logical Effort.

2.2.6 Conversion of CMOS Inverters to other logic

Once the basic CMOS inverter is designed, other logic gates can be derived from
it. The logic has to be put in a canonical form which is a sum of products with a
bar (inversion) on top. For every ‘.’ in the expression, we put the corresponding
n channel transistors in series and the corresponding p channel transistors in par-
allel. for every ‘+’, we put the n channel transistors in parallel and the p channel
transistors in series. We scale the transistor widths up by the number of devices
(n or p) put in series. The geometries are left untouched for devices put in paral-
lel. Fig.2.5 shows the implementation of A.B + C.(D + E) in CMOS logic design
style.
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Chapter 3

Beyond Static CMOS

3.1 Pseudo nMOS Design Style

CMOS design style ensures that the logic consumes no static power. This is be-
cause the pull down and pull up networks are never ‘on’ simultaneously. However,
this requires that signals have to be routed to the n pull down network as well as

to the p pull up network. This means that the load presented to every driver is
high. This fact is exacerbated by the fact that n and p channel transistors cannot
be placed close together as these are in different wells which have to be kept well
separated in order to avoid latchup.

Pseudo nMOS design style reduces dynamic power (by reducing capacitive
loading) at the cost of having non-zero static power by replacing the pull up
network by a single pMOS transistor with its gate terminal grounded. The pseudo
nMOS inverter is shown below.

Vdd

Gnd

Out

in

Notice that since the pMOS is not driven by signals, it is always ‘on’. The effective
gate voltage seen by the pMOS transistor is Vdd. Thus the overvoltage on the p
channel gate is always Vdd- VTp. When the nMOS is turned ‘on’, a direct path
between supply and ground exists and static power will be drawn.
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3.1.1 Static Characteristics

As we sweep the input voltage from ground to Vdd, we encounter the following
regimes of operation:

nMOS ‘off’

This is the case when the input voltage is less than VTn. The output is ‘high’ and
no current is drawn from the supply.

nMOS saturated, pMOS linear

As the input voltage is raised above VTn, we enter this region. The input voltage
is assumed to be sufficiently low that the output voltage exceeds the saturation
voltage Vi − VTn. Normally, this voltage will be higher than VTp, so the p channel
transistor is in linear mode of operation. Equating currents through the n and p
channel transistors, we get

Kp

[

(Vdd − VTp)(Vdd − Vo) −
1

2
(Vdd − Vo)

2

]

=
Kn

2
(Vi − VTn)2 (3.1)

defining V1 ≡ Vdd − Vo and V2 ≡ Vdd − VTp, we get

1

2
V 2

1 − V2V1 +
β

2
(Vi − VTn)2 = 0 (3.2)

with solutions
V1 = V2 ±

√

V 2
2 − β(Vi − VTn)2

substituting the values of V1 and V2 and choosing the sign which puts Vo in the
correct range, we get

Vo = VTp +
√

(Vdd − VTp)2 − β(Vi − VTn)2 (3.3)

nMOS linear, pMOS linear

As the input voltage is increased, the output voltage will decrease in accordance
with equation(3.3). At some point, the output voltage will fall below Vi − VTn. It
can be shown that this will happen when

Vi > VTn +
VTp +

√

V 2
Tp + (β + 1)Vdd(Vdd − 2VTp)

β + 1
.

The nMOS is now in its linear mode of operation. We shall not derive the expres-
sion for the output voltage in this mode of operation in the discussion here. The
solution is straightforward, though algebraically tedious.
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nMOS linear, pMOS saturated

As the input voltage is raised still further, the output voltage will fall below VTp.
The pMOS transistor is now in saturation regime. Equating currents, we get

Kn

[

(Vi − VTn)Vo −
1

2
V 2

o

]

=
Kp

2
(Vdd − VTp)

2

which gives
1

2
V 2

o − (Vo − VTn)Vo +
(Vdd − VTp)

2

2β

This can be solved to get

Vo = (Vi − VTn) −
√

(Vi − VTn)2 − (Vdd − VTp)2/β (3.4)

3.1.2 Noise margins

As in the case of CMOS inverter, we find points on the transfer curve where the
slope is -1.

When the input is low and output high, we should use eq(3.3). Differentiating
this equation with respect to Vi and setting the slope to -1, we get

ViL = VTn +
Vdd − VTp
√

β(β + 1)
(3.5)

and

VoH = VTp +

√

β

β + 1
(Vdd − VTp) (3.6)

When the input is high and the output low, we use eq(3.4). Again, differentiating
with respect to Vi and setting the slope to -1, we get

ViH = VTn +
2√
3β

(Vdd − VTp) (3.7)

and

VoL =
(Vdd − VTp)√

3β
(3.8)

To make the output ‘low’ value lower than VTn, we get the condition

β >
1

3

(

Vdd − VTp

VTn

)2
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This condition on values of β places a requirement on the ratios of widths of n
and p channel transistors. The logic gates work properly only when this equation
is satisfied. Therefore this kind of logic is also called ‘ratioed logic’. In contrast,
CMOS logic is called ratioless logic because it does not place any restriction on
the ratios of widths of n and p channel transistors for static operation. The noise
margin for pseudo nMOS can be determined easily from the expressions for ViL,
VoL, ViH , VoH .

3.1.3 Dynamic characteristics

In the sections above, we have derived the behaviour of a pseudo nMOS inverter
in static conditions. In the sections below, we discuss the dynamic behaviour of
this inverter.

Rise Time

When the input is low and the output rises from ‘low’ to ‘high’, the nMOS is off.
The situation is identical to the charge up condition of a CMOS gate with the
pMOS being biased with its gate at 0V. This gives

τrise =
C

Kp(Vdd − VTp)

[

2VTp

Vdd − VTp

+ ln
Vdd + VoH − 2VTp

Vdd − VoH

]

(3.9)

Fall Time

Analytical calculation of fall time is complicated by the fact that the pMOS load
continues to dump current in the output node, even as the nMOS tries to discharge
the output capacitor.

Vdd

Gnd

Out

in

Figure 3.1: ‘high’ to ‘low’ transition on the output

Thus the nMOS should sink the discharge current as well as the drain current of
the pMOS transistor. We make the simplifying assumption that the pMOS current
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remains constant at its saturation value through the entire discharge process. (This
will result in a slightly pessimistic value of discharge time). Then,

Ip =
Kp

2
(Vdd − VTp)

2

. We can write the KCL equation at the output node as:

In − Ip + C
dVo

dt
= 0

which gives
τfall

C
= −

∫ VoL

Vdd

dVo

In − Ip

We define V1 ≡ Vi−VTn and V2 ≡ Vdd−VTp. The integration range can be divided
into two regimes. nMOS is saturated when V1 ≤ Vo < Vdd and is in linear regime
when VoL < Vo < V1. Therefore,

τfall

C
= −

∫ V1

Vdd

dVo

1

2
KnV

2
1 − Ip

−
∫ VoL

V1

dVo

Kn(V1Vo − 1

2
V 2

o ) − Ip

so,
τfall

C
=

Vdd − V1

1

2
KnV 2

1 − Ip

+
∫ V1

VoL

dVo

Kn(V1Vo − 1

2
V 2

o ) − Ip

3.1.4 Pseudo nMOS design Flow

We design the basic inverter first and then map the inverter design to other logic
circuits. The load device size is calculated from the rise time. From eq. 3.9 we
have

τrise =
C

Kp(Vdd − VTp)

[

2VTp

Vdd − VTp

+ ln
Vdd + VoH − 2VTp

Vdd − VoH

]

Given a value of τrise, operating voltages and technological constants, Kp and
hence, the geometry of the p channel transistor can be determined.

Geometry of the n channel transistor in the reference inverter design can be
determined from static considerations. Using eq. 3.4, the output ‘low’ level is
given by:

Vo = (Vi − VTn) −
√

(Vi − VTn)2 − (Vdd − VTp)2/β

If the desired value of the output ‘low’ level is given, we can calculate β. But
β ≡ Kn/Kp and Kp is already known. This evaluates Kn and hence, the geometry
of the n channel transistor.
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Figure 3.2: Pseudo NMOS implementation of A.B + C.(D + E)

3.1.5 Conversion of pseudo nMOS Inverter to other logic

Once the basic pseudo nMOS inverter is designed, other logic gates can be derived
from it. The procedure is the same as that for CMOS, except that it is applied
only to nMOS transistors. The p channel transistor is kept at the same size as
that for an inverter.

The logic is expressed as a sum of products with a bar (inversion) on top.
For every ‘.’ in the expression, we put the corresponding n channel transistors in
series and for every ‘+’, we put the n channel transistors in parallel. We scale
the transistor widths up by the number of devices put in series. The geometries
are left untouched for devices put in parallel. Fig.3.2 shows the implementation of
A.B + C.(D + E) in pseudo NMOS logic design style.

3.2 Complementary Pass gate Logic

This logic family is based on multiplexer logic.

Given a boolean function F(x1, x2, . . . , xn), we can express it as:

F (x1, x2, . . . , xn) = xi · f1 + xi · f2

where f1 and f2 are reduced expressions for F with xi forced to 1 and 0 respectively.
Thus, F can be implemented with a multiplexer controlled by xi which selects f1
or f2 depending on xi. f1 and f2 can themselves be decomposed into simpler
expressions by the same technique.

To implement a multiplexer, we need both xi and xi. Therefore, this logic
family needs all inputs in true as well as in complement form. In order to drive
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Figure 3.3: Basic Multiplexer with logic restoring inverters

other gates of the same type, it must produce the outputs also in true and com-
plement forms. Thus each signal is carried by two wires. This logic style is called
“Complementary Passgate Logic” or CPL for short.

3.2.1 Basic Multiplexer Structure

Pure passgate logic contains no ‘amplifying’ elements. Therefore, it has zero or
negative noise margin. (Each logic stage degrades the logic level). Therefore,
multiple logic stages cannot be cascaded. We shall assume that each stage includes
conventional CMOS inverters to restore the logic level. Ideally, the multiplexer
should be composed of complementary pass gate transistors. However, we shall
use just n channel transistors as switches for simplicity.
This gives us the multiplexer structure shown in fig.3.3.

3.2.2 Logic Design using CPL

Since both true and complement outputs are generated by CPL, we do not need
separate gates for AND and NAND functions. The same applies to OR-NOR, and
XOR-XNOR functions.

To take an example, let us consider the XOR-XNOR functions. Because of the
inverter, the multiplexer for the XOR output first calculates the XNOR function
given by A.B+A.B. If we put A = 1, this reduces to B and for A = 0, it reduces to
B. Similarly, for the XNOR output, we generate the XOR expression = A.B+A.B
which will be inverted by the logic level restoring inverter. The expression reduces
to B for A = 1 and to B for A = 0. This leads to an implementation of XOR-
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Figure 3.4: Implementation of XOR and XNOR by CPL logic.

XNOR as shown in fig.3.4

A A

A

B
A.B

A.B

A.B
A.B

B

A

AND−NAND

A A

A

B

A

B

A+B

A+B

A+B

A+B

OR−NOR

Figure 3.5: Implementation of (a) AND-NAND and (b) OR-NOR functions using
complementary passgate logic.

Implementation of AND and OR functions is similar. In case of AND, the
multiplexer should output A.B to be inverted by the buffer. This reduces to B
when A = 1. When A = 0, it evaluates to 1 = A. For NAND output, the
multiplexer should output A.B, which evaluates to B for A = 1 and to 0 (or A)
when A = 0.

3.2.3 Buffer Leakage Current

The circuit configuration described above uses nMOS multiplexers. This limits
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Figure 3.6: High leakage current in inverter

the ‘high’ output of the multiplexer (node y - which is the input for the inverter)
to Vdd - VTn. Consequently, the pMOS transistor in the buffer inverter never quite
turns off. This results in static power consumption in the inverter. This can be

F

f1

f2

xi xi

y=F

Figure 3.7: Pull up pMOS to avoid leakage in the inverter

avoided by adding a pull up pMOS as shown in fig. 3.7. When the multiplexer
output (y) is ‘low’, the inverter output is high. The pMOS is therefore off and has
no effect. When the multiplexer output goes ‘high’, the inverter input charges up,
the output starts falling and turns the pMOS on. Now, as the multiplexer output
(y) approaches Vdd - VTn, the nMOS switch in the multiplexer turn off. However,
the pMOS pull up remains ‘on’ and takes the inverter input all the way to Vdd.
This avoids leakage in the inverter.

However, this solution brings up another problem. Consider the equivalent cir-
cuit when the inverter output is ‘low’ and the pMOS is ‘on’. Now if the multiplexer
output wants to go ‘low’, it has to fight the pMOS pullup - which is trying to keep
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Figure 3.8: Problem with a low to high transition on the output

this node ‘high’.

In fact, the multiplexer n transistor and the pull up p transistor constitute a
pseudo nMOS inverter. Therefore, the multiplexer output cannot be pulled low
unless the transistor geometries are appropriately ratioed.

3.3 Cascade Voltage Switch Logic

We can understand this logic configuration as an attempt to improve pseudo-nMOS
logic circuits. Consider the NOR gate shown below: Static power is consumed by

A B

Out

Vdd

Figure 3.9: Pseudo-nMOS NOR

this NOR circuit whenever the output is ‘LOW’. This happens when A OR B is
TRUE. We wish that the pMOS could be turned off for just this combination of
inputs.

To turn the pMOS transistor off, we need to apply a ‘HIGH’ voltage level to its
gate whenever A OR B is true. This obviously requires an OR gate. Non-inverting
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gates cannot be made in a single stage. However, We can create the OR function
by using a NAND of A and B as shown in figure 3.10. But then what about the

Out

Vdd

A

B

Figure 3.10: Pseudo-nMOS OR from complemented inputs

pMOS drive of this circuit?

We want to turn the pMOS of this OR circuit off when both A and B are
‘HIGH’; i.e. when A = B = 0. This means we would like to turn the pMOS of
this circuit off when the NOR of A and B is ‘TRUE’.

But we already have this signal as the output of the first (NOR) circuit! So
the two circuits can drive each other’s pMOS transistors and avoid static power
consumption. This kind of logic is called Cascade Voltage Switch Logic (CVSL). It

A B

Out

Vdd

Out

A

B

Figure 3.11: OR-NOR implementation in Cascade Voltage Switch Logic

can use any network f and its complementary network f in the two cross-coupled
branches. The complementary network is constructed by changing all series con-
nections in f to parallel and all parallel connections to series, and complementing
all input signals.

CVSL shares many characteristics with static CMOS, CPL and pseudo-nMOS.

• Like CMOS static logic, there is no static power consumption.
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• Like CPL, this logic requires both True and Complement signals. It also
provides both True and complement outputs. (Dual Rail Logic).

• Like pseudo nMOS, the inputs present a single transistor load to the driving
stage.

• The circuit is self latching. This reduces ratioing requirements.

3.4 Dynamic Logic

In this style of logic, some nodes are required to hold their logic value as a charge
stored on a capacitor. These nodes are not connected to their ‘drivers’ perma-
nently. The ‘driver’ places the logic value on them, and is then disconnected from
the node. Due to leakage etc., the logic value cannot be held indefinitely. Dynamic
circuits therefore require a minimum clock frequency to operate correctly. Use of
dynamic circuits can reduce circuit complexity and power consumption substan-
tially. When the clock is low, pMOS is on and the bottom nMOS is off. The output

A B

C CL

Out

Vdd

Ck

Figure 3.12: CMOS dynamic gate to implement (A + B).C.

is ‘pre-charged’ to 1 unconditionally. When the clock goes high, the pMOS turns
off and the bottom nMOS comes on. The circuit then conditionally discharges the
output node, if (A+B).C is TRUE. This implements the function (A + B).C.
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3.4.1 Problem with Cascading CMOS dynamic logic

There is no problem when (A+B).C is false. X pre-charges to 1 and remains at 1.

A B

C CL

Out

Vdd

Ck

X

Ck

Out

X
(A+B).C = FALSE

Ck

Out

X

(A+B).C = TRUE

When (A+B).C is TRUE, X takes some time to discharge. During this time,
charge placed on the output leaks away as the input to nMOS of the inverter is
not 0.
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3.4.2 Four Phase Dynamic Logic

P

Ck12

Ck23

A B

C

Out

Ck1
Ck2
Ck3
Ck4

Figure 3.13: CMOS 4 phase dynamic logic

The problem can be solved by using a 4 phase clock. The idea is to sample the
previous stage only after its evaluation is complete.

In phase 1, node P is pre-charged. In phase 2, P as well as the output are pre-
charged. In phase 3, The gate evaluates. In phases 4 and 1, the output is isolated
from the driver and remains valid. This is called a type 3 gate. It evaluates in
phase 3 and is valid in phases 4 and 1. Similarly, we can have type 4, type 1 and
type 2 gates. A type 3 gate can drive a type 4 or a type 1 gate. Similarly, type

Type 1 Type 2

Type 3Type 4

Drive Sequences

Figure 3.14: CMOS 4 phase dynamic logic drive constraints

4 will drive types 1 and 2; type 1 will drive types 2 and 3; and type 2 will drive
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types 3 and 4. We can use a 2 phase clock if we stick to type 1 and type 3 gates
(or type 2 and type 4 gates) as these can drive each other.

3.4.3 Domino Logic

P

A B

C

Ck

Figure 3.15: CMOS domino logic

Another way to eliminate the problem with cascading logic stages is to use a
static inverter after the CMOS dynamic gate. Recall that the cascaded dynamic
CMOS stage causes problems because the output is pre-charged to Vdd. If the final
value is meant to be zero, the next stage nMOS to which the output is connected
erroneously sees a one till the pre-charged output is brought down to zero. During
this time, it ends up discharging its own pre-charged output, which it was not
supposed to do. If an inverter is added, the output is held ‘low’ before logic eval-
uation. If the final output is zero, there is no problem anyway. If the final output
is supposed be one, the next stage is erroneously held at zero for some time. How-
ever, this does not result in a false evaluation by the next stage. The only effect
it can have is that the next stage starts its evaluation a little later. However, the
addition of an inverter means that the logic is non-inverting. Therefore, it cannot
be used to implement any arbitrary logic function.

3.4.4 Zipper logic

Instead of using an inverter, we can alternate n and p evaluation stages. The n
stage is pre-charged high, but it drives a p stage. A high pre-charged stage will
keep the p evaluation stage off, which will not cause any malfunction. The p stage
will be pre-discharged to ‘low’, which is safe for driving n stages. This kind of logic
is called zipper logic.
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Figure 3.16: Zipper logic
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