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Abstract 
Plosives in Indo-Aryan languages such as Hindi and Marathi 
display a 4-way contrast involving the two dimensions of 
voicing and aspiration.  While many studies are available on 
the acoustics of aspiration in unvoiced stops due to their more 
universal presence in the world’s languages, voiced aspirated 
plosives have been less studied. Rather than the release 
duration cue of aspiration in unvoiced stops, the acoustic 
realization of aspiration in voiced plosives is marked by the 
coarticulatory breathiness of the following vowel. We consider 
the automatic detection of aspiration in Marathi word-initial 
voiced stops and affricates via several features relating to 
extent and timing of breathiness of the following vowel. The 
effectiveness of the features is evaluated by classification 
performance on a database of Marathi words. A practical 
application of this work to the detection of non-native 
pronunciation of voiced obstruents is presented.  
Index Terms: voiced obstruents, phonemic aspiration, breathy 
vowels, manner classification, acoustic-phonetic features 

1. Introduction 
In state-of-the-art ASR systems, phone recognition accuracies 
are relatively low, and an acceptable performance in practical 
tasks is achieved only through the constraints of a powerful 
language model. Inherently better phone recognition, however, 
would help in many situations such as cross-language contexts 
and the assessment of non-native pronunciation where the 
dependence on a language model is not possible. Acoustic 
features tailored to exploit phonetically relevant distinctions in 
the language have been a promising direction in speech 
recognition research [1, 2]. Such phone class-specific features 
can potentially be incorporated in a hierarchical classifier for 
superior phone recognition [3]. With this perspective, we 
consider a class of speech sounds common to Indo-Aryan 
languages but otherwise rare in the world’s languages. 
Languages such as Hindi, Marathi and Gujarati, among others, 
display a four-way contrast, in plosives for each place of 
articulation, involving the dimensions of voicing and 
aspiration.  We investigate acoustic features that can be 
mapped to the specific phonological feature based on available 
previous studies as well as our own observations from the 
analysis of a Marathi speech dataset.    

Contrastively aspirated voiced plosives in Marathi occur 
with 5 places of articulation (PoA), including one affricate, as 
shown in Table 1. Studies on the acoustic realization of 
phonemic aspiration in consonants are available for the class 
of phones comprising voiceless-unaspirated, voiceless-
aspirated and voiced-unaspirated stops (3-way contrast) that 
occurs in several languages. In English, the latter two 
represent the voicing distinction in word-initial stops, and are 

acoustically distinguished by release duration [4]. However 
many studies have indicated that release duration or vowel 
onset time (VOT) are weak cues to aspiration in voiced stops 
[4, 5].  An exception is a study of Bengali voiced stops which 
showed phonemic aspiration being distinguished by release 
duration in inter-vocalic geminates [6]. Certain Khosean 
(African click) languages employ contrastive aspiration in 
voiced guttural consonants. This phonological contrast has 
been found to be acoustically linked to the breathy voice 
quality of the vowel following the consonant suggesting the 
usefulness of measures such as spectral tilt and harmonic-to-
noise ratio for the discrimination of the voiced consonants [7]. 
The use of voice quality measures for phonemic aspiration has 
been previously attempted for Korean unvoiced stops [8]. A 
spectral tilt measure was added to vowel onset time (VOT) to 
distinguish three levels of aspiration. The acoustic distinction 
between aspirated and unaspirated Nepali affricates (voiced 
and unvoiced) on a small set of speakers in two vowel contexts 
found that the acoustic measures of breathiness were not 
reliable across speakers [9]. Voice quality features, computed 
near manually labeled vowel onsets, were shown to enhance 
detection accuracies for phonemic aspiration in unvoiced 
Marathi stops [10].  

In summary, previous studies suggest the uncertain role of 
release duration and the prominent role of voice quality of the 
following vowel in cueing phonemic aspiration in stops. Most 
studies have been confined to unvoiced stops, selected vowel 
contexts and very few speakers. Acoustic measurements have 
been manually implemented in most cases.  Questions about 
which acoustic features best represent the phonemic aspiration 
contrast, including breathy voice quality,  in the context of 
voiced aspirated plosives across a large range of PoA, and how 
these measures may be automatically computed from recorded 
speech, have not been addressed so far. Thus a goal of the 
present study is to identify speaker-independent acoustic 
features for the robust detection of aspiration in Marathi and 
Hindi voiced plosives.  Based on the production and acoustics 
of voiced aspirated plosives, acoustic features are proposed for 
aspiration detection. The feature computation and choice of 
analysis parameters are experimentally validated via two-way 
classification performance on a Marathi speech database.    
Finally, the features are shown to be useful in the 
pronunciation assessment of voiced plosives of Hindi by non-
native speakers.   

2. Dataset and acoustic characteristics 
Table 1 gives the voiced plosives in Marathi at all PoA and 
example word pairs where the plosive in word initial position 
differs only in aspiration manner.  The palatal PoA is an 
affricate (rather than a stop) that appears allophonically as 
palate-alveolar unaspirated in certain vowel contexts. For the 
training and development of features and acoustic models for 
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classification, we use an available Marathi speech database. 
Cross-validation classification experiments on this dataset are 
used to arrive at the best set of speaker-independent features 
for aspiration detection. The trained models are further applied 
to a Hindi speech dataset in a pronunciation assessment task 
across native and non-native speakers. 

Table 1. PoA of voiced plosives and word examples with only 
word initial ‘C’ differing in aspiration.  

PoA  IPA Word  Meaning  
Velar ɡ ɡoʈa Round stone/pebble  

ɡʰ ɡʰoʈa The ankle bone 
Palatal ʤ ʤaɖI Thickness  

ʤh ʤhaɖI Thick wood 
Retroflex ɖ ɖəɡ Fear/danger 

ɖʰ ɖʰəɡ Cloud  
Dental d̪ d̪ar Door/entrance 

d̪ʰ d̪ʰar Edge of a tool/ flow 
Labial b baɡ Garden  

bʰ bʰaɡ A part 

2.1 Training and testing datasets 

The training database comprises Marathi spoken words 
sampled at 16 kHz. Two distinct meaningful words with word-
initial plosives corresponding to each phone in Table 1 and 
each of the 8 vowels of the language (/ə/, /a/, /i/, /I/, /u/, /U/, 
/e/, and /o/) are formed and each word uttered in two carrier 
sentence contexts by 20 native speakers (equal male and 
female). The total number of words in each plosive category 
appears in Table 2. The unaspirated affricates number more 
than the aspirated due to the allophonic variations recorded for 
each word. 

Table 2. Count of voiced plosives in train and test data sets.  

Data sets 
Plosives 

Marathi 
train 

Hindi 
native 

Hindi non-
native 

Stops  
 

Unaspirated 2560 1280 640 
Aspirated 2560 1280 640 

Total 5120 2560 1280 
Affricates  Unaspirated 1280 320 160 

Aspirated 640 320 160 
Total 1920 640 320 

 
For the pronunciation assessment evaluation, test datasets 

were recorded by 20 native Hindi speakers and 10 speakers of 
Tamil L1. Hindi and Tamil belong to distinct language groups 
that differ prominently in the plosive system. While both 
languages contain oral plosives of 5 places of articulation, 
voicing and aspiration are used distinctively only in Hindi. 
Tamil does not distinguish aspiration or even voicing; stops 
are voiceless and weakly aspirated in initial position, and 
voiced after nasals [11]. The non-native speakers had been 
exposed to Hindi reading and writing during their school years 
but had had limited exposure to the spoken language. We 
recorded speech from the native and non-native Hindi 
speakers in the form of read-out words containing the target 
phones in word-initial position across vowel contexts. Hindi 
has the same plosives and vowels as Marathi except that there 
is no allophone of the unaspirated affricate. The test dataset 
involved one meaningful word of Hindi corresponding to each 
consonant and vowel context embedded in 2 carrier phrases. 

Each dataset has an equal number of male and female 
speakers. A native Hindi judge was able to correctly identify 
every one of the speakers as native or not by listening to a 
small set of utterances (less than 20 words) by the speaker. It 
was observed that phonemic aspiration was the main 
discriminating attribute. Voicing was always realised correctly 
even though voicing is allophonic in Tamil stops.  

2.2 Speech production and acoustic characteristics  
Voiced plosives are produced with glottal vibration in the 
closure region until the release burst. This is followed by the 
onset of the vowel (in non utterance-final positions). While 
vowel onset time (VOT) prominently differentiates unvoiced 
stops in aspiration, it is not so in voiced stops [4, 5].  However, 
similar to unvoiced aspirated stops, voiced aspirated stops are 
characterized by glottal abduction. In the latter, the abduction 
starts halfway through the closure and reaches its maximum at 
the burst release [12, 13]. Due to the overlap of the glottal 
gesture with the vowel, a strong presence of non-modal 
(breathy) voice quality extends into the vowel region. The 
increased glottal open quotient (OQ) in breathy voice in 
reflected in the amplitude of the first harmonic relative to that 
of the second (H1-H2) [14, 15]. The more gradual glottal 
closure is reflected in higher spectral tilt, and aspiration noise 
leads to increased aperiodicity following the vowel onset. 
These characteristics are evident in the spectrograms of Fig. 1 
and 2 where relatively weak higher formants and aperiodicity 
are observed following the vowel onset in the case of the 
aspirated plosives.   Different languages have been observed to 
have different durations of breathiness extending into the 
vowel [12].  
 

 
Figure 1: Word-initial CVs over 250 ms of velar stops, /ɡa/ 

(top) and /ɡhE/ (bottom). 

 
Figure 2: Word-initial CVs over 180 ms of affricates /ʤa/ (top) 

and /ʤho/ (bottom). 

We note that VOT durations are comparable across the 
aspirated-unaspirated classes. In the case of the voiced 
affricates, an additional cue appears in the form of aspiration 
noise just before the vowel onset with a clear alteration of 
spectral structure from the more frequency-localised frication.  
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We see that phonemic aspiration is clearly multidimensional in 
terms of articulation, and trade-offs can be expected in both 
the production and perception of a specific realization (e.g. by 
a particular speaker or vowel context). It is therefore best to 
consider multiple acoustic attributes for reliable detection 
across speakers.  

3. Feature extraction 

In the previous section, several acoustic parameters suggested 
themselves based on the physiological and acoustic properties 
of voiced plosives. We consider the computation of these 
parameters from recorded speech. As seen from Fig. 1, the 
parameters must be estimated in the vicinity of the burst and 
vowel onset landmarks. Thus the implementation involves 
suitable segmentation of the signal followed by the required 
spectral or temporal analyses. Acoustic landmark detection is 
discussed next followed by feature computation and selection. 

3.1. Acoustic landmark detection 
The temporal landmarks are located in the utterance by a two-
staged procedure [16].  A coarse first stage of segmentation 
involves alignment of the broad class phonetic transcription 
using an available state-of-the-art MFCC-HMM ASR system. 
Since our focus is on discrimination within the class of voiced 
plosives, we assume the availability of a broad class phone 
transcription. In the recognition task, this may be available 
from a previous step in the hierarchical system, and in the 
pronunciation task, known from the intended words in the list. 
The broad classes are: vowels, sonorants, unvoiced fricatives, 
unvoiced affricates, unvoiced stops, voiced affricates, voiced 
stops, silence and voice bar. The acoustic models are context 
independent, 3-state HMM with diagonal covariance and flat-
start initialization. The standard 39 dim MFCC, delta and 
acceleration feature vector was computed at 10 ms intervals. 
Broad class based recognition is robust since most confusions 
in a phone recognizer tend to be within the same manner class 
[17]. However the decoder segmentation is not accurate 
enough for the location of landmarks with the required 
precision, and is further refined follows. 

The release burst onset is detected by the largest peak in 
the rate-of-rise (ROR) of the smoothened energy in 3500-8000 
Hz within a 40 ms vicinity of the coarse boundary [16, 18]. 
Cues to vowel onset are dependent on the nature of the 
consonant and especially difficult for aspirated and voiced 
stops. In the case of voiced plosives, we use the rapid rise in 
the signal amplitude envelope in the low frequency band (50 
Hz – 600 Hz) to detect the precise vowel onset in the vicinity 
of the initial coarse boundary [19].  

3.2. Feature implementation 
From Sec. 2.2, we see that the potential distinguishing 

properties of aspiration in voiced plosives are the duration 
(VOT), glottal OQ (H1-H2), spectral tilt and aspiration noise. 
The latter two can be measured from the signal in different 
ways giving rise to different acoustic features as presented 
next. 

VOT is the duration between burst onset and vowel onset.  
H1-H2 is the ratio of the first two harmonic amplitudes 

computed in the vowel region. H1-H2 and tilt measurements 
are obtained from magnitude spectra from 25 ms Hamming-
windowed DFTs computed at 1 ms hop and averaged over a 
selected 5 ms duration.  

Spectral tilt has been estimated by a number of different 
acoustic parameters in the context of voice quality detection. 
These include H1-A3 (A3=highest spectral amplitude in 3rd 
formant region) [14, 15], A1-A3 by Ishi [20] where fixed 
bands around average first and third formant regions are used, 
and H1-A2 by Cho [8]. All these measurements capture the 
rolling off of the spectrum from the low frequency band to the 
higher formant regions. We consider fixed bands around 
average formants like Ishi [20] to compute A1-A3 as the 
difference of the strongest spectral component in the range of 
100 to 1000 Hz (F1 band) and the one in the range of 1800 to 
4000 Hz (F3 band).  The F2 region energy used as an indicator 
of aspiration in unvoiced stops by Cho [8] is also captured by 
de Krom’s [21] breathiness feature in the form of the spectral 
slope computed as the difference in band energies of F2 band 
(400-2000 Hz) and the first harmonic region (60-400 Hz). We 
term this “low band slope”. Additionally, a normalized “B3 
band energy” is included where B3 is [2000-5000 Hz] takes on 
low values at increased tilt. The multiple measurements of 
spectral tilt were motivated by preliminary classification 
experiments which showed that each provided some additional 
information to the discrimination task. 

Aspiration noise is measured by the ratio of harmonic 
energy to noise energy.  An “SNR” feature is computed using 
a 25 ms analysis window placed at a selected time instant 
beyond the vowel onset. Signal power is obtained from the 
DFT spectrum but aspiration noise power is estimated using 
cepstral liftering [22]. Cepstral liftering separates the source 
from the vocal tract shaping and helps make the SNR less 
sensitive to formant influences.  Since aspiration noise 
dominates the higher frequency region where formants are 
weak, an independent method to estimate the noise strength is 
to measure the uncorrelatedness of the signal components in 
two different frequency regions. “F1-F3 sync” is such a 
feature proposed by Ishi [20], computed using F1 and F3 
bands of width 600 Hz around the automatically detected 
formant values corresponding to that token. The index 
represents correlation of the amplitude envelopes of the two 
band-pass filtered signals over a 25 ms region centered at a 
specific time instant beyond the vowel onset.                

Since the breathiness of the vowel arises from the 
coarticulation with the preceding aspirated stop, it is important 
to select the analysis region suitably for the breathy voice 
features. We tested the discriminability of the various features 
as a function of the analysis interval location from vowel onset 
to midpoint, chosen based on average vowel duration.  Fig. 3 
shows the variation of the average separability as measured 
from the overlap of the distributions across 
aspirated/unaspirated classes for each of the two feature sets: 
Spectral shape (H1-H2, spectral tilt), and aspiration noise 
(SNR, F1-F3 sync). We observe that the spectral shape based 
differences are strongest near vowel onset even though non-
modal voice quality is known to extend over most of the vowel 
duration [13]. On the other hand, noise measures are most 
discriminative nearer to the vowel midpoint. The reduced 
effect of the preceding unaspirated plosive (especially 
affricate) may well be a contributing factor to this. 
Accordingly we select the analysis interval for the spectral 
shape features to be around the instant 13 ms from vowel 
onset, and that for the noise features to be at 23 ms. 

Further, in the case of affricates, aspiration noise is also 
conspicuous in the burst region as seen in Fig 2. This can be 
estimated by E1-E2 where E1 = E[3000:7000] i.e. energy in 
the range of 3000-7000 Hz and  E2 = E[60:3000] i.e. energy in 
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the range of 60-3000 Hz. When aspiration noise appears in the 
otherwise fricated region, E2 increases causing E1-E2 to 
decrease. The energies are obtained by averaging 6 ms 
windowed magnitude spectra at 1 ms hop over the 10-20 ms 
duration prior to the vowel onset. 

 
Figure 3: Variation in separability with analysis time instant 

measured from vowel onset  

4. Classification experiments 
Two-way classification experiments are carried out using the 
speech datasets of Sec. 2.1 to evaluate the performance of 
aspiration detection. Features as described in the previous 
section are computed on the automatically segmented speech. 
Landmark detection errors with respect to manual labeling 
were noted to be within 10% for a 15 ms tolerance for the 
burst onset, and within 20% for the vowel onset for the same 
tolerance, with affricates performing worse than the stops on 
average. A GMM (6 mixtures, full covariance) is trained on 
the feature vectors of each class: voiced unaspirated and 
voiced aspirated, separately for stops (7 features) and 
affricates (8 features).  

4.1. Two-way classification of Marathi plosives 
Table 3 shows the accuracies obtained in a 20-fold (leave-one-
speaker-out) cross-validation classification experiment on the 
Marathi speech database. Various feature sets are tested as 
explained in the caption. We note that including the additional 
measurements of spectral tilt (over the basic A1-A3 feature) 
leads to significant increase in accuracy. A further accuracy 
increase is obtained upon including both the noise features. 
Finally, we add the pre-onset noise feature (E1-E2) to the 
affricate feature set to obtain the accuracies shown in 
parentheses. This feature did not enhance the performance on 
stops but, as expected, provided a useful cue to aspiration in 
voiced affricates.  

Table 3. Accuracy (%) achieved using various feature sets 
with automatic and manual labeling. S1= VOT, H1-H2, A1-
A3; S2 = S1,low-band-slope, B3 band energy; S3 = S2, SNR, 
F1-F3-sync. Parenthesized: E1-E2 added. All differences are 

significant (p<0.01) 

Class of 
plosive 

Automatic labels Manual 
labels 

S1 S2 S3 S3 
Stops 83.5 84.5 85.1 86.2 

Affricates 74.5 76.9 77.6 ( 79.2) 78.0 (79.0) 

 
From Table 3, we also note that while manual landmark 

detection provides better accuracies over automatic labeling, 
this is not true for the affricate class. This stems from the 

inherent difficulty of precise manual annotation of vowel onset 
instant in voiced aspirated affricates. Next, with the best 
feature set of each class, we trained acoustic models for the 
aspirated-unaspirated distinction of stops, and of affricates, 
over the full 20-speaker Marathi data. These models were used 
to classify the Hindi voiced plosives of the 20 native speaker 
set of Table 2 using automatic segmentation. The best feature 
set classification accuracy for stops was 84.9, and that for 
affricates 79.2. This shows that the acoustic features 
generalize well for cross-language transfer, at least between 
Marathi and Hindi with their shared set of phones.  

4.2 Non-native pronunciation detection 
Using the Hindi test speech, we compute the percentage of 
instances that the target is correctly achieved for each speaker 
as a measure of speaker’s “nativeness”. Fig. 4 shows the 
obtained %correct for each speaker for the proposed system 
and, for comparison, with an MFCC-HMM system trained 
similarly for the same 2-class task. We see that the %correct 
varies across speakers with the non-native speakers’ group 
doing worse overall. Compared to the MFCC features, the 
proposed features show higher accuracy on the native 
speakers’ data as well as better separation between native (N) 
and non-native (NN) speakers. 

 
Figure 4: Percentage correct achieved target of voiced 

plosives in native (N,+) and non-native (NN,o) datasets. 

5. Conclusion 
Phonologically motivated features are investigated for the 
detection of phonemic aspiration in Marathi and Hindi voiced 
plosives.  Multiple acoustic attributes and features contribute 
towards robust detection, in line with the research goals of 
ASAT for speech recognition [23].  Experiments on non-
native speech confirm previously reported findings that 
features based on phonetic properties are superior to the 
standard ASR system features for pronunciation error 
detection [2]. Future work will be focused on larger datasets 
and other Indo-Aryan language including Gujarati, marked 
also by occurrence of phonemic breathiness in vowels [24]. 
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