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Abstract—Recordings of read-aloud stories by children in a
school setting can be used to provide an assessment of reading
skills via automatic speech recognition (ASR). ASR, however,
is known to be highly susceptible to background noise. The
unusual variety of foreground (breath release, mic pops, etc.)
and background (children playing, distinct background talker,
wind, etc.) non-speech sounds makes this application particularly
challenging. Motivated by the observation on real-world data that
close to 50% of the recorded audio comprises purely non-speech
activity, we investigate robust approaches to voice activity detec-
tion to eliminate non-speech segments to the extent possible prior
to ASR. We have exploited energy-based and harmonicity-based
features coupled with suitable temporal smoothing constraints in
a two-pass noise preprocessing system. A discussion of the voice
activity detection performance of the system is presented with
reference to the characteristics of the noise types.

I. INTRODUCTION

It is well known that in India's large rural population,
millions of children complete primary school every year with-
out achieving even basic reading standards[1]. Since reading
competence enhances overall learning by enabling the child to
self-learn various subject material from the vast available text
resources, the importance of imparting reading skills in early
school cannot be overstated. Automatic literacy assessment is
one of the promising applications of ASR systems. It will
make learning more interactive and teaching more efficient
with reliable feedback from the assessment system. A story
reading task based Reading Tutor App [2] on an Andriod
tablet, has been deployed in one such resource-constrained
rural region near Dahanu Taluka in Maharashtra for 10 to
14-year-old students, which also serves the purpose of task-
specific data collection for the LETS project [3][4].

Over the past few years, there has been a considerable
progress in the field of ASR. This has resulted in highly
accurate performance for specific tasks in constrained envi-
ronments. However, noise has been long since known to be
deleterious to ASR performance unless rightful measures are
employed. Unaccounted non-speech segments used in training
can corrupt the acoustic models, and can further lead to
increase in misdetections during recognition. In a recording
environment, like ours, unaccounted conditions, spontaneous
speaking styles, and the quality of the recording microphone
can also distort the speech signal. The data obtained from
rural settings is susceptible to a variety of noise due to an

uncontrolled acquisition process. Noisy data adds to the train-
test mismatch, and thus it is really important to appropriately
deal with it either before or during the recognition task. A
robust ASR system is an absolute necessity for our task as
a single false negative can demotivate the child and hamper
his/her trust in the tutor application.

There exist a variety of methods in the literature[5] which
deal with noise at the ASR system level: (i) robust feature
extraction, (ii) model adaptation, (iii) multi-condition training,
(iv) joint model training. The presence of many varieties of
noise with limited data makes noise/noisy speech modeling
techniques critical to the task. Long non-speech regions dete-
riorate the ASR performance with too many word insertions
as we don't have good noise models. This motivates the need
to focus on non-speech segments detection so that most of the
irrelevant information can be thrown out in the pre-processing
part and ASR system can focus more on phonetic acoustic
models without worrying about modeling every kind of noise.

In this work, we have focused on tackling noisy/non-speech
data at the pre-processing level. We also come across a lot
of unusable recordings due to extreme levels of noise in the
background and it would be helpful to implement an online
method which detects noisy environment and flags it. This will
ensure that reader's effort is not wasted.

The organization of the paper is as follows. Section II
explains the database under consideration in this study and
annotation guidelines used for evaluation purpose. Section
III categorizes and provides a detailed review of existing
methods for noise pre-processing. Section IV proposes a way
of handling selected types of non-speech sounds. Section V
discusses the results of the proposed method. Section VI
presents conclusion and future work.

II. NOISE CHARACTERISTICS AND DATASET

The database collected for the project exhibits the presence
of a variety of foreground and background non-speech sounds.
These recordings are collected at 16 kHz sampling rate using
a headset mic connected to the tablet. All the proceeding
discussion and analysis is done on 19 audio files with an
average duration of 142 seconds, which are believed to be
good representatives of all types of noise and have been
labeled manually for the ground truth decision. The major
ones have been listed in table I. School noise is a broad
category which includes distant speakers, children playing,978-1-5090-5356-8/17/$31.00 © 2017 IEEE
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paper shuffling, distant indistinct sounds. Background talker is
a term used for background speaker who is distinctly audible,
and babble refers to one or more distant speaker(s). Rain,
school noise, generator, children playing sounds are always
relatively long-lasting, whereas, bell, mic noise, breath release
are always intermittent. Rest of the types may fall into either
category. Table II presents a detailed distribution in terms of
duration of non-speech sounds in 4 out of 19 files and the
diversity of noise-types across different recordings is visible.
Breath release and wind have been clubbed as they have
similar characteristics. Bell and mic type sounds have not been
accounted for in this table, they constitute 2-4% on an average.
But, given the intermittent and time-localised nature of such
sounds, low representation does not imply a low number
of instances of such sounds. In the presence of overlapping
noise types, only the most significant type was accounted for,
based on the pre-defined set of priority rules. The following
observations have been made from the noise characteristics
distribution across the dataset:

• 51% of the test data is comprised of non-speech segments
• Most common noise types are rain, school noise, mic

pops, breath release

Noise
Type Characteristics

BT Speech-like
Bell High pitch, and stationary
Rain White noise-like spectral characteristics

Mic pop Dense spectrum for a very short time
duration

Babble Speech-like, less prominent than BT

Generator Low pitch, steady harmonics with
constant amplitude

Wind, BR Varying amplitude, no pitch
School
noise

Highly varying amplitude as well as
spectral characteristics

TABLE I: Characteristics of various noise types encountered in the
database. BT: Background Talker, BR: Breath Release.

Audio
Duration

(s)

Rain
(%)

SN
(%)

BR,W
(%)

BT
(%) Speech

(%)
130.8 7 28 2 0 57
149.4 54 2 0 0 43
158 0 20 22 0 39

135.3 0 38 0 27 35
TABLE II: Categorization of representative test database as per non-
speech sound types.SN: School Noise, BR: Breath Release, W: Wind,
BT: Background Talker.

III. LITERATURE REVIEW

Voice Activity Detection (VAD) refers to the problem of
distinguishing foreground speech segments from background
noise in an audio stream. Along with segregating speech and
non-speech regions, it is also important to appropriately deal

with speech segments which have overlapping background
noise. The more we can deal with various noise types at
preprocessing step, the better it is for ASR performance. But,
it has also been observed that speech enhancement techniques
introduce distortions[6], which degrade recognition accuracy.
So, our focus in the present work is to segregate the non-
overlapping speech and noise regions before we delve into
speech enhancement techniques.

Signal parameters like energy[7], ZCR[7], cepstral
coefficients[8], wavelet[9] and spectral features are used for
differentiating speech and non-speech. These parameters are
usually checked against some fixed or adaptive threshold[7],
the latter being more robust against changes in environmental
noise levels. Its evaluation is specific to the cocktail party
problem. Another measure, long-term spectral variability
(LSTV), computed over long windows, has been recently used
which compares stationarity of the speech and non-speech
signal[10][11]. Different long-term properties of speech
(spectral shape, spectro-temporal modulations, harmonicity
and long-term spectral variability) have been compared using
MLP classifier[12]. Some other machine learning methods
like artificial neural network, sequential GMM, deep belief
neural network, boosted DNNs are also used for VAD. These
methods are known to improve performance at the cost
of the quantity of training data required, and dealing with
unexpected noise types becomes challenging as they need to
be trained on a good amount of noise-specific data.

Usually, strong thresholding of energy tends to reject weak
speech clippings. Different VAD methods nowadays are ac-
companied by hangover schemes to help retain the low en-
ergy starting and trailing segments. Conventionally, hang-over
algorithms usually adopt a scheme that delays the transition
from speech state to noise state[13]. The idea that consecutive
occurrences of speech frames exhibit strong correlation, has
been expressed by modeling the sequence of frame states as
first-order Markov process in [14].

Robust VADs are also used in standard algorithms for
speech compression and coding, like G.729 [15], AMR1 [16]
and AMR2 [16]. G.729 uses four different parameters - the
full and low-band frame energies, the set of line spectral
frequencies (which are Linear Predictive Coding (LPC) coef-
ficients), and zero crossing rates compared against long-term
running averages. AMR (Adaptive Multi Rate Audio Codec)
compares long-term energy estimates at different frequency
sub-bands and also checks the presence of pitch or tone
in these subbands. AMR being one of the state-of-the-art
methods, we have used AMR2-VAD results as the benchmark
for evaluation of proposed algorithm.

Given a limited dataset and a large variety of noise
types, we have preferred the heuristic-based methods. As
our data is collected using a close-talk microphone, the
speech segments tend to have comparatively high energy. So,
we have implemented an energy-based algorithm with adap-
tive threshold[17]. Along with this, we have incorporated a
harmonicity-based method[18]. We were eventually benefitted
by combining results of these two complementary parameters



through a two-pass system.

IV. IMPLEMENTATION OF VAD
A typical VAD system consists of two core parts: a feature

extraction and a speech/non-speech decision mechanism. The
first part extracts a set of parameters from the signal, which are
used by the second part to make the final decision, based on a
set of rules. Most of the VAD algorithms discussed in section
III have targetted a specific noise type/characteristics, but given
the diverse nature of non-speech sounds in our task, we are
compelled to use a combination of features in order to come
up with a generic algorithm. Here on, we refer to speech(1)
detected as non-speech(0) as misdetections and non-speech(0)
detected as speech(1) as false alarms. We have aimed to attain
a low false alarm rate at a misdetection rate tolerance, decided
by our benchmark algorithm. All the decisions are made on
10 milliseconds frame length.

A. Adaptive Linear Energy-based Detector (ALED)

Sakhnov et al.[17] have proposed an energy-based method
which adapts the energy threshold on the occurrence of
every detected non-speech frame. The threshold is updated
as a weighted average of current threshold and most recently
classified non-speech frame energy. The weight depends on
the change in noise variance across time as observed from the
ratio r = σnew

σold
. Here, σnew and σold are noise variance values

calculated from a fixed length buffer of recently detected non-
speech frames. More the ratio r, more the change in noise
variance and hence more weight is given to the energy of the
current frame. The exact value of weight, p, used is as per
the look-up table III. The threshold thus adapts according to
the varying noise statistics. The threshold is initialized as an
average of the frame-level short time energy for the first 4
seconds of the audio. For our task, it is reasonable to assume
that first 4 seconds will always be background noise.

Ratio Value of p

r ≥ 1.25 0.25

1.25 > r ≥ 1.10 0.20

1.10 > r ≥ 1.00 0.15

1.00 > r 0.10

TABLE III: Value of p depending on r = σnew
σold

. Look-up table for
algorithm1 (ALED)

However, the threshold does not change on detection of a
speech frame. Hence threshold goes on decreasing as more
number of low energy noise frames add to the noise frame
buffer. Instances were observed where the threshold reached a
value lower than most of/all the subsequent non-speech frames
and then a large chunk of the recording ended up getting
misclassified as speech. As a correction measure for this, we
modified the original algorithm to keep a tab on the length
of segment getting classified as speech. For the story-reading
task, the continuous speech was observed to be not more than
2.5 seconds; so if the detected speech segment becomes longer
than this we reset the threshold, and resume the algorithm
from beginning of the on-going speech segment. Algorithm 1
provides the details of modified ALED.

Algorithm 1 ALED Algorithm

1: Initialize k, speechLengthThreshold, Eth,0, winSize,
bufferSize, fixedLengthBuffer, j, prevVar

2: while j < numberOfFrames do
3: if Ej > kEth,j then
4: decision[j]← 1
5: length← length + 1
6: if length = 1 then
7: tap← j− 1

8: if length > speechLengthThreshold then
9: j← tap #Pointer for threshold reset check

10: Eth ← hardThreshold #Resetting Threshold
11: else
12: length← 0
13: decision[j]← 1
14: update fixedLengthBuffer
15: var← variance (buffer)
16: ratio← var

prevVar
17: p← look-up-table (ratio)
18: Eth,j+1 ← (1− p).Eth,j + p.Esilence,j
19: prevVar← var
20: if Eth,j+1 > hardThreshold then
21: hardThreshold← Eth,j+1

22: j← j + 1

For a proper threshold, the speech segments seldom get
misclassified as silence/non-speech but at the cost of too many
false alarms. The trade-off between misdetection rate and false
alarm rate can be clearly observed from the DET(Detection
Error Tradeoff) curve in figure 1 for k (threshold scale
parameter) as varying parameter. We note a 20% equal error
rate (EER).

Fig. 1: Detection Error Tradeoff Curve for ALED

B. Zero Frequency Filtering (ZFF)

Another conventional feature widely used in VADs is har-
monicity. We use zero frequency filtered signal[18] of the
given signal. Pitch is the outcome of impulse train from source
and its effect is spread over all frequencies. Zero frequency
filtering helps efficient extraction of this information neglect-
ing the effect of formants. The zero frequency filtered signal



is obtained by passing the original speech signal through a
cascade of two 0-Hz resonators followed by mean subtraction.
The 0-hz resonator can be considered equivalent to the double
integration of the signal. The output of the 0-Hz resonator
is exponentially growing or decaying, making it difficult to
capture discontinuities caused by pitch impulses. So, mean
subtraction needs to be performed at the frame level, where
average DC value of a frame is subtracted from all the samples
of that frame.

The frame-level normalized first order correlation coefficient
of the ZFF signal is found to be high in the voiced speech
regions of foreground speech as compared to other regions.
This value is then compared against a fixed threshold, as the
ZFF signal is almost constant at the voiced regions as can be
seen in figure 2. A detailed discussion of results has been done

Fig. 2: Normalized First Order Autocorrelation Coefficient of ZFFS.
Red boxes denote the regions of BR (non-harmonic), thus showing
a drop in the corresponding correlation plot.

in section V. ZFF is a harmonicity based method and except
for background talker, generator, and bell, almost all noise
types are weakly harmonic as compared to voiced speech. So,
it is less likely that a non-speech frame will get misclassified
as speech.

C. Proposed Two Pass System

1) Temporal Smoothing: The decision output of these two
methods was observed to have a large number of very small
silence (≤ 200 ms) and speech spurts (≤ 100 ms), intro-
duced because of the sensitivity of the algorithms. Temporal
smoothing (TS) was implemented in order to deal with such
occurrences. We do an online updating of the raw decision out-
put by classifying a small pause as its neighboring decisions.
Taking all these points into consideration, a temporal smooth-
ing algorithm (discussed in algorithm 2) was developed. It
was individually applied on the ALED and ZFF decision
outputs and improvement was observed in terms of both the
misdetection and false alarm. In the algorithm 2, ALED or
ZFF decision is referred to as ‘rawDecision’.
1) ‘segment’ refers to an alternating 0,1 array, where all the

frame-level contiguous zeros(ones) are mapped to a single
zero(one),

2) ‘noFrames’ refers to an array having time duration of each
segment in milliseconds,

3) ‘update’ function modifies the above two arrays after
every iteration so that ‘segment’ retains its alternating 0,1
property.

Algorithm 2 Temporal Smoothing Function

1: function TEMPORALSMOOTHING(rawDecision)
2: j = 0
3: [segment,duration] = convertFtoS(rawDecision)
4: totalSegments = length(segment)
5: while j < totalSegments do
6: N = duration[j]
7: if (segment[j] = 1 and N ≤ 100) then
8: segment[j]← 0
9: update(segment,duration)

10: if (segment[j] = 0 and N ≤ 200) then
11: segment[j]← 1
12: update(segment,duration)
13: totalSegments = length(segment)
14: j← j + 1

15: decision = convertStoF(segment,duration)
16: return decision

2) Hangover: Output of the above two methods after
temporal smoothing was individually observed as Praat text
grid along with audio. Most of the speech part that ALED
had missed constituted undetected trailing speech edges at the
start and end of detected speech segments. These regions were
missed by ZFF approach too. One way to handle this is using
hangover to delay the transition from speech state to noise
state and vice versa.

A very naive way to do this is to declare some part (100ms
in our case) before and after the detected speech segment to
be speech. If the decision originally has high false alarms,
then implementing hangover will worsen false alarms by a
large amount. So, it is better to implement hangover scheme
on the decision which has low false alarms, which would be
ZFF in our case. Hangover was implemented on ZFFS after
temporal smoothing as it reduced false alarms, and lesser the
false alarms in the original decision better will be the results
after adding hangover extensions.

3) Decision Logic: Motivated by the above, a higher mis-
detection rate for ALED was allowed so that we get reduced
false alarm rate and the lost speech frames in the process can
be recovered from (ZFF+TS+hangover) scheme. In a nutshell,
we used the frame-level decisions obtained independently
by (ALED+TS) and (ZFF+TS+hangover) and then logically
ORed these two decisions to get the final decision, considering
logic ‘1’ as speech and logic ‘0’ as non-speech. Improvements
observed have been discussed in the next section in detail.

V. RESULTS AND DISCUSSION

We have used standard AMR2 VAD as a benchmark for
comparing our results. The source code from standard speech



codec[19] was used for validation of our audio files. Frame-
level misdetection rate and false alarm rate have been used as
an evaluation metric [9][10] and the weighted average across
the duration of all the audio files has been reported.
• Misdetection rate = Number of speech frames detected as noise

Total number of speech frames in ground truth

• False alarm rate = Number of noise frames detected as speech
Total number of noise frames in ground truth

Summarizing the pros and cons of ZFF and ALED in terms
of error metric:
• Accuracy of ALED output depends on the value of k used;

we can aim for either low misdetection rate or low false
alarm rate at the cost of other depending on our application.

• ZFF approach gives a low false alarm for detected speech
frames and so chances of any of non-speech frames getting
misclassified as speech are very less. Thus, we can rely on
ZFF-classified on speech segments.

Table IV presents the results for ALED, ZFF and the proposed
two-pass algorithm discussed in implementation part. It also
includes the benchmark obtained via AMR method. Low mis-
detection and false alarm rates are desired, but for comparison
with the benchmark we measure the false alarm rate of the
proposed method at misdetection rate of AMR (7%). So, in
the case of modified ALED, the tunable parameter k was set
such that the desired misdetection rate is achieved for false
alarm rate comparison.

Fig. 3 presents a 10-second excerpt from one of the sound
files in the dataset as observed in Praat software. The green
curve stands for the intensity (dB) and the blue one for pitch
(Hz) obtained using Praat. Except for tier 1, the tiers represent
the decision outputs of all the methods listed in table IV and
are numbered in the same order. Tier 1 intervals represent
the manually labeled ground truth decisions. Speech segments
are annotated using numerals, while non-speech segments use
noise type name in tier 1 and ’SIL’ in tier 2 to 7.

Sr. No. Method Mis-detection rate False alarm rate

1 AMR 7 % 39 %
2 Modified ALED 22 % 18 %

3 Modified ALED +
TS 13 % 15 %

4 ZFF 40 % 7 %
5 ZFF + TS 29 % 5 %

6 ZFF + TS +
Hangover 16 % 9 %

7 Two-pass 7 % 22 %
TABLE IV: Evaluation of proposed and benchmark algorithms on
our dataset

Following implications can be made from the table IV and
figure 3:
1) How does two-pass help over ALED?

(interval 14 of tier 1 - yellow box)
• Tier 2 shows that some speech segments got misdetected

by ALED because of intensity variation within the
speech utterance.

• Temporal smoothing does help remove very short dura-
tion misdetections (evident as we go from tier 2 to 3 for
ALED and from tier 4 to 5 for ZFF) but still leaves out
some longer misdetected segments.

• The final two pass output (tier 7) is better at detecting
speech segment than original ALED as well as ZFF.

2) How does two-pass help over ZFF?
(interval 15 of tier 1 - red box)
• From the previous points it might seem that using just

method 6 should be sufficient. But it can be seen in tier
6 that this method alone cannot always extract all speech
segments. It has been observed to give a false alarm rate
of 40% at the benchmark misdetection rate of 7%.

• If we had directly taken tier 6 decision here, the unvoiced
sound in the middle of this interval would not have
got detected as speech; thus considering ALED-detected
speech frames as well helped in the two pass.

3) Drawback of the proposed system
(intervals next to interval 12 and 13 of tier 1 - magenta
boxes)
• Here, we can see instances where ZFF (tier 4) has

detected the non-speech part correctly (as also explained
by its small false alarm rate), and ALED did not. But
because of decision ORing logic, non-speech segments
got misclassified as speech.

• This is one of the major pitfalls of the proposed method.
Thus, summarizing the observations in terms of error metrics,

• Temporal smoothing helps reduce misdetections as well
as false alarms in case of both ALED and ZFF, thus
giving an overall improvement.

• Two pass system (method 7) gives 6% improvement in
misdetection rate over (ALED+TS) (method 3) justifying
that most of the frames missed by ALED were in fact near
starting and trailing edges of detected speech segments.

• Same is valid for ZFF as well and is clear from the
misdetection improvement when the hangover is applied
to ZFF (from method 5 to method 6).

• Increase in false alarm from method 5 to method 6 can
be attributed to the presence of non-zero false alarm rate
in the former; hangover adds frames to falsely detected
speech frames as well, thus further increasing the false
detection.

On further analysis of sources of misdetection and false
alarms, the following observations were made when method 3
was compared with method 7:

• Major improvement in misdetection was observed in files
with heavy rain noise. This can be explained as the energy
of heavy rain would be higher than the energy of trailing
edges, and hangover helps recover the lost frames which
are in fact speech.

• False alarm degrades largely because of background
talker cases. This is clear from the fact that ZFF will
show high periodicity for distinct background speech,
thus adding to the false alarms in two pass as well.



Fig. 3: Objective analysis and comparison of different methods; topmost tier is the ground truth

VI. CONCLUSION AND FUTURE WORK

Our aim is to pre-process noisy speech before giving it
to the ASR engine so that it does not have to go through
extra modeling and adaptation schemes to accommodate for
noise-induced mismatch and can focus on already challenging
tasks of handling accented speech, mispronunciations, and
disfluencies. Though we have been able to achieve an im-
provement of about 17% over the standard AMR, we require
yet lower misdetections and false alarms for it to make an
improvement in terms of ASR accuracy. Moreover, even if
we are able to successfully classify speech and non-speech,
segments with overlapping noise will still be an issue for the
ASR. Either speech enhancement as a pre-processing step or
noise-robust ASR techniques would be a possible way to tackle
this problem.

Stationary noise occurrences of rain, generator and time-
localised short duration noises like mic-type sounds, were
reliably detected. However, background talker, school noise
have been the most challenging noise types. We look forward
to using better thresholding and hangover schemes for ZFF to
enhance the performance. Also, as the algorithm is validated
on a small dataset, the results might not be scalable. With more
labeled data we will move over to classifier-based methods
with additional features incorporated along with present fea-
tures. Spectral shape, modulation frequency, signal variability
are some of the features which look promising and will be
tried out. We can also explore the advantage of using similar
features in multiple spectral bands.
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