
Pipeline Optimization

Dinesh Sharma

Microelectronics Group, EE Department
IIT Bombay, Mumbai

2006

Dinesh Sharma Pipeline Optimization

Von Neumann Architecture

Processing
Data Instruction

Processing

State

Instructions

Memory

Bus

Data Instructions

Bottleneck!

A common bus is used for
data as well as instructions.

The system can become ‘bus
bound’.

Dinesh Sharma Pipeline Optimization

Harvard Architecture

Processing
Data Instruction

Processing

State

Instructions

Data Instruction
Memory Memory

Data
Instructions

Separate data and instruction
paths

Good performance

Needs 2 buses → expensive!

Traffic on the buses is not
balanced.

Instruction bus may remain
idle.

Dinesh Sharma Pipeline Optimization

Modified Harvard Architecture

Processing
Data Instruction

Processing

State

Instructions

Data
Memory Memory

MUX

Read Only

Constants

Constants can be stored with
Instructions in ROM.

Better Bus balancing is
possible.

Typically, 1 instruction read, 1
constant read, 1 data read and
1 result write per instruction.

2 mem ops per bus.

Dinesh Sharma Pipeline Optimization

Modified Harvard with Cache

Processing
Data Instruction

Processing

State

Instructions

Data
Memory Memory

MUX

Read Only

Constants

Cache

Cache allows optimum
utilization of bus bandwidths.

Each operation need not be
balanced individually.

Dinesh Sharma Pipeline Optimization

Instruction and Data State Machines

Address
Req. Instr. Recv. Instr.

Decode,Operand
Addr to DP

Recv State
From DP Send to DP

Receive
Operands

Execute
Instruction

From PC

Request
Operands

Receive
Oper. Addr

Receive
Instruction

Store
Results

Return
State

Operation of the system may
be modeled as two interacting
state machines.

Instruction processor fetches
instr, decodes and gives
operation type and operand
locations to data processor.

Data processor fetches
operands, performs operation
and writes back the result.

Dinesh Sharma Pipeline Optimization

A pipelined processor

ROM RAM

ROM Address
ROM data

RAM Address
RAM data

Instruction Fetch

Instruction

ROM address

.

Consider a Harvard architecture
processor, which performs the
following tasks repetitively:

Fetch Op Code (ROM)

Dinesh Sharma Pipeline Optimization

A pipelined processor

ROM RAM

ROM Address
ROM data

RAM Address
RAM data

Data

Constant

Data and Constant Fetch

Consider a Harvard architecture
processor, which performs the
following tasks repetitively:

Fetch Op Code (ROM)

Fetch variable (RAM)

Fetch constant (ROM)

Dinesh Sharma Pipeline Optimization

A pipelined processor

ROM RAM

ROM Address
ROM data

RAM Address
RAM data

Execution Phase

.

Consider a Harvard architecture
processor, which performs the
following tasks repetitively:

Fetch Op Code (ROM)

Fetch variable (RAM)

Fetch constant (ROM)

Calculate result

Dinesh Sharma Pipeline Optimization

A pipelined processor

ROM RAM

ROM Address
ROM data

RAM Address
RAM data

Write Back

Result

Consider a Harvard architecture
processor, which performs the
following tasks repetitively:

Fetch Op Code (ROM)

Fetch variable (RAM)

Fetch constant (ROM)

Calculate result

Store result (RAM)

Dinesh Sharma Pipeline Optimization

Resource Reservation

We can keep track of which resource is doing what at any given
time by a table as shown below:

Resource Reservation Table

0 1 2 3 4
ROM Instr Fetch Const. fetch
RAM Var. Fetch Write Back
ALU Compute

This is called a reservation table.
Given this reservation table, It appears that we can launch a
new instruction every 4 cycles.

Dinesh Sharma Pipeline Optimization

Overlapping Operations

However, we need not wait for the previous operation to be over
before launching a new one.

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0
RAM 0 0
ALU 0

When can we launch the next calculation?

Dinesh Sharma Pipeline Optimization

Pipelining

We can fetch the next instruction from ROM
while we write back the result of the current one to the RAM.

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0 1 1 2 2
RAM 0 0 1 1 2 2
ALU 0 1 2

This will enable us to launch a new calculation every third cycle.

Dinesh Sharma Pipeline Optimization

Overlapping Operations

Is this the best we can do?

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0 1 1 2 2
RAM 0 0 1 1 2 2
ALU 0 1 2

None of the resources are utilized 100% in this scheme.
The ROM and the RAM are busy for 2 out of 3 cycles, whereas
the ALU is used for 1 cycle out of 3.

A new sample is handled every 3rd cycle now.
Can we get even better throughput?

Dinesh Sharma Pipeline Optimization

Improved Scheduling

If we store the result in a local register for 1 cycle,

and write it to the RAM only in the 4th cycle, we get

Modified Resource Reservation Table

0 1 2 3 4 5 6
ROM 0 0
RAM 0 0
ALU 0
BUF 0

By delaying the write back,

we can launch the next instruction earlier!

Dinesh Sharma Pipeline Optimization

Improved Scheduling

If we store the result in a local register for 1 cycle,

and write it to the RAM only in the 4th cycle, we get

Modified Resource Reservation Table

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0 1 1 2 2 3 3 4 4 5
RAM 0 1 0 2 1 3 2 4 3
ALU 0 1 2 3 4
BUF 0 1 2 3

We can now launch a new operation every 2nd cycle.

Can this be further improved?

Dinesh Sharma Pipeline Optimization

Improved Scheduling

If we store the result in a local register for 1 cycle,

and write it to the RAM only in the 4th cycle, we get

Modified Resource Reservation Table

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0 1 1 2 2 3 3 4 4 5
RAM 0 1 0 2 1 3 2 4 3
ALU 0 1 2 3 4
BUF 0 1 2 3

The RAM and the ROM are now occupied

100% of the time, So the design is optimal

and the throughput cannot be improved any further.

Dinesh Sharma Pipeline Optimization

How can we always find the optimum solution?

Given a Resource Reservation Table, we would like to set
up a systematic method which optimizes the throughput
of the process using this table.

For maximum throughput, we would like to launch new
operations as frequently as possible.

Thus, we want to minimize the time gap between launching
two operations.

This is called the Sample Period (SP).

What is the minimum possible value of SP?

Dinesh Sharma Pipeline Optimization

The minimum Sampling Period

Consider an operation in which the busiest resource is
used for n cycles.

If we launch a new operation every n cycles, this resource
will be used 100% of the time.

If we launch operations any more frequently than this, the
resource will not have enough time to do its work.

Therefore, the minimum possible Sample Period is equal to
the maximum number of cycles for which the busiest of the
resource(s) is in operation.

Dinesh Sharma Pipeline Optimization

Sampling Period

We want to minimize the sampling period.

But the sampling period need not be a constant!

SP can cycle through a finite set of values.

We should therefore define an Average Sampling period
ASP.

The minimum value of this average Sampling Period
(MASP) is given by the number of cycles for which the
busiest resource is used in an operation.

Dinesh Sharma Pipeline Optimization

Cyclic Sampling Period

Consider the following reservation table:

0 1 2 3 4 5 6 7 8
RSC1 0 0
RSC2 0 0
RSC3 0

Now the next operation can be launched in cycle 1 itself.
However, the following one can only be launched after a gap of
3 cycles in cycle 4.

0 1 2 3 4 5 6 7 8 9 10
ROM 0 1 0 1 2 3 2 3 4 5 4
RAM 0 1 0 1 2 3 2 3 4 5
ALU 0 1 2 3 4

Again, the next operation can be launched in the next cycle (in
cycle 5) and after that, with a gap of 3 cycles in cycle 8.

Dinesh Sharma Pipeline Optimization

Average Sampling Period

0 1 2 3 4 5 6 7 8 9 10
ROM 0 1 0 1 2 3 2 3 4 5 4
RAM 0 1 0 1 2 3 2 3 4 5
ALU 0 1 2 3 4

New operations can be launched in clock periods
0,1,4,5,8,9

Thus, the sample period cycles through the values {1,3}.

The average of the cycle is called the Average Sampling
Period (ASP).

The Average Sampling period (ASP) is 2 here.

The whole pattern repeats every 4 cycles. This is called
the period (p).

Dinesh Sharma Pipeline Optimization

Minimum Average Sampling Period

The minimum value of the Average Sampling Period
(MASP) is given by the maximum number of cycles for
which a resource is busy during an operation.

Therefore, given a reservation table, MASP is known.

If the actual average Sampling Period is equal to MASP,
the system is already optimum and nothing needs to be
done.

If the actual average Sampling Period is greater than
MASP, we can attempt to modify the reservation table,
such that MASP is achieved.

Dinesh Sharma Pipeline Optimization

Pipeline Optimization

1 For a given reservation table, find the current average
sample period (ASP).

2 Find the largest no. of cycles for which a resource is busy.

3 This is equal to the Minimum possible Average Sampling
Time (MASP).

4 If ASP = MASP, there is nothing to be done.

5 Else, we should try to re-schedule events such that MASP
is achieved.

Dinesh Sharma Pipeline Optimization

Method to achieve MASP

We first consider various cycles whose average is the
desired MASP.

For example, if MASP is 2, we can have cycles of {2}, {1,3}
or {1,1,4} etc.

The periods are 2, 4 and 6 in these three cases.

Dinesh Sharma Pipeline Optimization

The Generator Set

For each cycle, we construct a generator set G, which
contains elements of the cycle, their sums taken two at a
time, three at a time etc., modulo periodicity p.

In our example, cycles are {2}, {1,3} and {1,1,4}
For a cycle of {2}, p = 2, so G = {0}
For a cycle of {1,3}, p = 4, so G = {0,1,3}
For a cycle of {1,1,4}, p = 6, so G = {0,1,2,4,5}

Dinesh Sharma Pipeline Optimization

The Source Set

For each selected cycle, We now construct the Source set
S. This contains integers 0 through p-1, from which all
members of G except 0 have been removed.

In our example, cycles are {2}, {1,3} and {1,1,4}
Cycle p G S
{2}, 2 {0} {0,1}
{1,3}, 4 {0,1,3} {0,2}
{1,1,4}, 6 {0,1,2,4,5} {0,3}

Dinesh Sharma Pipeline Optimization

Design Sets

For each selected cycle, We construct Design sets Di

which have the property that:
if a ∈ D and b ∈ D
then |a − b| also ∈ D.

In our example,
Cycle p S D sets
{2}, 2 {0,1} {0}, {1} and {0,1}
{1,3}, 4 {0,2} {0}, {2}, {0,2}
{1,1,4}, 6 {0,3} {0}, {3}, {0,3}

Dinesh Sharma Pipeline Optimization

Notice that Design sets do not depend on the reservation
table.

The sets G, S and Di are constructed from the repetition
cycles whose average value is the MASP.

Therefore we can make a library of these in advance for
different combinations of MASP values and cycles - and
use them when needed.

Dinesh Sharma Pipeline Optimization

Row Vectors

We construct a row vector for each resource in the
reservation table.

The row vector is a set which contains the clock period in
which a specific resource is busy.

Resource Reservation Table

0 1 2 3
ROM 0 0
RAM 0 0
ALU 0

In this example, the row vector for ROM is {0,1}, for RAM is
{1,3} and for ALU is {2}.

Dinesh Sharma Pipeline Optimization

Matching Rows with Design Sets

Choose a particular cycle with the desired MASP.
(Say MASP = 2, cycle = {2}).

Pick the corresponding design sets.
(In this example, D = {0}, {1}, {0,1}).

For each resource,
take its row vector and take a design set with the same
cardinality.

Align these according to defined rules.

Dinesh Sharma Pipeline Optimization

Rules for Alignment of the First elements

Compare R(1) and D(1).
If these are equal, nothing needs to be done.
Else,

If R(1) < D(1), add D(1)-R(1) to all members of R
If R(1) > D(1), add R(1)-D(1) to all members of D

This is equivalent to a rigid shift of R or D till their first
members are aligned.

For Example, if R = {1,3,4,6} and D={0,2,5,6}

X X X X

X X X X

X X X X

X X X X

D
0,2,5,6

0 1 2 3 4 5 6 7

R

1 2

1,3,4,6

1,3,4,6

0 3 4 5 6 7

R

D 1,3,6,7

Dinesh Sharma Pipeline Optimization

Alignment of other elements

If R(i) = D(i)] Nothing needs to be done.

If R(i) < D(i)
Add D(i) - R(i) delays to all
members of R at position i
and beyond.

X X X X

X X X X

X X

X X X X

X X

1 2 4 5 6 7

1,3,4,6R

D 1,3,6,7

Break Here and move

0

0

1 2

3

4 5 6 7 83

1,3,6,8

1,3,6,7

The i’th elements are now aligned.

Dinesh Sharma Pipeline Optimization

Alignment of other elements

If D(i) < R(i)
(for Example, p = 2
R = {1,3,4,6}, D = {1,2,5,6}.
Now D2 < R2)

1 Add sufficient multiples of p to
D(i) such that it is ≥ R(i).

2 Add the same number to
members of D beyond i.

3 Now if R(i) < D(i), add D(i) -
R(i) delays to all members of
R at position i and beyond.

D 1,2,5,6

Peridicity p = 2

Break here and
move forward by p (=2) steps

Now align R

1 2 4 5 6 7

R

0 3

D

98

1,4,7,8

1 2 4 5 6 7

R

0 3

D

98

1,4,7,8

1,4,5,7

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

1,3,4,6

1 2 4 5 6 7

1,3,4,6R

0 3

Dinesh Sharma Pipeline Optimization

Alignment Example

Let R = 1,3,4,6 and D = 0,1,4,5; with periodicity p = 2

0 1 2 3 4 5 6 7 8
R X X X X
D X X X X

X X X X

To align the first element,
move all elements of D
forward by 1 step.
Now D = 1,2,5,6.

0 1 2 3 4 5 6 7 8
R X X X X
D X X X X

X X X X
R X X X X

For the second element, D is
behind. Move D2 onwards
fwd by p = 2, so D = 1,4,7,8.
Move R2 onwards fwd by 1
So R = 1,4,5,7

Dinesh Sharma Pipeline Optimization

Alignment Example

R = 1,4,5,7 and D = 1,4,7,8. R3 < D3

0 1 2 3 4 5 6 7 8 9 10
D X X X X
R X X X X

X X X X

Move R3 and beyond
forward by 2
So R = 1,4,7,9
and D = 1,4,7,8.

0 1 2 3 4 5 6 7 8 9 10
R X X X X
D X X X X
D X X X X
R X X X X

D4 < R4
Move D4 forward by 2
to 10.
Now R4 < D4.
Move R4 forward by 1
to 10

Vectors are now aligned at 1,4,7,10.

Dinesh Sharma Pipeline Optimization

Example System

we shall illustrate the method using our original example,
whose reservation table is:

Resource Reservation Table

0 1 2 3 4 5 6
ROM 0 0
RAM 0 0
ALU 0

Since the ROM and the RAM are used for 2 cycles each in
every operation, MASP = 2.
However, as we had seen before, ASP = 3 in this case.
Therefore, the schedule needs improvement.

Dinesh Sharma Pipeline Optimization

Example Application

Aligning the ROM

0 1 2 3
ROM 0 0
RAM 0 0
ALU 0

MASP = 2, Choose the cycle:{2}
Then D = {0}, {1}, {0,1}

For ROM: R = {0,1}, D={0,1}

So no alignment is required.

Dinesh Sharma Pipeline Optimization

Adjusting the RAM Schedule

For RAM: R = {1,3}, D={0,1}

Aligning the First Element:
R(1) > D(1)
Add (1-0)=1 to D elements ⇒ D = {1,2}

Aligning other elements:
R(2) > D(2)
Add p (=2) to D(2) ⇒ D = {1, 4}
Now R(2) < D(2)
Add (3-2)=1 to R(2) ⇒ R = {1, 4}
R and D are now aligned.

Dinesh Sharma Pipeline Optimization

ALU Schedule

For ALU: R = {2}, D = {0}

Aligning first element: Add (2-0) = 2 to D ⇒ D = {2}
R and D are now aligned.

ROM = {0,1}, RAM = {1,4}, ALU = {2}
Modified Reservation Table

0 1 2 3 4
ROM 0 0
RAM 0 0
ALU 0

As we have seen earlier, this is indeed the optimal schedule
with ASP = 2.

Dinesh Sharma Pipeline Optimization

Optimized Reservation Table

Modified Resource Reservation Table

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0 1 1 2 2 3 3 4 4 5
RAM 0 1 0 2 1 3 2 4 3
ALU 0 1 2 3 4

The ALU is idle 50% of the time.

Rather than buffering its result to delay the write back, we
can use a slower ALU which takes 2 cycles to compute.

Dinesh Sharma Pipeline Optimization

Using a Slower ALU

The reservation table with a slower ALU is:

0 1 2 3 4 5 6 7 8 9 10
ROM 0 0 1 1 2 2 3 3 4 4 5
RAM 0 1 0 2 1 3 2 4 3
ALU 0 0 1 1 2 2 3 3 4

One can trade off power for speed when designing the
ALU.

By using optimization techniques, we are able to reach a
higher throughput, even with a slower ALU!

Dinesh Sharma Pipeline Optimization

Alternative Choice of Cycle

0 1 2 3
ROM 0 0
RAM 0 0
ALU 0

MASP = 2, Choose the cycle:{1,3}
Then D = {0}, {2}, {0,2}

For ROM: R = {0,1}, D={0,2}
R(1) = D(1) = 0, R(2) < D(2)

Add D(2) - R(2) to all members of R at position 2 (and beyond)
⇒ R(2) = 2.

R and D are now aligned at {0,2}

Dinesh Sharma Pipeline Optimization

Alternative Cycle:RAM Schedule

For RAM: R = {1,3}, D={0,2}

R(1) > D(1)
Add (1-0)=1 to D elements: ⇒ D = {1,3}
R and D are now aligned at {1,3}.

For ALU: R = {2}, D = {0}

Aligning first element: Add (2-0) = 2 to D ⇒ D = {2}
R and D are now aligned at {2}.

0 1 2 3
ROM 0 0
RAM 0 0
ALU 0

Dinesh Sharma Pipeline Optimization

Time Ordering

0 1 2 3 4 5 6 7 8 9 10
ROM 0 1 0 1 2 3 2 3 4 5 4
RAM 0 1 0 1 2 3 2 3 4 5
ALU 0 1 2 3 4

As expected, the schedule is optimum.

The sampling rate alternates between 1 and 3.

However this schedule does not preserve time order.

It asks for computation and constant fetch in the same
cycle.

If we pre-fetch the constant for the next to next calculation
in this cycle and store it for 4 cycles, it may still work.

Dinesh Sharma Pipeline Optimization

Conclusions

Pipeline can improve throughput of systems.

A systematic procedure for optimizing pipeline throughput
exists. It can create modified reservation tables which are
optimal by delaying some operations.

However, it does not guarantee that the time order of
different operations will be preserved.

Different cycles with the same Average Sampling Period
may have to be tried before an acceptable time order is
found.

The procedure also allows us to identify non-critical
components which can then be redesigned to be slower
but at lower power consumption.

Dinesh Sharma Pipeline Optimization

