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ABSTRACT

Motivated by musicological applications of the four-way
categorization of tabla strokes, we consider automatic clas-
sification methods that are potentially robust to instrument
differences. We present a new, diverse tabla dataset suit-
ably annotated for the task. The acoustic correspondence
between the tabla stroke categories and the common pop-
ular Western drum types motivates us to adapt models and
methods from automatic drum transcription. We start by
exploring the use of transfer learning on a state-of-the-art
pre-trained multiclass CNN drums model. This is com-
pared with 1-way models trained separately for each tabla
stroke class. We find that the 1-way models provide the
best mean f-score while the drums pre-trained and tabla-
adapted 3-way models generalize better for the most scarce
target class. To improve model robustness further, we in-
vestigate both drums and tabla-specific data augmentation
strategies.

1. INTRODUCTION

Tabla, a ubiquitous part of the North Indian art music en-
semble, comprises two drums that can be struck singly or
together with a variety of articulations to give rise to se-
quences of individual and compound strokes of changing
timbre, termed bols. With a set of between 10-20 distinct
tabla bols (depending on playing style) found in practice,
the bols have been traditionally viewed as single entities
of different timbres, and tabla transcription addressed as a
monophonic timbre recognition problem [1].

The earliest work on tabla transcription was reported
by Gillet et. al. [2] who modelled stroke spectra by a 4-
mixture Gaussian Mixture Model for 10-category classifi-
cation using Hidden Markov Models (HMM). Chordia [3]
extended this work by targeting a larger, more diverse
dataset, and using neural network (NN) and tree-based
classifiers to categorize strokes based on spectral and tem-
poral envelope features. Both works mention the difficulty
of generalizing across instruments, and report lower scores
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on tabla sets not seen in training. Later work [4] used
frame-level mel-frequency cepstral coefficients (MFCC) to
capture bol timbre in an HMM model in a classification
task on a single tabla set. More recent works that make use
of NN and tree-based bol classifiers [5–8] are restricted ei-
ther in their use of small datasets, or the absence of any
instrument-independent performance evaluation.

An important taxonomic level for tabla sounds is based
on which of the two drums is struck and the manner of
striking, giving rise to the three classes: resonant treble
(right drum), resonant bass (left drum), and damped (either
drum); the right & left are with respect to a right-handed
player. That is, the specific manner gives rise to either a
damped stroke with a sharp and short-duration sound or
a pitched (resonant) stroke with ringing sound, which can
further be pitch modulated in the case of the left drum. The
different timbres of the tabla bols are obtained by individ-
ual or combinations of basic strokes, with the combina-
tion of resonant bass and treble (resonant both) being es-
pecially important. In the archetypal drum pattern known
as the theka, subsections of the rhythmic cycle are chiefly
discriminated by the presence or absence of right and left
drum resonant strokes [9,10]. The associated classification
has been useful in the empirical analyses of tabla accom-
paniment in khyal vocal performances [11]. Motivated by
the musicological applications of the above categorization
of tabla sounds, a 4-way stroke classification task was pre-
viously defined exploiting the acoustic characteristics of
the strokes [12]. A training dataset of labelled tabla solo
recordings was created to train a random forest classifier
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Figure 1: Spectrograms of samples (at fs=44.1 kHz) of the
3 basic tabla strokes(top) and drum types(bottom). Note
the similarity between (a) Resonant Bass & (d) BD, (b)
Resonant Treble & (e) SD, and (c) Damped & (f) HH
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Category Bols Bass Treble Drumkit

D
Ti-Ta, Te-Re, Tak,
Ke, Tra, Kda

D/Nil D/Nil HH

RT Na, Tin, Tun, Din D/Nil R SD
RB Ghe, Dhe, Dhi, Dhet R D/Nil BD
B Dha, Dhin R R BD+SD

Table 1: Tabla stroke categories, corresponding bols,
constituent stroke types (Resonant/Damped/none) on each
tabla drum, and western drum equivalents. D - damped, RT
- resonant treble, RB - resonant bass, B - resonant both.
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Figure 2: Distribution of stroke categories in our dataset.

with a large set of stroke specific acoustic features, which
was then evaluated on a tabla accompaniment test set.

In this work, we recognise the similarity of the reduced
category tabla stroke classification problem to the auto-
matic drums transcription (ADT) task with its consider-
able published work focused on transcribing the 3 main
percussion instruments in Western popular music – bass
(BD), snare (SD), and hi-hat (HH) [13, 14]. Figure 1 il-
lustrates the correspondence of these drums with the bass,
treble, and damped tabla strokes, respectively. Starting
with segment-and-classify approaches based on extracting
suitable acoustic features for classification from automati-
cally segmented drum tracks using onset detection, more
recent methods for ADT adapt deep-learning based on-
set detection models, trained to directly predict the instru-
ment along with its onset location [14]. We extend previ-
ous available work on 4-way tabla stroke category detec-
tion to use recently proposed convolutional neural network
(CNN) models comprising the state-of-the-art in ADT.

Our chief new contributions include significantly ex-
panding the available training dataset of tabla solo record-
ings with new instruments, and investigating CNN archi-
tectures from ADT literature for the tabla stroke classifica-
tion task. In an attempt to alleviate training data scarcity,
we explore domain adaptation or transfer learning with an
available pre-trained multiclass CNN drums model [15].
To counter target class imbalance, we also investigate ar-
chitecture optimizations with a bank of single-stroke (bi-
nary) CNN classifiers [16]. Finally, we explore a num-
ber of data augmentation approaches including new tabla-
specific transformations inspired by drum-specific aug-
mentation methods from ADT [17]. We present next the
dataset used in this work, followed by the classification
and data augmentation methods and, finally, the results.

Source # tablas Duration # strokes

Tr
ai

n

Train-set of [12] 3 18 min. 6,680
Suppl. data of [18] 3 16 min. 5,178
New 4 42 min 14,742

Total 10 76 min. 26,600

Test-set of [12] 3 20 min. 4,470

Table 2: The various subsets in the train and test datasets.

2. DATASET

An important application of the present work is in classify-
ing tabla strokes played in accompaniment to lead music.
We thus use an existing dataset of realistic tabla accompa-
niment recordings to test our methods. While we would
prefer matched training data, concert audios are not read-
ily available in bleed-free multi-track format. And creating
such a dataset is challenging not only to record, but also
to annotate due to the lack of a precise score. Therefore,
we resort to the use of tabla solo playing and build upon
previous datasets to create a diverse training set. Table 2
lists the sources of our train and test datasets with a com-
mon sampling rate of 16 kHz. The target classes used in
this work, common bols that they map to, and the types
of strokes played simultaneously on each drum to realise
them appear in Table 1. For D, we have damped strokes
on either one or both drums. RT and RB strokes produce
resonant sounds on the corresponding drum and may be
accompanied by a damped stroke on the other drum.

Testing: The test set consists of 10 pieces of only the
tabla accompaniment recorded in perfect isolation to pre-
recorded solo Hindustani vocal tracks. It contains 20 min-
utes of audio and nearly 4,500 strokes. These recordings,
made on 3 unique tabla sets by 2 different artists, are di-
verse in terms of tuning, tala (metre), and tempo.

Training and Cross-Validation (CV): Solo composi-
tions and common theka patterns recorded from 7 differ-
ent tabla-sets are added to the training dataset from [12].
Out of these, 3 are from a previous study [18] for which
written scores are available but are not time-aligned with
the audios. The 4 others were newly recorded for this
work by different artists. In order to achieve better diver-
sity, we choose instruments of sufficiently different tun-
ing, include a variety of playing styles, and cover a wide
tempo range. Annotation was carried out by automati-
cally aligning the composition score (supplied by artists)
with the audios, and replacing the bols with correspond-
ing target stroke categories (Table 1). Given the imperfect
score-stroke matching [3,4], labels were manually verified
to assign the same category to similar sounding bols. The
dataset spans a total audio duration of about 1.25 hours and
contains 26,600 strokes. To perform hyperparameter tun-
ing, we split our training dataset into 3 nearly equal-sized
disjoint folds, with all recordings from a single tabla set
assigned to a single fold, providing instrument indepen-
dent validation. The folds are similar in the distribution of
stroke categories, tonic, and tempo.



k x Conv: N1  x  3 x m (BatchNorm + ReLU)

k x Conv: N2  x  3 x 3 (BatchNorm + ReLU)

MaxPool: 3 x 1

MaxPool: 3 x 1

Dropout: 0.25

Dense: N3 (BatchNorm + ReLU)

Dropout: 0.25

Dense: 1 (BatchNorm + Sigmoid)

Input: C channels x 80 bins x T frames

Figure 3: General CNN architecture for 1-way model tun-
ing experiments (N2=2xN1). k is # repetitions of the layer.

Variant Hyperparameter values

Baseline
C=3, T=15 (150 ms),
k=1, m=7, N1=16, N3=128

↑context T=21 (210 ms)
Mid-channel C=1 (middle)
↑conv filters N1=32
↑dense units N3=256
↑conv filt. + ↑dense units N1=32, N3=256
2x conv layers k=2, m=3

Table 3: The various hyperparameter settings in the tuning
experiments of the 1-way CNN model (of Figure 3).

Figure 2 shows the distribution of strokes across the
four target categories in the train and test sets. We ob-
serve a significant imbalance in both, with damped strokes
being the most numerous and resonant bass being the least.
Although the distributions are similar across datasets, dif-
ferences in the playing styles (solo vs accompaniment) are
likely to contribute to some train-test mismatch.

3. METHODS

We now present the CNN based classification models, their
input-output representations, and the training and hyperpa-
rameter tuning experiments. Subsequently, we outline the
different augmentation methods devised.

3.1 Classification Models

Two CNN-based approaches from drums transcription are
compared - a 3-way model [19], and a bank of separate 1-
way models for each target class [16]. In the former, we
experiment with fine-tuning available pre-trained models
as well as training new models with the same architecture
from scratch. With the 1-way approach, a model for each
stroke category is trained from scratch and their hyperpa-
rameters are optimised separately.

3.1.1 3-way Classification

We use the four 3-way CNN models from the python li-
brary madmom [20], each of which is trained on a different

subset of the MIREX17 drums dataset [15]. During train-
ing of the 3-way CNN, the fourth ‘resonant both’ (B) label
in tabla is replaced by simultaneous onsets in RB and RT
(see Table 1). Model outputs are post-processed during
evaluation to obtain 4-class predictions, by replacing RB
and RT onsets predicted within 10 ms with B.

Based on the common assumed roles for a CNN’s conv
and dense layers of feature extractor and classifier respec-
tively [21, 22], we explore two transfer learning strate-
gies to fine-tune (FT) the pre-trained (PT) models on our
smaller (by ≈3x) dataset: (a) FT all dense layers while
keeping all conv layers frozen at PT values, and (b) FT all
layers. Under (b), we study three approaches - uniform,
differential, and disjoint. In uniform and differential FT,
all layers are simultaneously tuned, with the learning rate
(lr) kept same for all layers in the former, and different for
conv and dense layers in the latter. Disjoint FT refers to the
alternating (rather than simultaneous) tuning until conver-
gence of the dense and conv layers, in order to reasonably
constrain the updatable parameters at any time. Other fine-
tuning combinations with tuning only a subset of dense
layers were not found to be favorable. While fine-tuning all
layers uniformly has been previously used in audio event
tagging [23], the differential and disjoint approaches are
motivated from speech recognition [24, 25]. Finally, we
consider also the PT initialisation of dense layers in all
cases applicable, in addition to the usual random initial-
isation used for dense layers in domain adaptation. For
baselines, we report results from the pre-trained models,
as well as a new model with the same architecture trained
from scratch (i.e. re-trained) solely on our dataset.

The input & target representations, and the optimizer
used are as originally reported [15], with tabla audios up-
sampled to 44.1 kHz. We expect the reduced bandwidth
of our data to influence the perfomance minimally since
the 8-15 kHz band (which is only faintly energetic in BD
and SD onsets) accounts for a minor fraction of the bins in
the log-scaled spectral representation. Dropout (p = 0.5)
is added before the first dense layer, batch size is increased
to 64, and early stopping with a patience of 10 epochs is in-
cluded. Learning rates are not decayed across epochs and
were empirically determined to be: 1e−5 in re-training,
1e−6 for dense and and a lower 1e−7 for conv layers in
differential FT (to better preserve the generalization capa-
bilities of lower layers), and 1e−6 in all other experiments.

3.1.2 1-way Classification

The general model architecture used for this method ap-
pears in Figure 3. First, a common CNN model architec-
ture (‘Baseline’ in Table 3) is obtained for all stroke classes
by making modifications, targeted at achieving better con-
vergence, to a previous architecture from ADT [16]. The
input to the baseline model is a set of 3 log-scaled mel-
spectrograms of dimensions 80 bands x 15 frames (150 ms)
as proposed previously [26], computed from 16 kHz au-
dios. Target activations are prepared by assigning a value
of 1 to every ground truth onset frame as well as an adja-
cent frame on either side, and 0 to the remaining frames.
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Figure 4: The 15 highest ranked features from the tabla
identification task for each stroke type. Bars and whiskers
show mean and standard deviation across 3 repetitions.

Models are trained to minimize BCE loss for a maximum
of 150 epochs, using the Adam optimizer with lr equal of
1e−4, a batch size of 256, and early stopping with a pa-
tience of 10 epochs.

Considering the different amounts of data available for
each stroke type, we experiment with the input represen-
tation and model architecture to arrive at the best hyper-
parameters for each class. A list of the chosen hyperpa-
rameter settings, along with the baseline, appears in Table
3. The input-related choices are based on experiments in
ADT involving larger context [19] and alternate input rep-
resentations [16]. Architecture variations to the conv and
dense layer sizes are targeted at increasing the model ca-
pacity to benefit classes with more data.

3.1.3 Random Forest Classification

The random-forest based tabla stroke classification system
presented in [12] is re-trained on our newly configured
dataset to use as a baseline. This system uses the high-
frequency content algorithm [27] to first segment tabla au-
dios based on the detected onsets, and then extracts a set
of 49 acoustic features for the 4-way stroke classification
with a random forest. Features relating to the temporal
characteristics of decay portions are found to be especially
important to stroke identity across instruments.

3.2 Data Augmentation Methods

With data augmentation, we seek to simulate tabla in-
strument diversity from different physical structures, tun-
ing, and playing styles. We employ pitch-shifting and
time-scaling (audio-specific), attack-remixing (percussion-
specific), and two methods closely tied to the acoustics and
sound production characteristics of tabla - spectral filter-
ing and NMF-based stroke-remixing (tabla-specific). All

transformations are applied to the time-domain audio sig-
nal. To ensure that the modified audio sounds realistic, we
enlist the help of an expert tabla player to determine the
suitable range for the control parameter in each transfor-
mation. With every augmentation method, we use 4 values
of the parameter (as in Table 4), obtaining 4 versions for
each audio. This is combined with the original dataset,
thus increasing the size to five times the original. During
training, data from two CV folds (along with any augmen-
tations) is used, while only the original data from the third
fold is used for validation.

3.2.1 Pitch-shifting (PS) and Time-scaling (TS)

We use the hptsm algorithm from the python library
pytsmod [28], which first separates an audio into harmonic
and percussive components and then applies appropriate
time-scaling methods to each component. Pitch-shifting is
performed by time-scaling followed by re-sampling. The
parameters αps and αts denote the pitch-shifting (in semi-
tones) and time-scaling factors.

3.2.2 Attack-remixing (AR)

Attack-remixing refers to modifying the relative levels of
attack and decay regions of an audio, and has been used
to augment drums data [16]. Our implementation involves
first applying harmonic-percussive separation (HPS) [29]
to the audio, which leaves all the attacks in the percussive
component and resonant decay portions in the harmonic
component. The percussive component is scaled by a lin-
ear factor, denoted by αar, and remixed with the unmodi-
fied harmonic component.

3.2.3 Spectral Filtering (SF)

Augmenting data by perturbing ‘nuisance attributes’ that
are unimportant in the specific discrimination task, can be
effective [30]. We use the feature ranking of the random
forest classifier to identify acoustic features that capture
instrument characteristics and are less important to stroke
identity. The classifier, as in Section 3.1.3, is re-purposed
to solve a 10-way tabla identification task on our training
set (spanning 10 instruments), using the same features. It
achieves an average f-score of over 0.9 in a random 3-
fold CV performed separately with each stroke category.
From the resulting feature importances presented in Fig-
ure 4, we see that various MFCCs (computed frame-wise
and averaged across stroke segments), representing spec-
tral shape, are most important to instrument differentiation,
with MFCC-1, representing the tilt (balance) between high
and low frequencies, consistently at the top. This moti-
vates the use of particular filtering transformations to mod-
ify spectral shape for the data augmentation.

Due to the contrasting broadband and band-limited na-
ture of tabla attack and decay spectra, it is more effec-
tive to use filters targeting specific bands, instead of the
commonly used random filtering [31]. After first applying
HPS, we filter the bass (0− 200 Hz) and treble (200− 2k
Hz) regions in the harmonic component, and modify the
spectral tilt in the percussive component by changing the



Method Values Method Values

αps -1, -0.5, 0.5, 1 αsf-tilt 0.2, 0.5, 2, 3
αts 0.8, 0.9. 1.2, 1.3 αsr-bass 0.6, 0.8, 1.5, 2
αar 0.3, 0.5, 2, 3 αsr-treble 0.5, 0.8, 1.5, 2
αsf-bass 0.2, 0.5, 2, 4 αsr-damp 0.2, 0.5, 2, 3
αsf-treble 0.2, 0.5, 2, 4

Table 4: Parameter values for the augmentation methods.

energy balance across the two halves of the spectrum. The
filter is a Hann window positioned over the corresponding
band and scaled by a linear gain factor, and is multiplied
with each short-time spectral slice. Each filtering operation
(bass, treble, & tilt) is considered a separate transforma-
tion with the corresponding gain factor denoted by αsf-bass,
αsf-treble, and αsf-tilt. We also consider a combination of all
three transformations applied simultaneously by randomly
selecting a value for each parameter, while still obtaining
4 augmented versions per audio.

3.2.4 Stroke Remixing (SR)

Given that the compound bols of the tabla are produced by
the independent, though simultaneous, striking of the two
drums, we simulate the expected variations of the relative
strengths of the drums in this mix using non-negative ma-
trix factorization (NMF). We use the NMFToolbox [32] to
perform the decomposition. The activations are randomly
initialised while the templates, a total of 6, computed sep-
arately from attack and decay regions for each of the 3
distinct stroke types (resonant bass, resonant treble, and
damped), are kept fixed. Each template is the average spec-
trum of the corresponding portion of the signal from across
10 isolated instances. A separate set of templates is com-
puted for each tabla instrument in our training set and used
to decompose recordings from the corresponding tabla.

To perform augmentation, we first obtain the audio for
each component from the decomposition, combine the at-
tack and decay portions for each stroke type, and then re-
synthesize audio by mixing the three stroke components
at different linearly scaled levels. We experiment with re-
stricting scaling to only one of the three components at any
time (factors denoted by αsr-bass, αsr-treble, and αsr-damp), as
well as a combination with all components simultaneously
scaled by different randomly chosen factors (similar to the
combination method in filtering).

4. EXPERIMENTAL RESULTS

We evaluate performance using the f-score metric with a
tolerance of 50 ms for the detected onset locations [33].
Scores are obtained separately for each stroke class on in-
dividual tracks and averaged across the dataset. The re-
ported CV scores are the mean across 3 folds. For the
network predictions, local peaks in the output layer acti-
vations are detected and thresholded. The threshold is se-
lected based on maximizing validation set f-score and then
used on the test set. In the transfer learning experiments,
all 4 pre-trained models are tuned separately and used to-

Model Stroke category

D RT RB B

Baseline 84.6 83.2 46.5 83.8
↑context 84.3 81.4 41.9 73.0
Mid-channel 84.7 81.7 42.1 75.6
↑conv filters 84.7 84.5 44.7 77.6
↑dense units 86.7 82.9 40.1 73.6
↑conv filters+↑dense units 83.5 83.4 43.3 82.0
2x conv layers 84.3 82.4 42.4 75.9

Table 5: CV f-scores of 1-way model tuning experiments
(bold values are highest in the column).

Method Stroke category Mean
D RT RB B

No aug. 86.7 84.5 46.5 83.8 75.4

Pitch-shift 87.2 85.5 51.2 83.9 76.9
Time-scale 88.2 85.0 50.2 82.2 76.4
Attack-remix 84.3 84.2 48.1 81.3 74.5
SF-bass 84.5 80.9 40.4 79.9 71.4
SF-treble 85.8 81.7 48.7 76.0 73.0
SF-tilt 86.3 82.7 43.8 82.0 73.7
SF-all 87.6 84.6 50.7 85.6 77.1
SR-bass 86.0 84.8 43.3 83.6 74.4
SR-treble 86.1 84.8 39.4 79.0 72.3
SR-damp. 86.2 85.3 50.1 86.5 77.0
SR-all 86.8 85.3 48.1 84.4 76.2

Combined 88.5 84.2 53.6 87.9 78.5

Table 6: Comparing the CV f-scores of 1-way models
trained using different augmentation methods (bold values
are overall highest in column, underlined are top 4 among
individual methods). Combined refers to PS+TS+SF-
all+SR-all.

gether (ensemble) by averaging their predicted activations
during cross-validation. On the test set, an ensemble of
12 models (4 from each CV split) is utilised. With 1-way
classification, single models are evaluated during CV and
an ensemble of the 3 models is used on the test set.

1-way model tuning: The cross-validation results of
the tuning experiments with the 1-way models (discussed
in Sec. 3.1.2) appear in Table 5. The input-related modifi-
cations do not lead to improved scores in any class, indicat-
ing that a 3-channel representation with moderate context
duration (150 ms) is optimum for our task. With respect
to model architecture, the baseline appears to be best for
classes with least data (RB and B). The use of more dense
units benefits only the more abundant damped class. With
increased conv layer filters, the f-score for resonant treble
goes up, possibly by better learning its rich and diverse har-
monic content stemming from tabla tuning variations. The
other modifications do not offer any further improvements.

Data augmentation: Table 6 shows the results of train-
ing the 1-way models (with hyperparameters for each class
as identified in the tuning experiments), using the various
augmentation methods. The underlined values are the 4



Method Stroke category Mean
D RT RB B

Random forest 86.2 / 74.2 77.7 / 75.0 39.7 / 35.3 73.6 / 41.5 69.3 / 56.5

3-
w

ay
Pre-trained (PT) 36.8 / 27.3 15.1 / 9.0 9.8 / 19.8 7.3 / 2.1 17.3 / 14.6
Re-trained 81.0 / 65.5 53.7 / 72.6 15.7 / 22.9 63.0 / 60.0 53.4 / 55.3
FT dense random init. 74.4 / 65.2 55.9 / 75.2 33.6 / 45.6 63.4 / 52.0 56.8 / 59.5
FT dense PT init. 71.7 / 62.4 54.8 / 74.9 29.4 / 34.8 60.9 / 39.1 54.2 / 52.8
Uniform FT all 76.3 / 65.1 59.7 / 79.1 29.5 / 43.3 65.3 / 58.6 57.7 / 61.5
Differential FT all 72.5 / 63.4 58.7 / 77.9 30.0 / 41.2 63.5 / 49.2 56.2 / 57.9
Disjoint FT all: dense rand. init. 77.2 / 67.2 57.4 / 73.1 33.0 / 49.1 65.9 / 60.9 58.3 / 62.6
Disjoint FT all: dense PT init. 74.8 / 65.4 66.4 / 77.4 34.7 / 47.5 66.5 / 56.8 60.6 / 61.8

1-
w

ay No aug. 86.7 / 79.5 84.5 / 84.1 46.5 / 38.0 83.8 / 69.0 75.4 / 67.6
Best aug. 88.5 / 83.3 85.5 / 84.3 53.6 / 34.1 87.9 / 80.1 78.9 / 70.4

Table 7: F-scores (CV/test) from 3-way models compared with the best 1-way models and a random-forest baseline [12]
(values in bold are highest in the column). ‘Best aug.’ represents pitch-shifting for RT and combined aug. for the rest.

highest scores within each class that are better than no aug-
mentation. We note that these are most often from using
one of PS, TS, SF-all, SR-damp, or SR-all. We there-
fore experiment with combining PS, TS, SF-all, and SR-
all (which includes SR-damp), by randomly choosing only
2 out of 4 versions from each method for every audio (to
limit training time), taking the dataset size to 9x original.
Values in bold indicate the highest scores obtained in each
stroke category across all methods (individual and combi-
nation). Overall, we see that except for the resonant treble
class, the combination results in the best f-scores, demon-
strating the benefit of the proposed augmentation methods.

Some notable observations about the individual meth-
ods follow. The improvements from pitch-shifting and
time-scaling underscore the importance of addressing tun-
ing diversity and capturing a wide tempo range when work-
ing with datasets of realistic playing. With tabla-specific
filtering and remixing, the combinations SF-all & SR-all,
which pack more diversity, outperform the corresponding
individual methods in most cases, and consistently give
better f-scores than no augmentation.

3-way vs 1-way: Table 7 compares the CV and test set
scores of the 3-way models against the best 1-way mod-
els and the random forest baseline. In the transfer learning
experiments, we note that tuning conv layers helps, pos-
sibly compensating for low level acoustic differences be-
tween tabla strokes and drums. Of the three approaches
to this, disjoint FT gives higher CV and test scores when
compared to the other two. With regards to random versus
pre-trained initialisation for dense layers in the disjoint FT
setup, better test set scores are obtained with random ini-
tialisation, indicating better generalization, while PT ini-
tialisation gives higher CV scores. Finally, these domain-
adapted models outperform the pre-trained only and the
re-trained (from scratch) 3-way models.

Eventually, we find 1-way models mostly surpassing the
best 3-way model, with data augmentation further enhanc-
ing performance. Test scores are lower than that of CV
train by a few percentage points, attesting to the persistent
mismatch from playing style. Only for the test resonant

bass, the f-score is highest using disjoint FT, which shows
that transfer learning has helped with generalization for the
class with least data. A closer look at disjoint FT versus the
1-way models further reveals that the most difference in f-
score is in resonant both, indicating that treating the combi-
nation stroke as a separate class works better than viewing
it as the superposition of its component stroke classes. Fi-
nally, it is interesting to note that the 3-way models trained
from scratch perform much poorer than the set of similarly
trained 1-way models, demonstrating the benefit of using
separate models specialised for each class in this task.

5. CONCLUSIONS

We presented a four-way tabla stroke classification task for
categories defined by the salient acoustic characteristics of
the basic tabla strokes. Leveraging the similarity of our
target categories with popular Western drumkit classes, we
investigated methods from the automatic drums transcrip-
tion task. We explored the adaptation of available pre-
trained drums models via transfer learning on a new tabla
dataset. Systematic experiments with different transfer
learning strategies reveal significant improvements when
both dense (classifier) layers and conv (feature extractor)
layers of a multiclass CNN model are fine-tuned from the
pre-trained weights in a disjoint fashion. Next, the use of
separate 1-way CNN models with hyperparameters suit-
ably tuned for each of the 4 stroke categories was found to
surpass the more complex 3-class CNN model for all class
accuracies except the most data-constrained resonant bass
category, which benefited from pre-training on drums. Fur-
ther, several data augmentation methods, untested so far in
the context of tabla, were investigated. A method based
on increasing training data diversity, by varying spectral
characteristics that capture instrument-dependence across
strokes, contributed consistently to improved classification
accuracy. Future work will target recurrent architectures
and the combination of transfer learning and data augmen-
tation for further performance gains.

Supplementary: github.com/DAP-Lab/4way-tabla-transcription
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