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Abstract—With mobile phone penetration high and growing
rapidly, speech based access to information is an attractive
proposition. However, automatic speech recognition(ASR) perfor-
mance is seriously compromised in real-world scenarios where
background acoustic noise is omnipresent. Speech enhancement
methods can help to improve the signal quality presented to the
automatic speech recognition at the receiving end. These methods
typically exploit spectral diversity to achieve separation of speech
from noise. While this works for most background noise, it
fails for noise arising from speech sources such as interfering
speakers in the vicinity of the caller. In this paper, we investigate
the potential advantages of generating spatial cues via stereo
microphones on the mobile phone handset to enhance speech.
Such, enhancement of foreground speech can be done using
blind source separation (BSS). This, when applied to the stereo
mixtures before transmission is shown to achieve a significant
improvement in ASR accuracy in the context of a mobile-phone
based agricultural information access system.

I. INTRODUCTION

Speech-based access to information is a powerful enabler
given the widespread use of mobile phones across the country.
The front-end of such an information retrieval system is
an automatic speech recognition (ASR) system. While ASR
technology is still far from perfect, practically useful systems
are being deployed by exploiting domain-specific constraints
in terms of language modeling and dialog design that embeds
sufficient checks on decoded query accuracy. The main con-
tributors to low recognition accuracy are signal degradation
and speaker variability. The latter is addressed by the proper
design of training datasets, and the incorporation of speaker
normalization methods. Speech signal degradation is caused
by environmental conditions such as noise and reverberation
as well as channel degradation. Acoustic background noise
could be caused by noise sources such as moving vehicles or
by other speakers in the vicinity of the caller. While spectral
diversity can be exploited to enhance speech in a background
of non-speech sources, it is not applicable when the noise
comprises interfering speech signals which typically share the
same long-term spectrum.

With mobile phone hardware becoming increasingly sophis-
ticated, better sound processing technology in the form of
multiple microphones on the handset is realistic. For instance,
iPhone5 and Samsung Galaxy S III both have a pair of micro-
phones. The value of a microphone array in the enhancement

of distant speech by means of beamforming has been recently
established [1]. With the super-Gaussianity of speech signals
providing the basis for blind adaptation in beamforming,
improvements in ASR accuracy are reported on processed
speech. Speech enhancement using spatial processing with the
help of microphone array has gained interest recently [2].

In the present work, we explore the usefulness of spatial
processing in the context of an available mobile-phone based
information access system. The system provides information
on agricultural commodities throughout Maharashtra based on
a dialog in Marathi designed to elicit single-word or short-
phrase queries from farmers seeking prices of specific com-
modities in particular district markets [3]. The database covers
32 districts, 279 markets and over 300 unique commodities.
The system downloads, on a daily basis, prices of agricultural
commodities from a website http://agmarknet.nic.in/ main-
tained by the Ministry of Agriculture, Government of India.

Accurate ASR would help improve both the user-
friendliness and efficiency of the information access system.
A prominent source of ASR errors is observed to be the
degraded signal quality arising from the presence of acoustic
background noise and interference at the farmer’s end. The
spatial separation of the caller and interfering sources can
be exploited to achieve the suppression of interference via
processing the output of a multi-microphone array. As men-
tioned earlier, interfering speakers pose the most challenging
scenario to conventional single-channel speech enhancement
techniques. We consider the situation of interfering speech
coming from a speaker located at some distance from the
caller. The stereo microphones assumed to be located on the
mobile handset provide mixtures comprised of the caller and
background speaker speech. As depicted in Fig. 1, BSS is
expected to be carried out to obtain single-channel enhanced
speech before the usual speech compression and transmission
by the mobile handset. As the user responses are short phrases
with brief pauses in between, the system requires fast operation
of the BSS algorithm, but does not demand real-time response.

In the next section, we present a review of blind source
separation methods including the signal-sparsity based method
chosen for the present task. This is followed by a description
of the present implementation on speech mixtures. The ASR
system and datasets are described next. An experimental evalu-
ation of the system without and with multi-channel processing978-1-4799-2361-8/14/$31.00 c© 2014 IEEE

Admin
Typewriter
Appeared in Proceedings of NCC, 2014

Admin
Typewriter

Admin
Typewriter



Fig. 1. A typical scenario where blind audio source separation can be applied to enhance the source or speaker signal amidst interfering signals or speakers.
There are three sources (S1, S2, S3) and two microphones (M1, M2) in this scenario. The signals captured by the microphones represent the mixtures. The
source locations are unknown and we assume the combined signals to represent an instantaneous mixture. From this limited information, the source signal
needs to be extracted, transmitted and speech recognition task needs to be carried out.

is presented. The paper concludes with a discussion of the
results and suggestions for further work.

II. BLIND SOURCE SEPARATION (BSS) FOR SPEECH
ENHANCEMENT

A simple BSS scenario is shown in Figure 1. In this
scenario, there are three sources (S1, S2, S3) and two micro-
phones (M1, M2) used to capture the utterances from these
speakers. The microphone outputs will be an instantaneous
mixture of the signals. Given the mixtures, our aim is to
recover the individual sources (S1, S2 and S3). In the speech
enhancement scenario considered here, one source signal is
of interest (main caller using the information access system)
and other two sources can be considered as the interferers. We
will use source separation to separate and enhance the speech
signal corresponding to the caller and use the processed signal
in the query processing system.

The N mixture signals represented as x in a source separa-
tion problem is a product of transformation matrix A (M×N )
and the N source signals represented as s. The transformation
matrix referred to as the mixing matrix determines the con-
tribution of each source in a mixture. Thus, a simple BSS
scenario (in time domain) can be represented as,

x(t) = As(t). (1)

The source vector s is of the form

s(t) =
[
s1(t) s2(t) · · · sN (t)

]T
. (2)

The mixture vector x is of the form

x(t) =
[
x1(t) x2(t) · · · xM (t)

]T
. (3)

The mixing matrix A is a M x N matrix of the form

A =


a11 a12 · · · a1N
a21 a22 · · · a2N

...
...

. . .
...

aM1 aM2 · · · aMN

 . (4)

Here aij denotes the attenuation coefficient associated with
the j-th source and the i-th mixture. They can be considered
as the complex factor with which the signal gets attenuated as

it travels from the source to the microphone. Each column of
A relates to the spatial location of the corresponding source.
In the system under consideration, M = 2 corresponding to a
pair of microphones and N ≥ 2. The mixing matrix elements
are considered to be real, i.e., mixing is instantaneous wherein,
no delay is assumed between the signals arriving at the pair of
microphones. An extension to anechoic case is straight forward
and is not considered here. Since we consider the queries to be
usually made from open spaces or rooms, reverberation will
not be an issue and need not be considered in this scenario.
Accordingly, the BSS problem considered in this research is
under- or evenly-determined and instantaneous in nature.

Audio signals are typically analysed in the time-frequency
(TF) domain, as they are sparse in this domain. The source
separation problem can be represented in the TF domain as

X(t, f) = AS(t, f), (5)

where t, f denote the TF point in a discrete TF framework.
Most existing source separation problems make some assump-
tions on the source, mixing characteristics, and environment.
The sources are usually modeled as a zero-mean Gaussian
random variable in each of the TF point when analysed in the
TF domain. Further these random variables corresponding to
a single source will be assumed to be independent over time
and frequency. The various sources in a mixture will also be
assumed to be independent of each other. These assumptions
lead to sparsity of speech mixtures in the TF domain and such
sparsity has been exploited in many source separation meth-
ods. We consider two such methods in this paper. One being
the degenerate un-mixing estimation technique (DUET) [4]
and the other is the statistically sparse decomposition prin-
ciple (SSDP) based method [5], [6]. They have a two step
approach to the underdetermined BSS problem, by first esti-
mating the mixing-matrix A and then recovering the sources
using the estimated mixing-matrix. The DUET algorithm does
both estimation of A and source separation. However, the
SSDP methods assume availability of an estimated A. In
this work, we use the direction estimation of mixing matrix
(DEMIX) algorithm [7], [8] to estimate A and use this in
both the DUET and SSDP algorithms. Next, we provide a brief
description of the DEMIX, DUET and SSDP algorithms.



A. DEMIX for mixing matrix estimation

We use the DEMIX algorithm proposed in [7], [8] to
estimate the mixing matrix A. It relies on the assumption that
there are TF regions in the mixture where only one source
contributes to the mixture. However, it uses a local TF region
as opposed to the global TF region. Clustering using the global
TF region as in DUET leads to inaccurate estimates since
there may be more than one source active in a given TF point.
The description here assumes the number of available mixtures
(M ) to be two. But the algorithm can handle more number of
mixtures, anechoic and reverberant cases [8].

The DEMIX algorithm considers TF neighborhoods Ωt,f

around each TF point (t, f) in the discrete short-time Fourier
Transform (STFT) X(t, f) = [X1(t, f) X2(t, f)]T of
x(t) = [x1(t) x2(t)]T . The STFT is computed using window
length of L and 50 % overlap, with corresponding time indices
t = kL/2, k ∈ Z and frequency indices f = l/L, 0 ≤ l ≤
L/2. One possible TF neighborhood for a (t, f) point is,

Ωt,f =

{
t+

kL

2
, f +

k′

L
, |k| ≤ ST , |k′| ≤ SF

}
, (6)

where ST and SF are chosen to define the number of points
to be considered in the local neighborhood. The STFT points
corresponding to a local neighborhood are represented as a
matrix X(Ωt,f ), which is 2 × |Ωt,f |, where |Ω| represents
cardinality of Ω. The data points in X(Ωt,f ) can also be
viewed as a local scatter plot, from which an estimate of
the principal direction or steering vector (SV) u(Ωt,f ) ∈ R2

and corresponding local confidence measure T (Ωt,f ) can
be obtained. These can be estimated by performing a prin-
cipal component analysis (PCA) on the covariance matrix
R(Ωt,f ) = X(Ωt,f )XH(Ωt,f ). Since we are considering the
stereophonic case, the direction of the principal component
obtained û(Ωt,f ) can be translated into an angle θ̂(Ωt,f )
corresponding to source direction. The confidence measure is
defined as

T̂ :=
λ̂1(Ωt,f )

λ̂2(Ωt,f )
(7)

where λ̂1(Ωt,f ) ≥ λ̂2(Ωt,f ) are the eigenvalues of R(Ωt,f ).
The confidence measure distinguishes regions where one
source is active from regions where more than one source is
active. This also distinguishes regions where û(Ωt,f ) points in
the direction of a SV from regions where it might not be the
case. Essentially, the SV and confidence measure estimates,
together, indicate the direction of the most dominant source
in a local neighborhood of the (t, f) point. The next step is to
cluster these estimated (θ̂, T̂ ) points. The clustering algorithm
referred to as DEMIX and described in [8] was used in this
work. We provide a brief description of this algorithm, which
consists of three steps. The first step creates K clusters based
on T̂ and grouping closely spaced θ̂. The second step estimates
the angle θck as centroid of clusters created in the first step.
The variance of estimated angles is also computed and used
in estimating the centroids. The third step eliminates spurious
clusters from the K clusters formed in the earlier steps. This

Fig. 2. Scatter plot of estimated source angles θ̂ and confidence measure T̂
estimated using the DEMIX algorithm, for three sources at 40 ◦, 50 ◦, and
60 ◦. The main speaker is positioned at 50 ◦.

can be done using two approaches. One approach is to use the
variance of the estimated centroids and thresholding based on
these values to eliminate spurious clusters. The other approach
is, when the number of sources N is known, to retain only
the N clusters with smallest centroid variances. The estimated
angles θck can be used to compute the mixing matrix A. In
this paper, we are considering the three signal, two mixture,
instantaneous case and the corresponding mixing matrix for
source angles θc1, θc2 and θc3 is

Â =

[
cos(θc1) cos(θc2) cos(θc3)
sin(θc1) sin(θc2) sin(θc3)

]
. (8)

This estimated Â will be used in both DUET and SSDP
to extract the source signals from the mixture signals. The
scatter plot obtained using the DEMIX algorithm for a mixture
scenario with source signal at 50 ◦ and interfering signals at
40 ◦ and 60 ◦ is shown in Fig. 2. The corresponding actual A
and estimated Â are

A =

[
0.766 0.643 0.5
0.643 0.766 0.866

]
, Â =

[
0.765 0.644 0.501
0.644 0.765 0.866

]
It should be noted that the DEMIX algorithm is applicable
in cases where the number of sources N is more than three
and can be applied even in case of anechoic mixtures. The
superior performance of the DEMIX algorithm for the general,
source separation problem has been established in [8]. Here
we have provided results to justify its performance on the data
set considered in our experiments.

B. DUET for source separation

The principle behind DUET [4] is that it is possible to
blindly separate an arbitrary number of sources given just
two anechoic mixtures provided, the TF representations of
the sources do not overlap much, which is true for speech.
DUET assumes that the sources are sparse and hence already
separated in TF domain.



The DUET algorithm can separate N sources from two
mixtures. This method uses a two stage separation process,
wherein it first estimates the mixing parameters corresponding
to the sources, and then follows it up with a separation
procedure. It assumes W-disjoint orthogonality (WDO) [9] of
speech in the TF domain, i.e., speech signals occupy disjoint
supports in the T-F domain shown as

Si(t, f)Sj(t, f) = 0, ∀i 6= j,∀t, f. (9)

where Si(t, f) and Sj(t, f) represent TF domain representa-
tion of two source signals, obtained using a windowed STFT.
Alternatively, every TF point has a contribution from only one
source. Without loss of generality, if we include the mixing
parameters of one of the mixtures into the definition of the
sources, we have[

X1(t, f)
X2(t, f)

]
=

[
1 · · · 1
a1 · · · aN

]S1[t, f ]
...

SN [t, f ]

 . (10)

At a TF point where the i-th source is active, we have

ai =

∣∣∣∣X2[t, f ]

X1[t, f ]

∣∣∣∣ δi = ∠
X2[t, f ]

X1[t, f ]
,

as the attenuation and delay parameters. We do this for
all (t, f) points. Clustering these values we obtain a two
dimensional histogram as a function of a and δ. The number
of dominant peaks would give an estimate of the number of
sources and the peak centres would give an estimate of the
corresponding ai and δi. The sources can then be separated
by applying a binary mask on the TF representation of any
one of the mixtures, which retains only those TF points where
the corresponding source is dominant, followed by an Inverse
STFT operation.

The performance of DUET is often limited by the clustering
technique used for mixing matrix estimation. If the sources are
located very close to each other spatially, it is not possible to
obtain accurate mixing parameters using this approach. Also,
the clustering algorithm can estimate the delay parameters
accurately only if they are within one sample time delay. This
criterion restricts the separation between the microphones [4].
Hence, in this work we use the DEMIX algorithm discussed
in Sec. II-A to estimate the mixing matrix and perform source
separation using the binary mask as in the standard DUET. In
the next section, we describe the SSDP technique ([5], [6])
where the number of active sources in a TF point can be equal
to the number of mixtures or more.

C. SSDP algorithm for source separation

Consider the source separation problem in TF domain as
shown in (5), and repeated here

X(t, f) = AS(t, f),

where the objective is to recover the source STFT coeffi-
cients S from the mixture STFT X. Here, we consider the
instantaneous case and the mixing matrix A is independent
of frequency and is real. The DUET algorithm discussed in

Sec. II-B relies on WDO and hence assumes only one source to
be active in a TF point. Further it is unable to separate sources
that lie spatially close. These two limitations are overcome, by
the time-frequency domain statistically sparse decomposition
principle (SSDP-TF) algorithm presented in [6], which is an
improvement over the time domain SSDP presented in [5].
Here, we provide a brief description of the SSDP-TF which is
used for source separation in the case where two mixtures are
available. We have used the Matlab implementation available
at [10] and described in [6].

The SSDP-TF algorithm assumes that an estimate of mixing
matrix A is available. The algorithm can recover a maximum
number of active sources equal to the number of mixtures in
each time-frequency point (i.e., two in the case considered
here). An improved algorithm that relies on a local Gaussian
model (SSDP-LGM) of source coefficients in the TF domain
and can recover more sources is also presented in [6], but
is not discussed here. The SSDP-TF method computes the
covariance matrix of the mixture signal X(t, f) over a neigh-
borhood of each (t, f) as

R̂XX(t, f) =

1∑
t′,f ′

w(Ωt′,f ′)

∑
t′,f ′

w(Ωt′,f ′)X(t′, f ′)X(t′, f ′)H (11)

where w(Ωt′,f ′) is a bi-dimensional window centered at (t, f).
If we assume sources j1 and j2 are active in a TF point,
the covariance matrix of the sources R̂sj1sj2

and the mixture
covariance matrix are related as

R̂XX = Ajij2R̂sj1sj2
AT

j1j2, (12)

where Aj1j2 is the 2 × 2 mixing matrix whose columns are
j1, j2 columns of the initial mixing matrix A. In the general
case, where there are N sources, A will be a 2 × N matrix.
The objective in SSDP-TF is to find the two best columns of
A that will diagonalize the source covariance matrix R̂sj1sj2

.
From (12), we have

R̂sj1sj2 = A−1j1j2
R̂XX(A−1j1j2

)
T

= E

[
s2j1 sj1sj2
sj2sj1 s2j2

]
.

(13)
The best pair of active sources can be obtained by finding the
columns j1, j2 of A by [6],

[ĵ1, ĵ2] = argmin
j1,j2

∣∣∣R̂sj1sj2

∣∣∣√
R̂sj1sj1R̂sj2sj2

(14)

where R̂sjksjl
is the (k, l) element of R̂sj1sj2

. This estimated
j1 and j2 can be used to obtain the corresponding Aj1j2 and
the source STFT coefficients can be estimated as,{

Ŝĵ1 ĵ2
(t, f) = A−1j1j2

X(t, f)

Ŝj(t, f) = 0 for allj /∈
{
ĵ1, ĵ2

}
.

(15)

The source signals sj1(t) and sj2(t) can be obtained from
Ŝĵ1 ĵ2

(t, f) by performing an inverse STFT. More details for



finding three or more sources (SSDP-LGM) and analysis of
this can be found in [6]. Similar arguments for a time-domain
SSDP approach can be found in [5].

D. Source speaker enhancement

The foreground speech or speaker enhancement for the
scenario described in Fig. 1 was achieved using the algorithms
described in this section. This enhancement was performed in
two steps. The first step was to estimate the mixing matrix
Â using the DEMIX algorithm described in Sec. II-A. The
next step was to use either the DUET algorithm (Sec. II-B)
or the SSDP algorithm (Sec. II-C). The output or processed
signals from the source separation step was then fed to an ASR
system to evaluate the enhancement. The experimental setup,
quality of enhancement obtained for various signal-to-noise
ratios (SNRs) and scenarios are presented next.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The testing dataset is created by simulating two-channel
mixtures of commodity utterances by system users, as recorded
at the interactive voice response (IVR) server of the speech-
based access system, and independently collected continuous
background speech at selected SNRs. The continuous speech
comprises Marathi sentences recorded at the same IVR server
by native callers reading out sentence prompts from text
material provided to them. The mixtures thus simulate the
situation of a system user querying the system for a commodity
price in a background of independent speakers. The mixture
parameters are chosen to depict various angular separations
between the caller and the background speaker. Five com-
modity words uttered by each speaker are concatenated into
a single utterance and input to the ASR system under various
conditions of clean speech and noisy speech at various SNRs.

All the utterances were sampled at frequency of 8 kHz and
normalized to an amplitude of ± 0.5 units so as to avoid
any clipping, during the mixing process. One main speaker
utterance (five words) and two noise speaker utterances (con-
tinuous speech) were mixed instantaneously, so as to distribute
the speakers spatially. The main speaker was positioned at
10 ◦ and the two interfering speakers at other positions. The
two positions of the interfering speakers were chosen from
the five spatial positions of −70,−50,−30,−10, 30 degrees,
respectively. These 10 mixing conditions require 50 words
to be recognised. This scenario was repeated for 10 distinct,
main speakers giving a total of 500 noisy words for speech
recognition tests.

The use of continuous Marathi speech for noise sources
ensured a maximum overlap of the main speaker and the
noise speakers, in the time domain. All the aforementioned
mixing conditions were simulated at SNRs of 0 dB and 2 dB
by suitably scaling the noise sentences before instantaneous
mixing. Note that, the system we propose in Fig. 1, performs
a blind separation of the sources at the user end, before
transmission. On the other hand, the simulations performed
involve a BSS operation on speech signals obtained after
transmission over the channel. The transmission cables are

typically known to have a low-pass character, thus affecting the
speaker and the noise utterances. These can be compensated
for, although, such compensation has not been used in the
current experimentation scheme.

A. Speech recognition system

The CMU Sphinx ASR system was used for testing. The
system was trained on the speech of 1500 speakers across
Maharashtra uttering commodity, mandi, and district names.
The system uses MFCC features, 16 mixture diagonal covari-
ance GMMs and 5-state HMMs for triphones.The ASR system
uses 80 phones classified into 69 basic phones and 11 fillers
respectively and a vocabulary of approximately 2500 words.
A trigram language model trained on the transcriptions of the
training data was employed. Out of vocabulary (OOV) words
were not considered for experimentation.

B. Results and discussion

The BSS performance can be studied from the perception of
separated speech in terms of mean opinion scores and PESQ
scores. However, given the current application, we compare
the speech recognition accuracies obtained without and with
BSS to demonstrate the enhancement in speech obtained for
the agricultural price information system. The location of
the main speaker is assumed to be known. Thus, the angle
estimates obtained from DEMIX can be used to identify the
main speaker utterance. Speech recognition was performed
on the separated main speaker utterance obtained from two
BSS algorithms and compared with the recognition results for
clean-speech (main speaker utterance) and unseparated noisy-
speech. Recognition results for N = 3 and SNRs of 0 dB and
2 dB are provided in Tables I and II. Noisy speech obtains very
poor recognition accuracy compared to clean speech, since the
acoustic models used in the ASR were trained on clean speech,
and the degraded speech is poorly matched to the training data.
The ASR performance worsens with decreasing SNR. Pre-
processing by the SSDP methods leads to a significant increase
in recognition accuracy. Among the two algorithms, SSDP-
LGM and SSDP-TF, as expected the SSDP-LGM performs
slightly better than the SSDP-TF algorithm. We note that the
accuracy is maintained at 60 % level across SNRs whereas the
clean speech ASR accuracy is 84 %. This suggests that the
source-separated speech achieves a uniform noise suppression
at all SNRs based on exploitation of spatial diversity. The
accuracy limitation arises from the artifacts / change in speech
quality. This can probably be overcome if the acoustic models
used in the ASR system are trained on source-separated
speech. From the results shown in Sec. II-A, the mixing
matrix estimates were reasonably accurate. This indicates that
a better recognition can be achieved by improving the source
separation algorithms.

In addition, we also performed similar experiments for the
N = 2 case (i.e., one main speaker and one interfering
speaker). The dataset used in the N = 2 case was similar, but
had 20 distinct speakers and one interfering speaker. Here we
provide results for one such setup (SNR = 2 dB) in Table III.



TABLE I
SPEECH RECOGNITION RESULTS WITHOUT AND WITH SOURCE SEPARATION FOR 0 DB SNR AND THREE SIGNALS (N = 3 FOR SOURCE SEPARATION).

Case Substitution (%) Deletions (%) Insertions (%) Error (%) Correct (%) Word Accuracy (%)

Clean-speech 12.0 0.0 4.0 16.0 88.0 84.0

Mixtures without separation 16.6 68.6 0.4 83.4 16.8 16.4

SSDP-LGM 17.0 17.8 3.4 38.2 65.3 61.8

SSDP-TF 13.3 25.5 2.4 41.2 61.2 58.8

TABLE II
SPEECH RECOGNITION RESULTS WITHOUT AND WITH SOURCE SEPARATION FOR 2 DB SNR AND THREE SIGNALS (N = 3 FOR SOURCE SEPARATION).

Case Substitution (%) Deletions (%) Insertions (%) Error (%) Correct (%) Word Accuracy (%)

Clean-speech 12.0 0.0 4.0 16.0 88.0 84.0

Mixtures without separation 13.6 65.2 0.8 79.6 21.2 20.4

SSDP-LGM 15.7 18.6 3.7 38.0 65.7 62.0

SSDP-TF 12.7 23.9 2.7 39.2 63.5 60.8

TABLE III
SPEECH RECOGNITION RESULTS WITHOUT AND WITH SOURCE SEPARATION FOR 2 DB SNR AND TWO SIGNALS (N = 2 FOR SOURCE SEPARATION).

Case Substitution (%) Deletions (%) Insertions (%) Error (%) Correct (%) Word Accuracy (%)

Clean-speech 13.0 0.0 5.0 18.0 87.0 82.0

Mixtures without separation 20.5 26.0 6.7 53.2 53.5 46.8

SSDP-LGM 10.5 3.2 5.1 18.8 86.3 81.2

SSDP-TF 10.4 3.2 5.1 18.7 86.4 81.3

DUET 13 12.4 2.6 28 74.6 72.0

It can be seen that the word accuracy obtained using the
SSDP algorithms is at the 81 % level, which is close to clean
speech ASR accuracy of 82 %. This is expected, given that
the DEMIX algorithm provides a good estimate of the mixing
matrix A of size 2 × 2 and is an evenly-determined source
separation problem. However, the 72 % accuracy obtained
using DUET is lower than that of the SSDP methods, as it
relies on the assumption of a single active source per TF point.

IV. CONCLUSION

In this paper, we proposed a system that enhances fore-
ground speech in a mobile phone setup for a speech-based
agricultural price information system. This system uses blind
source separation to exploit the difference in spatial locations
of the main and interfering speakers via stereo microphones
and enhance the relevant source signal using a pair of micro-
phones. Our simulation results suggest that such an approach
leads to improved speech recognition accuracy, with still
further scope for improvement. As part of future research, we
intend to consider characteristics of speech signals to improve
source separation and speech recognition in challenging sce-
narios.
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