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Abstract

This project targets using state-of-the-art in automatic speech
recognition technology, coupled with new work in predicting
the relevant prosody ratings, to build an oral reading assess-
ment tool. A reliable automatic system can prove invaluable in
helping children acquire basic reading skills apart from facili-
tating the monitoring of literacy programs at large scale. In the
present work, we target middle-school learners of English as a
second language in a rural Indian setting. We present the design
and observed characteristics of our field-collected oral reading
dataset to outline the research challenges faced. Recently pro-
posed solutions to the training of robust acoustic models in the
face of limited task specific data are evaluated for the prediction
of the child’s word decoding accuracy and for achieved word-
level alignments for prosody scoring. A language model is de-
signed to exploit the known text and observed reading errors
while being flexible enough to adapt to new reading material
without further training. Based on a scoring rubric proposed by
a national mission on literacy assessment in India, we present
an automatic system that detects reading miscues and computes
fluency indicators at the sentence level which are then correlated
with fine-grained subjective ratings by an expert.

Index Terms: speech recognition, prosody, children reading,
human-computer interaction

1. Introduction

Recent exercises on cross-country assessment of basic literacy
and numeracy skills across primary and middle-school students
in India have revealed many disquieting facts such as the low
proportion of students who can even meet the expectations of
their grade-level [1]. Consistent with the finding that nearly
75% of fifth grade students cannot read second grade level texts
in rural India, several parts of the country continue to be vulner-
able to high school-dropout rates. Annual surveys undertaken
by ASER [1] to measure the literacy level of school children
follow a prescribed protocol executed by project volunteers vis-
iting schools across rural India. Using prepared texts of letter
and word lists, paragraphs and stories in the selected language,
they categorize each student in one of the 5 competency levels ,
viz. ‘story’, ‘paragraph’, ‘word’, ‘letter’ and ‘nothing’ based on
the observed word decoding accuracy and reading fluency. For
example, word-level mistakes corresponding to common mis-
pronunciations are ignored, and only 3 or more mistakes in a
paragraph reading would disqualify a child at the correspond-
ing competency level. The assessment of fluency is carried out
on the basis of whether the student reads the words in sentence-
style rather than like a “string of words”. Testing is carried out
in the regional language (medium of instruction in the school)
as well as in English due to the high demand for English as
a second language. We can easily see that any automation of
the reading assessment can contribute greatly to the efficiency
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and scale of the literacy testing procedure just described. Apart
from this, a system which can automatically evaluate the read-
ing skill of a child in terms of word decoding accuracy, fluency
and comprehension, also providing feedback, can alleviate the
root cause of the low literacy problem - the dismal teacher to
student ratio in rural schools.

There has been a fair amount of research on developing au-
tomated systems for reading evaluation and feedback using Au-
tomatic Speech Recognition(ASR) technology mainly by spe-
cific research groups contributing over the years [2], [3], [4],
[5]. Black et al. [2] focused on the reading evaluation of iso-
lated word lists for pre-school children. Other groups [3], [6],
[71, [4] have addressed the task of evaluating read sentences in
story context, sometimes including tracking the child in real-
time. The ASR technology used has traditionally been based
on GMM-HMM acoustic models. More recently, Deep Neu-
ral Network(DNN) based acoustic models have demonstrated
superior performances, especially with the availability of large
training datasets [8], [9], [10]. In the context of reading assess-
ment, the language modeling (LM) required in the ASR frame-
work typically makes use of the fact that the text to be read is
known a priori [3], [7]. Either N-gram LMs trained on the
story text [4], or, alternately, task-specific sentence-level LMs
[3] with appropriate parallel paths modeling specific miscues
are used.

Much of the research on technology for reading assessment
for children has focused on detecting reading miscues, i.e. word
decoding errors. Reading fluency, on the other hand, is indi-
cated by the prosody of speech rather than by misread words
[11]. Prosody refers to the supra-segmental aspects of speech.
It is linked to the smooth delivery of sentences with appropriate
chunking into phrases and the proper marking of word promi-
nence. Good prosody has been associated with successful com-
prehension [12]. Duong et al. [13] compute pitch, intensity,
duration and latency contours for each sentence as sequence of
average values per word. These contours of children’s speech
are correlated with corresponding contours of adult speech to
assess reading. To automate the scoring for spontaneous read-
ing by non-native children of age greater than 8 years, [14]
tries to combine aspects such as fluency, pronunciation, vocab-
ulary and grammar using various features based on - 1)silence
and reading speed, 2)acoustic model score, 3)part-of-speech
tags, and 4)number of idioms and/or meaningful phrases. In
FLORA [15], for assessment of expressive children reading at
paragraph (1-minute reading) level, an SVM classifier is trained
on an annotated corpus of children’s read speech using lexical
and filled-pause based features with prosodic features like pitch
and duration.

In the present work, we consider the automation of as-
sessment, at the sentence level, for a story reading task based
roughly on the scoring rubric provided by ASER [1]. We would
like to detect reading miscues such as target words that are
missed or incorrectly uttered, as well as the fluency in delivery.
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The reading miscues would ideally be based on the outcome
of ASR based decoding which provides a sequence of hypoth-
esized words best matching the acoustic utterance. A compari-
son of the target sentence text with the hypothesized words pro-
vides an immediate means to detect “mistakes” depending on
whatever definition of mistake we might choose. On the other
hand, prosodic cues extracted from the decoded word segments
can help us identify whether an utterance was read “like a sen-
tence”. Proper phrasing, including sentence ending, and correct
word prominences contribute to the perception of a meaningful
sentence form.

In the next section, we present the specific scenario of in-
terest, the ongoing field-data collection and manual labeling
methodologies. We discuss the characteristics of the data rel-
evant to the reading assessment task. Following this is a review
of the ASR framework with a discussion of the acoustic and
language modeling aspects. Next, we discuss the acoustic cor-
relates of the relevant prosodic cues and their implementation.
Finally, we evaluate our system in terms of its performance in
predicting reading miscues and sentence level fluency indicators
as obtained by manual ratings.

2. Database Design and Characterization

Our evaluation data is obtained from a rural middle-school set-
ting similar to our final target scenario. We restrict ourselves to
English as a second language, selecting suitable texts from read-
ily available animated video stories with text subtitling [16]. In
this section, we present the methodology for data collection and
labeling required for the development, tuning and testing of sys-
tem performance. We also discuss the characteristics of our data
to highlight our system design challenges and choices.

2.1. Data collection and ground-truth labeling

Encouraged by the potential of the project, a school in the tribal
belt of Western India, where a dialect of Marathi is the native
tongue, permitted us to organize oral reading sessions for stu-
dents of grades 5-8 (aged between 10 to 14 years) as a scheduled
activity in school hours [17]. An Android application presents
the story in video mode and the child can read and record on
a tablet with a headset microphone. The stories are displayed
in animated karaoke style, one sentence on each screen with the
corresponding subtitles highlighted word-wise at a normal read-
ing pace The tablet application also provides a “listen” mode
where the child can hear a narrator read along with the subti-
tles in a standard Indian English accent [18], [19]. The children
are encouraged to listen to the narrator audio before their own
recording session.

The sentence level segmentation of the recorded audio is
implemented using the karaoke video time-stamps. Manual
word-level transcription of each sentence-level audio recording
is carried out using a web-based GUI that facilitates marking
each displayed target word as one of correct/missed/incorrect.
‘Incorrect” words correspond to mispronunciations or substitu-
tions, which are transcribed in terms of phoneme sequences.
If the utterance/word is gibberish or otherwise undecipherable,
it is not transcribed. Hesitations or sound-outs before a word
are separately marked by a ‘Disfluency before word’ label.
Apart from word-level realizations, we also label the noise, if
any, that is audible into broad categories such as environmen-
tal sounds, breath and microphone noise. The second stage of
sentence-level annotation characterizes the speech delivery as-
pect in terms of the indicative prosodic events related to phras-

ing and prominence. Phrasing is rated on a 3-level scale as fol-
lows: the absence of chunking (1), some attempts at chunking
(2), and the correct grouping of words into phrases (3). Sen-
tence ending is marked separately as not realized (1) or real-
ized correctly (2). Finally, prominence is rated per sentence
using 3 levels: absence of prominence (1), some perceivable
word-level prominence (2), and prominence realized on the cor-
rect target words (3). This relatively fine-grained marking of
prosodic events was found to reduce the subjectivity in labeling
to a great extent. We therefore relied on the ratings of a single
English teacher, checked for consistency in randomly chosen
samples by one of the authors.

2.2. Dataset characteristics

While we try to ensure that there is no immediate source of
noise in the vicinity of the child who is recording, it is diffi-
cult to control the more distant noises such as children playing
and falling rain. For the present study, we consider the labeled
subset (about 20% of our overall field-collected data) that is rel-
atively free of background noise, disfluencies and untranscribed
gibberish; this comprises of 7 stories read by 68 distinct speak-
ers. We separate the data into groups based on story; then a
subset of 3 stories, considered the “test dataset”, is set aside
for all the system evaluation reported in this paper. The dis-
tribution of ground-truth word-level labels in this test dataset
(1371 utterances across 52 speakers spanning a duration of 64
minutes) is shown in Table 1 where the substituted words are
further partitioned into (i) predictable (i.e. acceptable) substitu-
tions such as common mispronunciations and word inflections,
and (ii) out-of-vocabulary (OOV) substitutions. We note that
close to 30% of the target words are incorrectly read (i.e. ei-
ther missed or substituted). Among the predictable substitu-
tions, widely observed substitutions were grapheme to phoneme
errors and replacement of English (L2) phones by native lan-
guage, i.e. Marathi (L1), phones. Observing the mispronuncia-
tions at word-level, we found that the children rarely substituted
the common function words. It was also observed that unfamil-
iar content words were more often replaced with OOV words
whereas the common content words were more likely to be re-
placed by inflected forms when misread.

Category Word distribution
Correct 5817 (69%)
. 1573 (19%)
Substituted | 5y 13 30, Predictable: 5.7%)
Missed 1039 (12%)

Table 1: Data characterization in terms of observed miscues
for the test set of 1371 utterances comprising 8429 words by 52
speakers across 3 stories

The remaining subset, comprising 978 utterances across 4
stories by 38 speakers (spanning a total duration of 58 minutes),
is used as task-specific adaptation data for the ASR acoustic
models. This dataset serves to tune the ASR acoustic models
trained on more general data to the target population speech
with its specific L1 influence. This data is partitioned in a suit-
able manner to ensure that the reported results always corre-
spond to both speakers and stories being non-overlapping in the
adaptation and test sets.

Prosody-based evaluation is reported on a subset of the test
dataset described in Table 1 derived as follows. We discard
story title-author utterances and further consider those utter-
ances of the remaining sentences that are devoid of omissions



(substituted words allowed). Apart from this, we reject text sen-
tences with less than 10 utterances in the dataset. This gives us a
total of 688 utterances across 40 unique sentences. Of these, 19
sentences comprise 2 or more phrases such that phrasal breaks
can be uniquely specified; further there are two question forms,
one a Wh-question, and the other yes/no. The 688 utterances
(total duration of 30 min) come from 52 speakers giving an av-
erage of 12 utterances per speaker. Table 2 displays the distri-
bution of subjective ratings for each of the 3 prosodic events
across the set of 688 utterances. Not all the attributes are rate-
able for all utterances, e.g. prominence for list-form reading.
Sentence endings are not rated for wrongly segmented utter-
ances. We note that a reasonable representation of the different
rating levels is available in our data. We further observe that
while most sentence endings are realized correctly, improper
phrasing (i.e. rating levels 1 or 2) is observed in 32% of the
cases. Word prominence is usually not realized at all (rating 1)
or placed on the wrong words (rating 2). We expect students
to give prominence on same words as narrator. It was observed
that sentences that ended with a prominent word were the most
prosodically challenging for the children.

Rating | Phrasing | Prominence SISEB‘;?:;
1 86 (13%) 261 (40%) 98 (16%)
2 124 (19%) | 295 (46%) | 511 (84%)
3 445 (68%) 90 (14%) -

Total 655 646 609

Table 2: Distribution of prosody ratings for the rateable utter-
ances (out of 688) of 40 unique sentences by 52 speakers

3. The ASR Framework
3.1. Acoustic Model Training Data

An important predictor of ASR performance is the quality of
training data in terms of how well it represents the expected
test data. Given the paucity of usable field data in the present
project, we present the considerations that have gone into creat-
ing suitable training data by more easily available means. Since
the test data is L1-influenced Indian English, we need acoustic
models representing both L1 and L2 phones. This motivated
the use of a phonetic inventory of 47 Hindi and English phones.
Hindi is chosen due to the availability of a Hindi dictionary and
its phonetic overlap with several Indo-Aryan languages includ-
ing Marathi. Considering that our target population is children,
we recorded a variety of English and Hindi text (200 distinct
phonetically rich sentences drawn from middle-school level ma-
terial) read by 30 fluent English and 11 fluent Hindi speakers
in the age group of 10-14 years who are students in an urban
school. A total duration of 5.27 hours of speech was transcribed
with minimal effort by rejecting utterances inconsistent with the
text in any way (as in [20]). The training speakers are not a com-
pletely homogeneous set due to the relatively large age range
apart from other speaker dependencies [21]. Most importantly,
the test data from the rural school children differs from the train-
ing data in both fluency and accent.

3.2. Acoustic Modeling

Due to their capacity for highly nonlinear classification, Deep
Neural Network (DNN) based acoustic models have been
shown to outperform conventional Gaussian Mixture Model
(GMM) based acoustic models on many speech recognition

tasks [22]. Two distinct modes in which DNNs are used for
acoustic modeling are the Hybrid and the Tandem mode. In
the latter, a deep network serves as a nonlinear feature extrac-
tor feeding into a conventional GMM-HMM back-end. When
speaker-normalized MFCC features are concatenated with the
extracted “bottleneck” features, and all features are speaker-
normalized by SAT, the resulting Tandem SAT matches or ex-
ceeds the performance of a Hybrid SAT system [23], [24],
[25]. The former further allows an additional beneficial stage
of model adaptation with task-specific data due to its GMM-
HMM back-end. The training procedure for the DNN Tandem
SAT models is provided below [25].

1. A baseline SAT GMM-HMM system was trained by es-
timating fMLLR transforms [26] for each speaker in the
training set using raw MFCC features.

2. Speaker-normalized features were generated by trans-
forming each speaker’s data through the estimated fM-
LLR matrix.

3. A DNN with a 40 dimensional bottleneck(BN) layer was
trained using these speaker-normalized features. This
was used to obtain lower-dimensional discriminative fea-
tures from the speaker-normalized features.

4. These 40 dimensional BN features were appended with
the speaker-normalized features obtained in Step 2 to get
“DNN Tandem SAT” features.

5. These features were used to train a SAT GMM-HMM
system using the same procedure as in Step 1.

Finally, we use MAP adaptation of the GMM means in our
DNN Tandem SAT model [27] with the task-specific adapta-
tion described in Section 2.2. The GMM-HMM model had
1000 context-dependent tied HMM states with 8000 Gaussians
shared across them. A single global speaker-specific fMLLR
transform is estimated for each speaker in the training set. The
decoding process used is the standard two-pass unsupervised
fMLLR decoding process which uses the first pass decoding
hypothesis of the SAT GMM-HMM system as the transcription
labels for speaker-specific transform estimation. During decod-
ing we estimate fMLLR transform at the speaker-story level.
The DNN architecture used for extracting BN features consists
of 6 hidden layers with 1024 neurons each with the penulti-
mate hidden layer replaced by a 40-dimensional layer to lower
dimensionality. It is trained using standard cross entropy loss
function on 40-dimensional speaker-normalized LDA-MFCC
features with the context of +/-5 frames. All hidden neurons
use the sigmoid activation function.

3.3. Language Modeling

To identify word-level miscues, the ASR decoder hypothesis
for an utterance must serve to indicate whether each of the text
words is omitted or uttered incorrectly. Since we consider only
omission and unpredictable substitutions (referred to as OOV
substitutions) of a word as mistakes, we would like to discrim-
inate between OOV substitutions and predictable substitutions.
A good language model would capture all the expected varia-
tions in an utterance from the known text with the appropriate
probabilities. To achieve our aim of detecting miscues, we use
a sentence specific LM with paths corresponding to the options
for each word (correct, omitted, substituted with a predicted
form or substituted with an OOV) with appropriate probabili-
ties. We choose fragment based modeling of OOVs [28] where



the fragments are phone sequences determined in a data-driven
way from an English and a Hindi dictionary [29], [30].

To assign probabilities to various parallel paths around each
target word, we use heuristics based on our more general ob-
servations of the story reading by children about dependence on
word category i.e. whether it is a function or content word (parts
of speech) and the complexity of the word, typically the length
in phones. For example, our observations indicate that func-
tion words are more likely to be missed rather than substituted,
whereas the reverse holds for content words. Compared with
function words and short content words, long content words
have a higher probability of miscues relative to correct utter-
ances. We use a set of heuristic probabilities for each of the
above word classes, and employ the probabilities assigned to
miscue (omission and OOV combined) relative to correct (in-
cluding predicted substitutions) to tune the achieved miscue de-
tection versus false alarm rate of the system.

3.4. Reading Miscue Detection

To evaluate the performance of the ASR system, we compute
the traditional measure, the Word Error Rate(WER). Here we
look for the precise word while considering a correct detection
of OOV by the fragment bigram model as a correct recogni-
tion. For the task of miscue detection however, we report the
results in terms of detection rate/recall (DR) and false alarm
rate (FAR) of miscues [2], [3], [7] in a 2-fold cross-validation
mode using the total adaptation and test data divided in a man-
ner such that there is no overlap of speakers or stories. A small
amount of data was kept aside as a validation set in each of
the 2 folds. This validation set was only used to tune the LM
weight and Word Insertion Penalty(WIP) in the ASR. The defi-
nition of miscue is motivated by [1] as including omission and
substitution by OOV. Also, since we are interested in obtain-
ing accurate alignments for the subsequent extraction of word-
level prosodic cues, we report our results on a location accuracy
based metric (as done in [28]). This is the fraction of words
in reference ground-truth (GT) alignments that have some hy-
pothesized word in decoder output whose both start and end
boundaries fall within +/- 50ms of the GT word. This metric
captures the information about alignments, useful for prosodic
evaluation, irrespective of underlying word. For the location
accuracy, GT boundaries were obtained by forced alignment
with the GT transcripts using MAP adapted DNN Tandem SAT
acoustic models.

The reported figures in Table 3 correspond to the test set
described in Table 1. We obtain an overall miscue detection
rate of 68% with false alarm rate close to 10% which is com-
parable to the reported performance of reading assessment sys-
tems built with significantly higher amounts of training data [3],
[31]. The analysis of errors of our system shows that our OOV
model (i.e. fragment bigram) sometimes eats up words adjacent
to actual OOVs indicating that further topological constraints
on phone/fragment bigrams may be warranted.

4. Prosodic Event Detection and Scoring

Duong et al. [13] uses correlation with measured adult speech
prosody features for the same text to assess the child’s read-
ing prosody. In the interest of a more general system, and also
given that our data is characterised by word omissions and sub-
stitutions, we prefer to base our automatic ratings on the known
generic acoustic correlates of prosodic attributes. Based on the
previous discussion of subjective rating of prosodic attributes
(phrasing, sentence ending and prominence) in Sec. 2.1, we
investigate acoustic features at the sentence level for the predic-
tion of subjective ratings. This is followed by a discussion of
the implementation and evaluation of the automatic scores on
the prosody test dataset.

4.1. Acoustic Cues

Correct phrasing refers to the grouping of words so as to indi-
cate phrase breaks between the correct groups as per the text. A
phrasal break can be expressed by a pause and/or a pitch reset
[32]. The latter refers to a large pitch difference (>15Hz) be-
tween end of a phrase and the start of the next [33]. Syllable
lengthening at the end of the phrase is also an important cue to
phrasal break perception [32]. It has been observed that number
of pauses with respect to the expected number as per the text,
mean and standard deviation of pauses and word-level average
syllable duration are important acoustic cues for the detection
of phrasing [11]. We observe in our data that students at begin-
ner level tend to read in list form. Besides monotonous pitch,
the list form reading may be perceived through relatively large
pauses between consecutive words and/or unusual lengthening
of every syllable in the sentence. Our observations show that if
the average syllable duration for each word is more than 300ms,
the utterance is perceived as list form (i.e. the lowest subjective
rating for phrasing). Sentence endings are typically cued by the
pitch contour slope and trend (rise, fall or flat) over the segment
corresponding to the final word[32]. Next, perceived promi-
nence depends on acoustic features at the word level such as the
RMS energy, average intensity, syllable duration, pitch span,
maximum pitch, average pitch, and pitch difference across ad-
jacent words [34], [35].

4.2. Implementation

The acoustic features required for automatic prosody ratings are
estimated at the word level using the segmentation provided by
the ASR decoder.

4.2.1. Feature Estimation

The pitch contour is estimated at 10 ms intervals across the ut-
terance using an autocorrelation based pitch detector over 20ms
Hamming windowed speech segments. Unvoiced regions are
detected based on low pitch salience and energy. The resulting
pitch contour is smoothened further based on [36] where the
complete pitch contour is divided into distinct continuous parts

Miscue
WER sub?ti(t)l:,tion Omission (O0V + Location
(%) Omission) Accuracy (%)
DR(%) | FAR(%) | DR(%) | FAR(%) | DR(%) | FAR(%)
20.9 35.0 4.9 83.7 67.9 9.9 84.7

Table 3: Miscue detection results on test set (Table 1) in terms of WER, DR/FAR and localization metric using MAP adapted DNN

Tandem SAT acoustic models



subject to the conditions: 1) the adjacent pitch values should
not deviate more than 12%, and 2) such continuity should exist
for at least 5S0ms. Octave errors are corrected by doubling or
halving small pitch regions appropriately wherever abrupt pitch
changes are observed. We also compute a short-time intensity
contour at 10 ms intervals across the utterance.

The ASR decoder hypothesis provides word onset and off-
set and intervening silence boundaries. For our work, silence
regions greater than 150 ms are deemed as ‘pause’ as in [11].
The number of pauses, mean and standard deviation of pauses,
and position of the pauses are calculated using the silence in-
tervals. In order to obtain the average syllable duration for a
given word, we divide word duration by number of syllables in
the hypothesised word. From the computed pitch and intensity
contours, we obtain the maximum value of pitch, mean pitch,
pitch span, standard deviation of pitch, RMS energy and aver-
age intensity for each word segment.

4.2.2. Prosodic Event Scoring

For phrasing estimation, we first check for “list form” reading.
For this, we appropriately threshold each of the following fea-
tures: at the sentence level, we consider number of pauses, stan-
dard deviation in pause durations and average syllable duration;
at word level, for words other than phrase-final words, we con-
sider the average syllable duration and pitch span. For the re-
maining utterances (i.e. those not falling in the “list form” cate-
gory), we search for the position where the pitch reset or pause
is observed. If all the candidates are found at the expected posi-
tions as per the target story text, we assign rating 3. If number
of phrasal breaks are more or less than the number of expected
pauses or if the break is at the wrong position, rating 2 is given.

In order to score sentence ending, pitch shape and span over
the last word are examined. The pitch shape is said to be ‘flat’,
if the pitch span across the word is less than 5 Hz. In all other
cases, the pitch shape is considered either rising or falling. For
the rating level 2 (correct ending), a rising shape is expected
for the yes-no question and falling otherwise [33]. In case the
pitch slope on last word is close to zero, the pitch declination
over the complete utterance is considered. If the latter exceeds
10Hz, sentence ending is rated correct.

For prominence prediction, we train a decision tree using
90 utterances with prominence on the correct words. We obtain
192 prominent and 254 non-prominent words in the training set.
The classifier uses the word-level features of mean pitch, stan-
dard deviation of pitch and pitch span, all normalized by aver-
age pitch at the utterance level. RMS energy and average inten-
sity are also normalized with sentence level RMS energy and
average intensity respectively. Average pitch difference among
neighboring words and average syllable duration per word are
other important features in the prominence classifier. We then
test words in the remaining utterances of the prosody test dataset
(utterances with subjective rating 1 and 2) using this classifier.
If any one word in an utterance is found to be prominent, we
assign rating 2 to the utterance; if no word is found prominent
in the whole utterance, it is marked as rating 1.

Phrasing | Prominence Slgzg?l:;e
PR(%) 57 55 47
RC(%) 71 57 72
Acc(%) 64 58 71

Table 4: Prediction of prosody ratings evaluated in terms of
Precision-Recall and Accuracy using decoder alignments of
prosody evaluation dataset from Table 2

4.3. Evaluation With Respect to Subjective Ratings

The automatically computed prosodic event scores are com-
pared with the corresponding subjective ratings at the sentence
level. Since the goal is to flag reading errors, we report our re-
sults in terms of precision-recall and accuracy(shown in Table4)
in the detection of reading errors for each of the three subjec-
tively rated events, viz. phrasing (where both rating levels 1 and
2 constitute reading errors), sentence ending and prominence
(where rating level 1 constitutes a reading error in each case).

The sentence ending reading error shows that we can rely
on pitch contour of the last word to determine the proper sen-
tence ending. Cases where the sentence ending error goes un-
detected are typically associated with the occurrence of final
word prominence. Another case that needs further investigation
is that of flat pitch ending, which sometimes gets perceived as
correct sentence ending.

Due to the interdependence of phrasing and prominence,
students tend to lengthen the syllables though maintaining
proper chunking of utterance. The higher average syllable du-
ration of the sentence then leads to poor phrasing decision (rat-
ing 1) by our system. Some other false alarms arise from im-
proper word segmentation by the decoder due to the confu-
sion of recording noise, breath noise, fillers like ‘ummm’ with
phones in adjacent words. This shows that syllable duration
and pause related features obtained by our ASR may need re-
finement for phrasing.

In the prominence estimation, syllable duration lengthen-
ing is found to be the most important feature followed by pitch
span, RMS energy, and change in average pitch across adja-
cent words. The pitch span feature is expected to be large for
a prominent word. However, for the last word in a sentence,
we expect large pitch decline for sentence end realization, and
hence large pitch span. Same is true for standard deviation of
pitch. The overlapping characteristics of sentence ending and
prominence on final word need to be addressed with better fea-
tures. Further, if even a single word is wrongly marked promi-
nent, the sentence-level decision is affected. Finally, we note
that errors in pitch estimation arising from the challenges of
signal quality and pitch range can affect the accuracy of the au-
tomatic prosodic event ratings.

The whole set of experiments for prosody evaluation is re-
peated with word-level alignments obtained from known anno-
tated ground truth transcription. The results are quite similar
suggesting that the decoder hypothesis are reliable enough for
prosody features estimation.

5. Conclusions

We presented ongoing work on the development of a reading
assessment system with a discussion of our field data collection
and labeling methods. We defined reading errors to match the
expectations of a specific literacy monitoring project in terms
of word decoding accuracy and fluency. An ASR framework
was used to detect word omissions and substitutions, as well as
to obtain word-level segmentation for prosodic events of inter-
est. We achieve reasonable accuracy on detection of reading
miscues and on the prosody attributes related to phrasing and
sentence-ending detection. Word prominence detection needs
further work. Future work is targeted towards training and test-
ing with larger datasets on possibly more diverse speakers and
environmental conditions.
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