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ABSTRACT

Time-series pattern matching methods that incorporate
time warping have recently been used with varying de-
grees of success on tasks of search and discovery of
melodic phrases from audio for Indian classical vocal mu-
sic. While these methods perform effectively due to the
minimal assumptions they place on the nature of the sam-
pled pitch temporal trajectories, their practical applicabil-
ity to retrieval tasks on real-world databases is seriously
limited by their prohibitively large computational com-
plexity. While dimensionality reduction of the time-series
to discrete symbol strings is a standard approach that can
exploit computational gains from the data compression as
well as the availability of efficient string matching algo-
rithms, the compressed representation of the pitch time
series itself is not well understood given the pervasive-
ness of pitch inflections in the melodic shape of the raga
phrases. We propose methods that are informed by do-
main knowledge to design the representation and to opti-
mize parameter settings for the subsequent string matching
algorithm. The methods are evaluated in the context of an
audio query based search for Hindustani vocal composi-
tions in audio recordings via the mukhda (refrain of the
song). We present results that demonstrate performance
close to that achieved by time-series matching but at or-
ders of magnitude reduction in complexity.

1. INTRODUCTION

A bandish, or composition in the North Indian classical
vocal genre of khayal, is characterised by its mukhda,
its almost cyclically repeated refrain. The singer elabo-
rates within the raga framework in each rhythmic cycle
before returning to the main phrase of the bandish (i.e.
its mukhda). The automatic detection of this repetitive
phrase, or motif, from the audio signal would contribute
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to important metadata concerning the identity of the ban-
dish. The mukhda is recognised by the lyrics, location in
the cycle and its melodic shape. While these are in order
of decreasing ease in terms of manual segmentation of the
mukhda, the melodic shape characterized by a pitch con-
tour segment is most amenable to pattern matching meth-
ods. The challenge here arises from the improvisatory na-
ture of the genre where the raga grammar allows for con-
siderable variation in the melodic shape of any prescribed
phrase. Previous work has shown that the variability in
the mukhda across the concert, similar to that of other
raga-characteristic phrases in a performance, can be char-
acterized as globally constrained non-linear time-warping
where the constraint appears to depend on certain charac-
teristics of the underlying melodic shape [16, 17, 21]. A
dynamic time-warping (DTW) distance measure was used
on the time-series segments to model melodic similarity
under local and global constraints that were learned from a
raga-specific corpus [17]. More recent work has also vali-
dated the DTW based similarity measure in the context of
melodic motif discovery but the high computational costs
associated with time-series search limited its applicabil-
ity [3, 9, 14]. Given that DTW based local matching, with
relatively minimal assumptions, on the pitch time-series
derived from the audio is largely successful in modeling
the relevant melodic variations, we focus on targeting sim-
ilar performance with greatly reduced complexity. Com-
putationally efficient methods to search and localize occur-
rences of the mukhda in a concert, given an isolated audio
query phrase, have the following potential real-world ap-
plications: (i) automatic segmentation of all occurrences
of the mukhda provided one manually identified instance,
with a goal to reduce manual effort in the rich transcription
of concert audio recordings, and (ii) retrieving a specific
bandish from a database of concert recordings by querying
by its mukhda provided either by an audio fragment or by
user singing.

The acoustic correlate of the melodic shape of a phrase
is its pitch contour represented computationally by the de-
tected pitch of the singing voice at close uniformly spaced
intervals. Considering the concert recording context where
an instrumental ensemble accompanies the vocalist, the
pitch detection is achieved by a singing voice detection
algorithm coupled with predominant F0 extraction at uni-
form closely spaced intervals throughout the concert. The
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pitch contour can be treated as a one-dimensional time-
series which can be searched for the occurrence of a spe-
cific pattern as defined by the query (another time-series
segment). We note that the dimensionality of the time-
series is typically very high due to the required dense sam-
pling of the pitch contour across the concert duration. It
has been observed that a sampling interval on the order of
20 ms is necessary in order to preserve important pitch nu-
ances as determined by the curve of rapidly decreasing cor-
relation between melodically similar pitch contours with
increasing sampling interval [9].

As mentioned earlier, DTW can be used in an exhaus-
tive search across the concert of this sampled pitch time
series to find the optimal cost alignment between the query
and target pitch contours at every candidate location. We
see therefore that any significant computational complex-
ity reduction can only come from the reduction of dimen-
sionality of the search space. An obvious choice is a rep-
resentation of the melodic contour that uses compact mu-
sical abstractions such as a sequence of discrete pitch scale
intervals (essentially, the note sequence corresponding to
the melody if there was one). String-matching algorithms
can then be applied that find the approximate longest com-
mon subsequence between the query and target segments
of discrete symbols. Krannenburg [11] used this approach
on audio recordings of folk songs to establish similarity
in tunes across songs. Each detected pitch value was re-
placed by its MIDI symbol and the Smith-Waterman local
sequence alignment algorithm was used on the resulting
strings. Note however that there was no reduction in the
size of the pitch time-series. If the pitch time-series is
segmented into discrete notes, a far more compact string
representation can be obtained by using each symbol to
represent a tuple corresponding to a note value and dura-
tion. In this case, a number of melodic similarity methods
based on the alignment of symbolic scores become avail-
able [1, 6, 11, 12, 27]. The effectiveness of this approach,
of course, depends heavily on the correspondence between
the salient features of the pitch contour and the symbol
sequence. A specific challenge in the case of Hindustani
vocal music is that it is characterized just as much by the
precisely intoned raga notes as it is by the continuous pitch
transitions and ornaments that contribute significantly to
the raga identity, motivating a more careful consideration
of the high-level abstraction [15, 18].

The main contributions of this work are (i) a study of
the suitability of two distinct high-level abstractions for se-
quence representation in the context of our melodic phrase
retrieval task, and (ii) using domain knowledge for the set-
ting of various representation and search parameters of the
systems. In the next section, we describe our test dataset of
concerts with a review of musical and acoustic characteris-
tics that are relevant to our task. This is followed by a pre-
sentation of our melodic phrase retrieval methods includ-
ing approaches to the compact representation of the pitch
time-series and discussion of the achievable reduction in
computational complexity with respect to the baseline sys-
tem. A description of the experiments follows. Finally the

results are discussed with a view to providing insights on
the suitability of particular approaches to specific charac-
teristics of the test data.

2. TEST DATABASE DESCRIPTION

The dataset comprises 50 commercial CD-quality concert
audio recordings by 18 eminent Hindustani vocal artists.
The accompaniment consists of tanpura (drone) and tabla,
along with harmonium or sarangi. The concerts have been
chosen from a large corpus [23] in a deliberate manner
so as to achieve considerable diversity in artists, ragas
and tempo. We restrict our analysis to the vilambit (slow
tempo) and madhyalaya (medium tempo) sections of these
concerts for the current task. Drut (fast tempo) sections are
excluded because their mukhda phrases contain a consid-
erable amount of context-dependent variation and hence
melodic similarity is not as strongly preserved. Table 1
summarises our dataset where 39 concerts are of vilambit
laya and the remaining 11 are madhyalaya. The average
duration of a vilambit bandish is 17 minutes and contains
an average of 20-25 mukhda instances that occur once each
in a rhythmic cycle.

#
Song

Dur
(hrs)

#
GT

Dur
(hrs)

Ratio
# Unique

Raga Artist

50 13:13 1075 1:44 13% 34 18

Table 1. Description of the test dataset.

Manual annotation of the mukhda segments with start
and end boundaries was carried out by a musician and val-
idated by a second very experienced musician. Mukhdas
are most easily identified by listening for the lyrical phrase
that occurs about the first beat (sam) of the rhythmic cy-
cle as evidenced by the accompanying tabla strokes. The
mukhda is labeled together with its boundaries as detected
from the onsets of the lyric syllables. These annotations
serve as the ground truth (GT) for the evaluation of the dif-
ferent systems under test which exploit only the similarity
of melodic shape to that of the audio query. The query thus
could be an instance extracted from the audio track, or it
could be a sung or hummed likeness of the melodic phrase
generated by the user.

Figure 1. Pitch contour segments of distinct mukhdas.
Sam of the corresponding rhythmic cycle is marked in red.



Both the cues easily available to listeners, the phones
of the lyrics (as uttered by the singer) and the sam tabla
strokes cannot be extracted reliably from the polyphonic
audio signal. The predominant F0 extractor on the other
hand is more robust and achieves the tracking of the vocal-
ist’s pitch based on dominance and continuity constraints
without any explicit source separation. Our approach to
mukhda detection is currently based on the computation of
melodic similarity which, ideally, should encapsulate the
notion of musically perceived similarity. The low-level
acoustic correlate of the melody is the pitch contour, the
implementation of which is presented in the next section.

Figure 2. Normalized DTW distance between the first
mukhda of the concert and subsequent mukhdas.

Figure 1 shows pitch contour segments of three
mukhdas manually extracted from the beginning, middle
and towards the end of the madhyalaya bandish of a con-
cert. Also marked is the location of the sam with respect
to the mukhda pitch trajectory. We note the variability in
the melodic shape. Typically the tempo of the concert in-
creases gradually over time (linked to the reduction in the
rhythmic cycle duration) leading to a decrease in mukhda
duration (from 13 sec to 7 sec in Figure 1). Rather than a
linear compression, the melodic shape is modified by non-
linear time warping [5]. Figure 2 shows a plot of DTW
distance between the first mukhda of the concert and each
later mukhda versus the temporal location (the correspond-
ing sam) of the later mukhda. The distances are normalized
with respect to that of the first false detection. We observe
a trend of decreasing similarity with increasing time, as
well as the fact that the intervals between mukhdas are not
identical due to rhythmic cycle duration variability. Also,
not every rhythmic cycle is marked by a mukhda. Finally,
we note that the DTW distance measure is largely insensi-
tive to the irrelevant differences, as seen from the distance
values normalised with respect to the distance between the
first mukhda and the nearest false detection.

3. MELODIC PHRASE RETRIEVAL SYSTEMS

In this section, we consider various approaches towards
our end goal which involves searching the entire vocal
pitch track extracted from the audio recording to identify
pitch contour sub-segments that match the melodic shape
of the query. We present the audio pre-processing required
to generate the pitch time-series followed by a discussion
of the different systems in terms of algorithm design and
complexity.

3.1 Time series extraction from audio

The desired time-series representation is expected to cap-
ture the melody line, and hence requires accurate pitch de-
tection of the main voice in polyphonic audio. The singing
voice usually dominates over other instruments in a vocal
concert performance in terms of its level and continuity
over relatively large temporal extents although the accom-
paniment of tabla and other pitched instruments such as the
drone and harmonium are present. Predominant-F0 detec-
tion is implemented by the salience based combination of
two algorithms [20] which exploit the spectral properties
of the voice with temporal smoothness constraints on the
pitch. The pitch is detected at 20 ms intervals throughout
the audio with zero pitch assigned to the detected purely
instrumental regions. Next, the pitch values in Hz are con-
verted to the cents scale by normalizing with respect the
concert tonic determined by automatic tonic detection [8].
This normalization helps match a query across concerts by
different artists. The final pre-processing step is to interpo-
late short silence regions below a threshold (80 ms which
is empirically tuned in previous studies [16,17]) indicating
musically irrelevant breath pauses or unvoiced consonants
by cubic spline interpolation so as to preserve the integrity
of the melodic shape.

3.2 Baseline system

Our baseline method is the “subsequence DTW”, an adap-
tation of standard DTW to allow searching for the occur-
rence and alignment of a given query segment within a
long sequence [13,26]. Given a query Q of length N sym-
bols and a much longer sequence S of length M (i.e. the
song or concert sequence in our context) to be searched, a
dynamic programming optimization minimizes the DTW
distance to Q over all possible subsequences of S. The
allowed step-size conditions are chosen to constrain the
warping path to within an overall compression / expansion
factor of 2. No further global constraint is applied. The
candidate subsequences of the song are listed in order of
increasing DTW distance to which a suitable threshold can
be applied to select and localize the corresponding regions
in the original audio. The time complexity of subsequence
DTW is O(MN) where N(M) is the number of pitch
samples corresponding to the query (song) duration (i.e. 50
pitch samples per second of the time series duration, given
that the pitch is extracted at 20 ms intervals) [2, 13, 28].
We see that the time-series dimensions contribute directly
to the complexity of the search. Our goal is to find com-
putationally simple alternatives to DTW by moving to low
dimensional string search paradigms. This requires prin-
cipled approaches to converting the pitch time-series to a
discrete symbol sequence, two of which are presented next.

3.3 Behavior based system

With a goal to preserve the characteristic shape of the
mukhda including the pitch transitions in the mapping to
the symbol sequence, we consider the approach of Tanaka
[25] who proposed “behavioral symbols” to capture dis-



Figure 3. Construction from a pitch time series of the BS
sequence (BSS) and the modified BSS.

tinct types of local temporal variation in a human motion
capture system. A melodic phrase can be viewed as a se-
quence of musical gestures by the performer, with a behav-
ioral symbol then potentially corresponding to a single (ar-
bitrary movement) in pitch space. A sequence of symbols
would serve as a sketch of the melodic motif. In Tanaka’s
system, the symbols are purely data-dependent and evolve
from the analysis itself [24, 25]. We bring in musical con-
text constraints as presented in the algorithm description
next.

The pitch time-series is segmented into fixed duration
windows centered at uniformly spaced intervals so that the
windows are highly overlapping as illustrated in Figure 3.
The pitch contour within each window is replaced by a
piecewise flat contour where each piece represents a fixed
fraction of the window. While Tanaka recommends nor-
malization of the pitch values within the window to [0,1]
range in order to eliminate vertical shifts and scaling be-
tween otherwise similar shapes, we omit this step given
that we are not looking for transposition or scaling invari-
ance in the mukhda detection task. The piece-wise flat sub-
segments are obtained by the median of the pitch values in
the corresponding subsegment. We choose median as op-
posed to mean [24] as it is less sensitive to the occasional
outliers in the pitch contour. We bring in further domain
constraints by using the discrete scale intervals for the
quantization of the piecewise sub-segments that describe a
specific behavioral symbol (BS). We obtain a sequence of
BS, one for each window position. Due to the high over-
lap between windows, repetitions are likely in consecutive
symbols. These are replaced by a single BS which step
brings in the needed time elasticity. Figure 3 illustrates
the steps of construction of the BS sequence (BSS) and
its repetition removed version (the modified BSS) from a
simulated pitch time-series.

The database is pre-processed and the symbol se-
quence representation of each complete concert recording
is stored. When a query is presented, it is converted to
its symbol sequence (which currently depends on the song
to be searched) and an exact sub-sequence search is im-
plemented on the song string. The choice of the fixed pa-
rameters: window duration, hop duration and number of
subsegments within a window turn out to heavily influence
the representation. The window duration should depend
on the time scale of the salient features (movements in

Figure 4. The two proposed systems of quantization,
namely: behavior based and pseudo-note systems.

pitch space). The subsegments must be small enough to
retain the melodic shape within the window. The hop of
the sliding window compensates for alignment differences
of the different occurrences of the template in the pitch
time-series of the song. We present “parameter settings”
for two configurations.
Version A: Fixed parameter setting (window = 126 sam-
ples, hop = 5 samples, # subsegments per window = 3)
Version B: Query dependent setting (window = (0.5 * N )
samples, hop = 5 samples, # subsegments per window = 4)

We present next an alternate approach to symbolic rep-
resentation of the pitch contour.

3.4 Pseudo-note system

An approximation to staff notation can be achieved by con-
verting the continuous time-series to a sequence of piece-
wise flat segments if the section pitches are chosen from
the set of discrete scale intervals of the music. If the
achieved representation indeed corresponds to some un-
derlying skeleton of the melodic shape of the phrase, we
could anticipate obtaining better matches across variations
of the melodic phrase. We address the question of how we
can bring domain knowledge into this transformation. As
we see from Figure 4, the continuous pitch contours cor-
responding to the phrases are not directly suggestive of a
specific sequence of raga notes given that raga notes are
embellished considerably when realized by the vocalist.
In Indian music traditions, written notation has a purely
prescriptive role and achieving the transcription of a per-
formed phrase to written notation requires raga knowledge
and much experience [19]. All the same there is a similar-
ity across the mukhda repetitions that we wish to capture
in our representation.

We consider a simple representation of the melodic
shape that features only the relatively stable regions of the
continuous pitch contours that lie within a musically valid
interval of a scale (raga) notes. The scale notes are detected
from the prominent peaks of the long-term pitch histogram
across the concert and the musically valid interval is cho-
sen to be within 35 cents [17]. This step leaves fragments
of the time-series that coincide with the scale notes while
omitting the remaining pitch transition regions. Next, a
lower threshold duration of 80 ms is applied to the frag-
ments to discard fragments that are considered too short to
be perceptually meaningful as held notes [16]. This leaves
a string of fragments each labeled by a svara (raga note
as shown in Figure 4 (right)). Fragments with the same
note value that are separated by gaps less than 80 ms are



merged. The resulting symbol sequence thus comprises
the scale notes occurring in the correct temporal order but
without explicit durational information. The database is
pre-processed and the symbol sequence representation of
each complete concert recording is stored. When a query
is presented, it is converted to its symbol sequence and an
approximate sub-sequence search is implemented on the
concert string based on an efficient string matching algo-
rithm with parameter settings that are informed by domain
knowledge as described next.

The similarity measurement of the query sequence with
candidate subsequences of the song is based on the Smith-
Waterman algorithm, widely used in bioinformatics but
also applied recently to melodic note sequences [11, 22].
It performs the local alignment of two sequences to find
optimal alignments using two devices. A symbol of one
sequence can be aligned to a symbol of the other sequence
or it can be aligned to a gap. Each of these operations has
a cost that is designed as follows.

Substitution score: In its standard form, the Smith-
Waterman algorithm uses a fixed positive cost for an ex-
act match and a fixed negative score for symbol mismatch.
In the context of musical pitch intervals, we would rather
penalize small differences less than large differences. We
present alternate substitution score functions that incorpo-
rate this.

Gap Function: This function deducts a penalty from
the similarity score in the event of insertion or deletion of
symbols during the alignment procedure. The default gap
penalty is linear, meaning that the penalty is linearly pro-
portional to the number of symbols that comprise the gap.
Another possibility, that is more meaningful for the melody
context, is the affine gap function where the gap opening
cost is high compared to the cost incurred by adding each
successive symbol to the gap [7]. This is achieved by a
form given by mx + c where x is the length of the gap
and m, c are constants. Intuitively, increasing c will penal-
ize gap openings to a greater extent, while increasing m
will have a similar effect with regard to gap extension. We
present different designs for the relative costs motivated by
the musical context.

With variations in each of the above two controls of the
Smith-Waterman algorithm, we obtain the following three
distinct versions of the pseudo-note system.
Version A: This setting is similar to the default Smith-
Waterman setting, with a distance-independent similarity
function that assesses a score of +3 for symbol match and
-1 for a substitution. Gap function is linear, with penalty
equal to symbol length of gap.
Version B: Substitution score that takes pitch difference
into account, i.e. Score of +3 for a match, 0 for symbols
differing by upto 2 semitones, -1 for substitution, and an
affine gap penalty with parameters m = 0.8, c = 1.
Version C: Query dependent settings where we use the set-
tings of B as default with the following changes for particu-
larly fast varying and slowly varying query melodic shapes
as determined by a heuristic measure of ratio of squared
number of symbols to query duration. We have the fol-

lowing parameter settings. (i) fast varying: Substitution
score of +1 to symbols differing by upto 2 semitones. Gap
penalty is affine with parameters m = 1, c = 0.5, and (ii)
slowly varying: Similarity score of -0.5 to symbols differ-
ing by upto 3 semitones. Gap penalty is affine with param-
eters m = 0.5, c = 1.5.

Finally, the Smith-Waterman algorithm has a time com-
plexity given by O(MN2) where N is the query length
in symbols and M is the song length [22]. By constrain-
ing the allowed gap length to be no longer than that of
the query itself (N), justified by the musical context, we
achieve a complexity reduction to O(MN).

4. EXPERIMENTS AND EVALUATION

We present experiments that allow us to compare the per-
formance of the different systems on the task at hand,
namely correctly detecting occurrences of the mukhda in
the audio concert given an audio query corresponding to
the melodic shape of the mukhda phrase. The queries are
drawn from a set of 5 mukhdas extracted from the early
part (first few cycles) of the bandish. The early mukhda
repetitions tend to be of the canonical form and hence cor-
respond well with an isolated query that a musician might
generate to describe the bandish. For the investigation of
a given method, we process the database to convert each
concert audio to the pitch time series and then to the cor-
responding string representation. Next, the query is con-
verted to the string representation and the search is exe-
cuted. The detections with time-stamps are listed in order
of decreasing similarity with the query as determined by
the corresponding search distance measure. A detection is
considered a true positive if the time series of the detec-
tion spans at least 50% of that of one of the ground-truth
labeled mukhdas in the song. An ROC (precision vs recall)
is obtained for each query by sweeping a threshold across
the obtained distances. The ROC for a song is derived by
the vertical averaging (i.e. recall fixed and precision aver-
aged) of the ROCs of the 5 distinct queries [4]. The perfor-
mance for each song is summarized by the following two
measures: precision at 50% recall and the equal error rate
(EER) (point on the ROC at which false acceptance rate
matches false rejection rate). We further present perfor-
mance of the best performing pseudo-note system on song
retrieval in terms of the mean reciprocal rank (MRR) [10]
on the dataset of 50 concerts as follows. We use the set of
the first occurring labeled mukhda of each song to form a
test set of 50 queries. Next for each test query, every song
is searched to obtain a rank-ordered list of songs whose
first 5 detections yield the lowest averaged distance mea-
sure to the query.

5. RESULTS AND DISCUSSION

Table 2 compares the performances of the various systems
on the task of mukhda detection in terms of the average
EER and average precision at a selected recall across the 50
songs where each song is queried using each of the first five
mukhdas. We also report the computational complexity



Figure 5. Histogram of the measure ‘Precision at 50%
Recall’ across the baseline and proposed methods.

reduction factor over that of the baseline method (given by
the square of the dimension reduction factor). To obtain
more insight into song dependence, if any, we show the
distribution of the precision values for the 50 songs set in
the bar graphs of Figure 5, one system for each category,
represented by the best performing one.

Method (version)
Mean Prc at 50% Rec

Reduc.
EER Mean Std.

Subseq DTW — 0.33 0.73 0.18 1

Behavior based
system

(A) 0.47 0.56 0.26
100

(B) 0.41 0.61 0.25

Pseudo-note
system

(A) 0.47 0.61 0.19
2500(B) 0.42 0.64 0.19

(C) 0.41 0.65 0.18

Table 2. Comparison of the two performance measures
and computational complexity reduction factor across the
baseline and proposed methods.

From Table 2, we observe that the baseline system rep-
resented by subsequence DTW on the pitch time-series
performs the best while the pseudo-note methods achieve
the best computation time via a reduction proportional to
the square of the reported dimension reduction factor (i.e.
50). We will first comment on the relative strengths of
these two systems, and later discuss the behavior based
system. We observe an improvement in performance of
the pseudo-note system with the introduction of domain
knowledge and query dependent parameter settings for the
subsequence search algorithm. From Figure 5, we see that
the subsequence DTW has a right-skewed distribution in-
dicating a high retrieval accuracy for a large number of
songs. However we note the presence of low perform-
ing songs too which actually do better with the pseudo-
note system. Closer examination of these songs revealed
that these belonged to ragas characterized by heavily or-
namented phrases. In the course of improvisation, the
mukhda was prefaced by rapidly oscillating pitch due to
the preceding context. This led to increased DTW distance
between the query and mukhda instances. The oscillating
prelude was absent in the pseudo-note representation alto-
gether leading to a better match.

The behavior based system was targeted towards captur-
ing salient features of the melodic shape of the phrase in a

symbolic representation. The salient features should ide-
ally include steady regions as well as specific movements
in pitch space that contribute to the overall melodic shape.
As such, it was expected to perform better than the pseudo-
note method which retains relatively sparse information as
seen from a comparison of the two representations for an
example phrase in Figure 4. However, the selection of the
duration parameters required for the time-series conver-
sion turned out to be crucial to the accuracy of the system.
Shortening the window hop interval contributed to reduced
sensitivity to time alignment differences but at the cost of
reduced compression and therefore much higher time com-
plexity. Further, the data dependence of symbol assign-
ment requires the query to be re-encoded for every song to
be searched, and further if query dependent window length
is chosen, the song must be re-encoded according to the
query. Future work should target obtaining a fixed dictio-
nary of symbols to pitch movement mappings by learning
on a large representative database of concerts.

Top ‘M’ hits Correct songs Accuracy

1 41 / 50 0.82
2 45 / 50 0.90
3 48 / 50 0.96

Table 3. Results of the song retrieval experiment.

Finally, we note the song retrieval performance of the
pseudo-note version C in Table 3. The mean reciprocal
rank (MRR) is 0.89. The top-3 ranks return 48 of the 50
songs correctly. The badly ranked songs were found to be
narrowly superseded by other songs from the same raga
that happened to have phrases similar to the mukhda of
the true song. This suggests the potential of the method in
the retrieval of “similar” songs where the commonality of
raga is known to be an important factor.

In summary, the melodic phrase is a central component
for audio based search for Hindustani music. Given the
improvisational nature of the genre as well as the lack of
standard symbolic “notation”, time-series based matching
of pitch contours provides a reasonable performance at the
cost of complexity. The conversion to a relatively sparse
representation by retaining only flat regions of the pitch
contour and introducing domain driven cost functions in
the string search is shown to lead to a slight reduction in
retrieval accuracy while reducing complexity significantly.
The inclusion of further cues such as the lyrics and rhyth-
mic cycle markers to mukhda detection is expected to im-
prove precision and is the subject of future research.
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