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Data Centers and Storage

Pictures from two different Data
Centers..
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Data Centers and Storage

Figure: The NSA Data Center in Utah.

Estimated to store several between 3 to 12 Exabytes.

GigaByte→ TeraByte→ PentaByte→ ExaByte = One Billion GB!
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Completed at an estimated cost of $1.5 billion..

Another $2 billion for hardware, software, and maintenance

65 MW of power, costing about $40 million per year

use 1.7 million gallons of water per day
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A Data Center in Bengaluru

Figure: Bengaluru’s Tulip Data City data center – estimated to be the third
largest data center in the world at 900,000 square feet . (photo courtesy:

http://www.forbes.com/pictures/eimh45mddm/tulip-data-center/).
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Motivation

7 / 47



An Erasure-Correcting Code Employed by Facebook
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[14, 10] MDS code

Can recover data by
connecting to any 10
nodes

Used in Facebook data
centres

If one disk is down, need
contact (disturb!) 10
other disks to help fix it..

Motivates the notion of
locality of a code....

D. Borthakur, R. Schmit, R. Vadali, S.

Chen, and P. Kling. ”HDFS RAID.” Tech

talk. Yahoo Developer Network, Nov.

2010
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Codes with Locality

9 / 47



Codes with Information-Symbol Locality
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A code symbol has information-symbol locality r if all
message symbols are protected by a single-parity-check
code of

blocklength ≤ (r + 1)

the present code has information-symbol locality
r = 5

10 / 47



Information and All-Symbol Locality
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Bound on Global Minimum Distance

If an [n, κ, dmin] code C has information symbol locality r , then

dmin ≤ (n − κ+ 1)︸ ︷︷ ︸
Singleton bound

−
(⌈κ

r

⌉
− 1
)

︸ ︷︷ ︸
price for locality requirement

.

Bound established by P. Gopalan et al.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IT-Trans, Nov. 2012, IEEE ComSoc and IT Society Joint Paper Award, 2013.
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Optimal Constructions of Codes with Locality
Explicit Constructions

1 Pyramid Code construction for information locality.

2 Parity splitting construction for all symbol locality:
n =

⌈
k
r

⌉
(r + δ − 1).

3 Rank-Distance based code with all-symbol locality : δ = 2.

4 Tamo-Barg construction

Non-Explicit Construction All symbol locality codes can be constructed
whenever

(r + δ − 1)|n, provided q >
(n−1
k−1

)
C. Huang, M. Chen, and J. Li “Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data
Storage Systems,” NCA 2007.

J. Han, L. A. Lastras-Montano; , “Reliable Memories with Subline Accesses,” ISIT- 2007.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword Symbols,” IT-Trans, Nov. 2012.

N. Prakash, G. M. Kamath, V. Lalitha, and P. Vijay Kumar, “Optimal linear codes with a local-error-correction
property,” ISIT-2012.

N. Silberstein, A. S. Rawat and S. Vishwanath, “Error Resilience in Distributed Storage via Rank-Metric Codes”,
Allerton, 2012.

Itzhak Tamo and Alexander Barg, “A Family of Optimal Locally Recoverable Codes,” ISIT 2014. (Subsequent journal
paper won the IT-Trans. best paper award).
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Windows Azure (Microsoft Azure) Storage Coding Solution

X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6 P1 P2

Px Py

Employs a code related to the pyramid-code-type construction.

The code allows them to lower overhead without requiring a large number
of disk I/O operations and network transfers to reconstruct the data,
resulting in a saving to the company of millions of $$s!

C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin, “Erasure
Coding in Windows Azure Storage,” presented at the USENIX Annu. Tech. Conf., Boston, MA,
2012.
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The Tamo-Barg Construction

f(Pa)	
  

f(Pb)	
  

f(Pc)	
  

Reed-Solomon (RS) codeword: (f (P1), f (P2), · · · , f (Pn)), with
deg(f ) ≤ (k − 1)

authors employ subset of polynomials that restrict to a curve of
degree < (m − 1) when evaluated at m points

for example, to a line when evaluated at 3 points; this provides locality

provides low-field-size constructions for many parameter sets

There is also a Chinese Remainder Theorem interpretation
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Codes with Locality for Multiple
Erasures
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Codes with Locality for Multiple Erasures
Increasing trend towards low-cost commodity servers with higher
failure rates
Presence of ”hot”nodes which are inaccessible during repair

Codes  with  locality  for  multiple  erasures


Codes  with  
sequential  
recovery


Stronger  local  
codes


Codes  with  
orthogonal  

parities


Recovery	
  in	
  Parallel	
  

Cooperative  
local  repair
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Handling Multiple Erasures: Stronger Local Codes
Approach
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More on ‘Stronger Local Codes Approach’

If an [n, κ, dmin] code C has information symbol locality r , then

dmin ≤ (n − κ+ 1)︸ ︷︷ ︸
Singleton bound

−
(⌈κ

r

⌉
− 1
)

(δ − 1)︸ ︷︷ ︸
price for locality requirement

.

Generalization of the Gopalan et al bound
Pyramid code construction can be extended to this case as can the
construction by Tamo and Barg
More recent results by Wentu Song, Son Hoang Dau, Chau Yuen, and
Tiffany Jing Li

N. Prakash, G. Kamath, V. Lalitha, and P. Vijay Kumar, “Optimal linear codes with a
local-error-correction property,” in ISIT 2012.
Optimal Locally Repairable Linear Codes, by Wentu Song, Son Hoang Dau, Chau Yuen,
and Tiffany Jing Li.
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The Orthogonal Parity-Check Approach

1 2 3

4 5 6

7 9
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8
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PPPP

Each data symbol is protected by two local codes with disjoint support

All local codes are single-parity-check codes
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A Computation Graph Approach to Codes with Locality
for Multiple Erasures

- Falls into Orthogonal Parities Class
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An Example (dv , dc)-Regular LDPC Code
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III. DECODING 
Different authors come up independently with 

more or less the same iterative decoding algorithm. 
They call it different names: the sum-product 
algorithm, the belief propagation algorithm, and the 
message passing algorithm. There are two 
derivations of this algorithm: hard-decision and 
soft-decision schemes. 

A. Hard-decision Decoder 

 
Figure 2: Belief propagation example code 

 
In [8], Leiner uses a (4, 8) linear block code to 

illustrate the hard-decision decoder. The code is 
represented in Figure 2, its corresponding parity-
check matrix is 

 



















=

01011001
11100100
00100111
10011010

H  (5) 

An error free codeword of H is                            
c = [1 0 0 1 0 1 0 1]T. Suppose we receive                
y = [1 1 0 1 0 1 0 1]T. So c2 was flipped.              
The algorithm is as follow: 

1. In the first step, all message nodes send a 
message to their connected check nodes. In 
this case, the message is the bit they believe 

to be correct for them. For example, 
message node c2 receives a 1 (y2=1), so it 
sends a message containing 1 to check nodes 
f1 and f2. Table 3 illustrates this step. 

2. In the second step, every check nodes 
calculate a response to their connected 
message nodes using the messages they 
receive from step 1. The response message 
in this case is the value (0 or 1) that the 
check node believes the message node has 
based on the information of other message 
nodes connected to that check node. This 
response is calculated using the parity-check 
equations which force all message nodes 
connect to a particular check node to sum to 
0 (mod 2).  

In Table 3, check node f1 receives 1 from 
c4, 0 from c5, 1 from c8 thus it believes c2 
has 0 (1+0+1+0=0), and sends that 
information back to c2. Similarly, it receives 
1 from c2, 1 from c4, 1 from c8 thus it 
believes c5 has 1 (1+1+1+1=0), and sends 1 
back to c5. 

At this point, if all the equations at all 
check nodes are satisfied, meaning the 
values that the check nodes calculate match 
the values they receive, the algorithm 
terminates. If not, we move on to step 3. 

3. In this step, the message nodes use the 
messages they get from the check nodes to 
decide if the bit at their position is a 0 or a 1 
by majority rule. The message nodes then 
send this hard-decision to their connected 
check nodes. Table 4 illustrates this step. To 
make it clear, let us look at message node c2. 
It receives 2 0’s from check nodes f1 and f2. 
Together with what it already has y2 = 1, it 
decides that its real value is 0. It then sends 
this information back to check nodes f1 and 
f2. 

4. Repeat step 2 until either exit at step 2 or a 
certain number of iterations has been passed. 
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calculate a response to their connected 
message nodes using the messages they 
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in this case is the value (0 or 1) that the 
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based on the information of other message 
nodes connected to that check node. This 
response is calculated using the parity-check 
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0 (mod 2).  

In Table 3, check node f1 receives 1 from 
c4, 0 from c5, 1 from c8 thus it believes c2 
has 0 (1+0+1+0=0), and sends that 
information back to c2. Similarly, it receives 
1 from c2, 1 from c4, 1 from c8 thus it 
believes c5 has 1 (1+1+1+1=0), and sends 1 
back to c5. 

At this point, if all the equations at all 
check nodes are satisfied, meaning the 
values that the check nodes calculate match 
the values they receive, the algorithm 
terminates. If not, we move on to step 3. 

3. In this step, the message nodes use the 
messages they get from the check nodes to 
decide if the bit at their position is a 0 or a 1 
by majority rule. The message nodes then 
send this hard-decision to their connected 
check nodes. Table 4 illustrates this step. To 
make it clear, let us look at message node c2. 
It receives 2 0’s from check nodes f1 and f2. 
Together with what it already has y2 = 1, it 
decides that its real value is 0. It then sends 
this information back to check nodes f1 and 
f2. 

4. Repeat step 2 until either exit at step 2 or a 
certain number of iterations has been passed. 

Our interest is in those codes where

each variable node has degree t

each check node has degree (r + 1)

there are no cycles of length 4
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this information back to check nodes f1 and 
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4. Repeat step 2 until either exit at step 2 or a 
certain number of iterations has been passed. 

This ensures that:

each code symbol has locally r

Each code symbol is protected by t orthogonal parity checks
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A Canonical Form for the Computation Graph

s"nodes"

P1" Q(r,s)"Pi" Pr" Q1"

P0"
Q0"

r"nodes" (r,s)"nodes"No repetition of parity nodes

Variable nodes are permitted to repeat

Expansion of the graph via top-to-bottom, left-to-right descent
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Minimal-Length Code
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Let

m = number of parity checks
dv = t the degree of each variable node
dc = r + 1 the degree of each parity node

Can be seen that

m ≥ (t − 1)(r + 1) + 1
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Minimal-Length Code
Turns out that code symbols form a balanced-incomplete block design:

(b, v , k , r , λ) – blocks are the code symbols and elements are parities

b ≡ n, v ≡ m, k ≡ t, r ≡ (r + 1), λ ≡ 1.

in the example,

b = 12, v = 9, k = 3, r = 4, λ = 1.

note: all column inner products = 1 as required

9 parity checks (elements) 
  1 2 3 4 5 6 7 8 9 

12 code  
symbols 
(blocks) 

0 1 1 1             

1 1     1 1         

2 1         1 1     

3 1             1 1 

A   1   1     1     

B   1     1     1   

C   1       1     1 

D     1 1         1 

E     1   1 1       

F     1       1 1   

G       1   1   1   

H         1   1   1 
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Minimal-Length Code

allows us to provide constructions that are optimal (with unique
parameters for certain values of r , t, n)

9 parity checks (elements) 
  1 2 3 4 5 6 7 8 9 

12 code  
symbols 
(blocks) 

0 1 1 1             

1 1     1 1         

2 1         1 1     

3 1             1 1 

A   1   1     1     

B   1     1     1   

C   1       1     1 

D     1 1         1 

E     1   1 1       

F     1       1 1   

G       1   1   1   

H         1   1   1 
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Codes based on designs

1 t | r(r + 1) is a necessary condition for the existence of designs.

2 For t = r + 1 = 2s + 1, the code can be obtained from the point-line
incidence matrix of PG (2, 2s). The code has parameters:
[22s + 2s + 1, 22s + 2s − 3s , 2s + 2] (This was observed by others as
well). The code has rate ≥ r

r+t .

3 For t = r = 2s , the code can be obtained from an affine plane of
order r. The code has parameters: [22s + 2s , 22s − 3s ,≥ 2s + 1].

29 / 47



Codes based on designs

1 For t = 3, the code can be obtained from a Steiner triple system. In
particular, the code can be obtained from the point-line incidence
matrix of PG (s − 1, 2). The code has parameters: Let m = 2s − 1,

r + 1 = m−1
2 , t = 3,[m(m−1)

6 , m(m−1)
6 −m + s, 4]. This code also has

rate ≥ r
r+3

2 For the designs given above for t = r + 1, t = r , t = 3, Hamada’s
conjecture has been proven, so the codes are rate-optimal for the
given parameters.
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The Sequential-Recovery Approach - An Example
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The Sequential-Recovery Approach - A More General
Turan-Graph Framework

Turan Graph

P1	
  

P2	
  

P3	
   P6	
  

P5	
  

P4	
  

(9	
  edges	
  form	
  remaining	
  code	
  symbols)	
  
(n=15)	
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The Sequential-Recovery Approach - A More General
Turan-Graph Framework

The Turan graph construction has an additional feature that it leads
to optimal solutions for smaller rates than the rate that arises from
the constraints

This is related to generalized Hamming weights

C
d1 d2 d3 d4

C?
d?1 d?2 d?3
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Generalized Hamming Weights of a Code

di is the smallest support-size of an i dimensional subcode of C
dmin = d1 < d2 < . . . < dk = n

Example: Consider the [7, 4, 3] Hamming code

G =


1 0 1 1

1 1 0 1
1 1 1 0

1 1 1 1

 ,

Hamming code GHW : d1 = 3,
d2 = 5, d3 = 6, d4 = 7

gaps


C
d1 d2 d3 d4

k GHWs implies n − k gaps
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k th Gap and Minimum Distance

dmin(C) = d1 = n + 1− g⊥k , g⊥k is largest gap of C⊥

C
d1 d2 d3 d4

C?
d?1 d?2 d?3

V.K. Wei, “Generalized Hamming Weights for Linear Codes,” IEEE Trans. Inform. Th,
1991.
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k th Gap and Minimum Distance

dmin(C) = d1 = n + 1− g⊥k , g⊥k is largest gap of C⊥

C
d1 d2 d3 d4

C?
d?1 d?2 d?3

V.K. Wei, “Generalized Hamming Weights for Linear Codes,” IEEE Trans. Inform. Th,
1991.
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Codes with Hierarchical Locality

Birenjith Sasidharan, Gaurav Kumar Agarwal, P. Vijay Kumar, “Codes With Hierarchical

Locality,” submitted to ISIT 2015, see also arXiv:1501.06683 [cs.IT]
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Codes with Locality

[4,3,2]' [4,3,2]'[4,3,2]' [4,3,2]' [4,3,2]' [4,3,2]'

[24,14,7]'

d ≤ (n − k + 1)︸ ︷︷ ︸
Singleton bound

−
(
dk
r
e − 1

)
(δ − 1)︸ ︷︷ ︸

loss due to locality

r = locality

δ = minimum distance of the local code
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Codes with Locality do not Scale

[4,3,2]' [4,3,2]'[4,3,2]' [4,3,2]' [4,3,2]' [4,3,2]'

[24,14,7]'

If the local code is overwhelmed, then one has to appeal to the
overall code which means contacting all 14 nodes for node repair.

Is it possible to build a code where the repair degree increases
gradually as opposed to in a single jump ?
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Codes with Hierarchical Locality

[24,14,6] 

[12,8,3] 

[4,3,2] [4,3,2] [4,3,2] 

[12,8,3] 

[4,3,2] [4,3,2] [4,3,2] 

Codes with hierarchical locality do exactly that by calling for help
from an intermediate layer of codes when the local code fails.

These codes may be regarded as the “middle codes”.

40 / 47



Codes with Hierarchical Locality - Parameters

[24,14,6] 

[12,8,3] 

[4,3,2] [4,3,2] [4,3,2] 

[12,8,3] 

[4,3,2] [4,3,2] [4,3,2] 

d ≤ n − k + 1−
(⌈

k

r2

⌉
− 1

)
(δ2 − 1)︸ ︷︷ ︸

bound for codes with locality

−
(⌈

k

r1

⌉
− 1

)
(δ1 − δ2)︸ ︷︷ ︸

additional loss for 2nd locality layer
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Derivation of the Bound on Minimum Distance

Proceeds along the lines of the original
paper on codes with locality, shown
below.

Based on a recursive algorithm that
searches for a large (k × `) sub-matrix
of the generator matrix whose rank is
≤ (k − 1).

START

Yes

Yes

EXIT
No

No

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.
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All-symbol Local Optimal Construction: An Example

Need to satisfy a divisibility condition n2 | n1 | n
Example: [24, 14], [12, 8], [4, 3].

1 Choose finite field F25.

2 The nonzero elements of F25 form cyclic subgroup of order 24.

3 Identify a cyclic subgroup chain H2 < H1 < H0 = F(∗)
25

4 Carry out a coset decomposition (as shown)

5 Each coset is now the support of a local code.
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All-symbol Local Optimal Construction: An Example

Need to satisfy a divisibility condition n2 | n1 | n
Example: [24, 14], [12, 8], [4, 3].

1 Choose F25.

2 Identify subgroup chain H2 ⊆ H1 ⊆ H = F∗25

3 Coset decomposition - supports of local codes
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All-symbol Local Optimal Construction: An Example

The tree above shows the monomials appearing in the restriction of
the code polynomial (its monomials appear on top) to each local
code.
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All-symbol Local Optimal Construction: An Example
(continued)

The local codes can be tied together using an overall global code by
simply restricting the set of code polynomials at the top. Here we do
not allow the maximum degree to exceed 18. (The maximum was
previously 22).
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Thanks!
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