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Abstract—Pre-school teaching demands several diverse
methodologies making the quantification of classroom activ-
ity very useful to reflect on and refine teaching practices.
Therefore, automating the monitoring process with unobtrusive
audio recording and analysis is viewed as a simple and scal-
able solution. We present a system for performing automatic
classroom activity detection from audio using a new audio
corpus obtained from preschool classrooms in rural India. We
define the sound classes of interest in estimating the level of
teacher engagement. To address the challenge of training data
scarcity, we investigate the combination of pre-trained models
with unsupervised homogeneity-based segmentation to realise a
multilabel classification scheme. We discuss the performance of
the classifier and its utility in the context of the classroom activity
monitoring task.

Index Terms—classroom activity detection, audio diarization

I. INTRODUCTION

Early childhood education studies have shown that incor-
porating student-centric active learning strategies in the class-
room can improve the student retention rate, encourage class
participation, and boost the overall effectiveness of instruction.
Instructors and curriculum designers hence need to quantify
classroom activity in order to review, reflect and revise these
techniques, based on their impact on student learning and
engagement. This can be achieved through manual monitoring
of classroom sessions, which unfortunately is human resource-
intensive. Classroom Activity Detection (CAD) aims to reli-
ably identify speakers and events (teachers, students, group
activities, etc.) through the analyses of audio recordings. The
challenges include the extensive presence of overlapping talk
between teachers and students, with common occurrence of
short speaker turns making it hard even for a human listener
to assign roles. Further, classroom recordings are typically
noisy and may be of non-uniform quality due to the varying
distances of the different speakers from the recording device.
Finally, a CAD model also needs to scale well to unseen
speakers.

CAD, although a relatively new problem, has attracted
much research interest. In early work, a modified proprietary
wearable device, “LENA,” [1] was used in K-12 classrooms,
the audio features from which were mapped to classroom
activities: “teacher lecturing,” “whole class discussion” and
“group work” at a 30 second temporal granularity using a

random forest classifier [2]. A set of classroom activities were
automatically detected using instructor-worn close talking
noise-cancelled microphone data collected from middle school
classrooms, with a Naive-Bayes classifier on assorted prosodic,
NLP and acoustic features [3].

The Decibel Analysis for Research in Teaching (DART)
tool [4] enabled large scale, automatic annotation of classroom
activity in college-level lecture audio using portable audio
recording devices. DART uses binary decision trees on statis-
tics of the energy over local windows of the audio signal to
perform multi-class classification on a 4-way label set: “single
voice,” “multi voice,” “no voice” and “other”. Substantial
reductions in frame-level error over DART were demonstrated
with a gated recurrent unit (GRU) neural network using Mel-
filterbank features, for new class sessions from both previously
seen and unseen instructors [5].

A 9-way classification (also simplified to 4-way and 5-way
tasks) is performed using various neural network architectures
on a university classroom corpus with a duration of 58.7 hrs
[6]. There, a bi-directional GRU model is trained on Mel-
filterbank, OpenSmile and PASE+ self supervised acoustic
features, obtaining frame-level error rates of 6.2 %, 7.7 % and
28.0 % when generalising to unseen instructors for the 4-way,
5-way, and 9-way classification tasks, respectively. Although
the 5-way task is similar to that considered in this paper, we
deal with data that exhibits significant polyphony from the
overlapping labels. Thus this is the first reported work on the
following realistic and challenging scenarios.

1) Pre-school classrooms and multilabel classification:
We work on audio recordings from pre-schools, which
are noisy and have high activity and speaker-overlaps,
requiring a multilabel classification scheme, opposed to
earlier works that generally focused on university-level
STEM classrooms.

2) Choice of labels: Due to the nature of our classrooms,
we introduce labels such as ‘Multiple Speakers’ and
‘Striking’ to represent disruptions during class time,
which are important to detect in view of interest in class
time use and student engagement.

3) Dataset size: We have access to a much smaller dataset
compared to earlier work in CAD, with a total duration
of 3 hrs 39 min, limiting us to lighter models in contrast
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to RNNs and GRUs that show state-of-the art results for
similar tasks.

We address these challenges by combining two relatively
independent stages of audio processing. One stage estimates
the classes at frame-level (i.e. at a fine time resolution of 100
ms) and the other detects activity boundaries via unsupervised
segmentation based on homogeniety. Frame multilabels are
aggregated within the predicted activity boundaries to obtain
the required segmentation at the higher time scales that will
eventually help summarise the activities in the classroom.
We propose a novel architecture that uses three different
features (log-Mel spectrogram, pre-trained embeddings from
Wav2Vec2 and OpenL3), motivated by our limited dataset
that also incorporates diverse speech and non-speech classes,
to perform a frame-wise multilabel classification. We also
handle class-imbalance by proposing a class-wise dynamic
thresholding mechanism to obtain fine-grained classification
of the audio frames.

II. DATASET AND TASK

A. Dataset

The dataset used in this work was provided by
EarlySpark [7], an organisation devoted to creating optimal
learning environments for young children. They partner with
schools and train teachers to enhance formative childhood
education. The dataset is of a total duration of 3 hrs 39 min,
containing recordings from 24 classroom sessions with 8
different instructors (7 female, 1 male). The recordings, from
preschool classroom sessions using an audio recorder placed
in the room, vary in duration between 4 to 22 min with a
mean session duration of 9 min 15 sec, recorded at 16 kHz
sampling rate.

The recordings were manually annotated by a single rater
using 6 labels as in Table I. The annotation is carried out
using Audacity, such that up to three labels can co-occur.
The relative overall durations of the labels in the dataset are
shown in Figure 1, with the total duration depicted in the pie
chart being 4 hrs 17 min. This is higher than the actual dataset
duration due to multiple instances of label overlap. The high
probability of having more than one label for a given frame
(16% frames with event overlaps) motivates the multilabel
classification scheme, which has not been attempted previously
for the CAD task. Apart from high overlap, we also observe

Fig. 1: Distribution of labels across the dataset, with a total
duration of 4 hrs 17 min including overlaps

TABLE I: Labels used during annotation along with their
description

Event Label Description
Child Talking CT Child being the dominant speaker
Teacher Talking TT Teacher being the dominant speaker
Group Response GR Children responding in chorus
Multiple Speakers MS Many simultaneous unrelated voices

Striking STR Occurrence of hitting, clapping, jumping, stomping,
banging the table etc.

Silence S Region with no speech activity and striking events,
but could have ambient background noise

frequent turn-taking, with majority of activities/speaker turns
having 0.5 to 2 s duration.

We also distinguish between speech and non-speech classes,
with ‘CT’, ‘TT’, ‘GR’ and ‘MS’ forming the speech classes,
while ‘S’ and ‘STR’ are considered non-speech classes. The
labels ‘MS’ and ‘STR’ were introduced to capture disruptions
of normal class activity due to the nature of children at that
age, increasing the complexity of the problem due to acoustic
overlaps with labels like ‘CT’ and ‘GR’.

Of the 24 recorded class sessions from 8 instructors, we
create a Training dataset of 19 sessions and two Test
datasets. Test 1 comprises of 3 sessions (≈24 min) with
the instructors overlapping with the Training (i.e. seen
speakers) Test 2 comprises of 2 sessions (≈15 min) from
instructors not seen during training, including the single male
instructor, to see how the model generalizes to unseen speak-
ers. The Validation set was created by randomly selecting
10% of samples from the Training set and not used in
training.

B. Task and Evaluation Criteria

For our classification task, we window the audio signal
to generate frames with 500 ms context and 100 ms hop.
Let F be the sequence of frames in a classroom recording,
i.e., F = {fi}Ni=1 where fi denotes the ith frame and N
is the total number of frames. Let Y be the target label
sequence, i.e., Y = {yi}Ni=1 where each yi is a 6-dimensional
multilabel vector with binary entries {yij = 0 or 1}6j=1

corresponding to the absence/presence of a classroom activity
type in the frame based on manual annotation, in the order
[‘CT’,‘GR’,‘MS’,‘S’,‘STR’,‘TT’]. We define the classification
problem as follows:

Given a frame fi, and input features xi, our goal is to find
the most probable multilabel, ŷi for the frame as follows:

ŷi = argmax
y in Y

P (y|xi) (1)

where Y is the collection of all possible multilabels and ŷi
is the predicted multilabel for frame fi. A standard approach
while dealing with multilabel targets is by minimising binary
cross entropy for each class and using sigmoid activation at
the output node to obtain class-wise probabilities. We evaluate
our models at a frame-level using the standard metrics: macro
f1-score (MF) and weighted f1-score (WF), and also report
class-wise f1-scores (CF).



Fig. 2: Block diagram for the proposed system

III. METHODS

Our proposed system consists of two parallel stages and an
aggregation step as shown in Figure 2. One stage is a classifier
that uses features extracted from raw audio to generate frame-
wise multilabel predictions. The other stage is a Bayesian
Information Criterion (BIC) based based segmentation of the
audio to obtain the class or event boundaries.

A. Frame-level classification

The following steps are involved.
1) Feature extraction: Apart from raw spectral features

linked to timbre, we consider feature concatenation with two
available pre-trained audio embeddings that can potentially
alleviate the scarce data problem.

• log Mel-filterbank: Log Mel-filterbank features have
been widely used in applications like speaker verification
[8] and audio event detection [9] [10]. We extract 128
log-scaled Mel-filterbank features using the Python audio
processing and analysis package librosa [11] with
standard 25 ms windows at 20 ms frame rate.

• Wav2Vec2: The Wav2Vec2-Base-960h model gen-
erates speaker representations from raw audio, fine-tuned
on the Librispeech [12] dataset containing 16 kHz sam-
pled speech from 2338 speakers. Self-supervised learning
is used to learn a set of speech units and describe
the speech audio sequence. Given its use in speaker
recognition tasks [13] [14], these features are included
to help distinguish speech events. The model consists of
12 transformer blocks that help analyze a larger context.
768 dimensional features are extracted from the last block
using a 25 ms window, and a 20 ms hop.

• OpenL3: OpenL3 is an open-source Python library for
computing deep audio and image embeddings using a
self-supervised learning method of audio-visual corre-
spondence [15] on AudioSet videos [16]. By employing
the ‘env’ content model trained on environmental videos,
we look to better identify non-speech classes, given the
datasets’ acoustic diversity. We extract 512 dimensional
embeddings using the default frame definitions - 1s
context and a 100 ms hop.

The use of features with a larger context has been effective in
CAD tasks [5] [14]. To achieve this, as well as synchony across
the 3 feature streams, we concatenate the log Mel-filterbank
features over 500 ms at 100 ms hop. Similarly, the Wav2Vec2
vectors are average pooled before the feature concatenation.

2) Model Architecture: As shown in Figure 3, the mel
filterbank features are processed with a CNN of three 2D
convolutional blocks (ConvBlock). Each convolutional block

Fig. 3: 3-branch architecture of the frame-based classifier

consists of one 2D convolutional layer with a kernel size of
(3x3), stride of (1, 1), without any padding. After each con-
volutional layer, we use batch normalization, ReLU activation
and max pooling with a pool size of (4 × 2) and stride (4,
2). We use three ConvBlocks having a decreasing number of
convolutional filters: 32, 16 and 8. The output from the last
ConvBlock is flattened before concatenation, resulting in a
96 dimensional vector. Wav2Vec2 and OpenL3 inputs are fed
into separate dense layers with 256 neurons, and the output
of all three branches are concatenated to give rise to a 608
dimensional vector. The resulting combined parameter vector
is used as input for a block of dense layers, with two fully
connected layers having 64 and 32 neurons. Finally, a sigmoid
layer is used to extract probabilities of each activity type for
all frames.

For training, Adam optimizer [17] is used with a learning
rate of 5e−5 to minimise Binary Cross Entropy (BCE) loss
at the output unit of each class on the multilabel targets.
Batch size is set to 64 and the model is trained for up to
20 epochs, with early stopping used on the Validation set
and patience set to 7 epochs.

3) Class-wise Thresholding: From the classifier, we extract
frame-wise prediction vectors {pi}Ni=1, containing elements
{pij}6j=1, each representing the probability (between 0 and
1) of the presence of the activity types, [‘CT’,‘GR’,‘MS’,
‘S’,‘STR’,‘TT’] in that frame. In order to take care of the class
imbalance present in our dataset, we threshold classifier pre-
dictions, along the lines of frame-wise contour-based dynamic
thresholding introduced by [18] for polyphonic acoustic event
detection, with slight modifications. First, a probability contour
is derived by plotting for each frame the highest output prob-
ability for that frame across the 6 event labels, called the con-
fidence for that frame, Ci = max(pi1, pi2, pi3, pi4, pi5, pi6).
However, instead of using a single global threshold for all



labels, we use a vector α, with different global thresholds
for each of the 6 labels. αj for each class j is obtained
by taking the median of the sigmoid output probabilities
from the classifier on Training data samples where class
j was active. Ci is included to take into account the level of
polyphony present in a given frame, while the α vector is used
to mitigate the class imbalance present in our dataset.

The threshold for frame index i can be defined as Ti =
{tij}6j=1, where tij = αj ∗ Ci. The decision of which labels
are active in a given frame, generating multilabel predictions
Ŷ = {ŷi}Ni=1, is made using the above identified thresholds
as follows:

{ŷij = 1 if pij > tij}6j=1 (2)

From our definition of the different classroom events and
on analyzing manual annotations to determine the extent of
polyphony, we restrict our predictions to only three classes,
the top two speech classes and the non-speech class with the
highest probability, which are then compared with the frame-
wise thresholds to generate multilabel predictions.

B. Segment Boundary Detection

The segment boundary detection step involves using a
segmentation algorithm that combines Bayesian Information
Criterion (BIC) based segmentation using MFCCs [19] and
detection of pauses and silence based on variation of RMS
energy [20]. Since pauses are often present at speaker changes,
they are marked by lower RMSE compared to surrounding
regions, and can hence be used to mark boundary points.
However, speaker changes can also take place where there are
no significant changes in RMSE, which are better identified by
the BIC based algorithm. These two standalone segmentation
approaches are combined to ensure ground truth boundaries
are not missed. Thus, while evaluating their performance we
look to maximize recall, while maintaining significant pre-
cision. The unsupervised segmentation algorithm achieves re-
call > 0.9 and precision > 0.5 across files with a 0.5 s bound-
ary tolerance, tuned using four sessions from the Training
dataset.

C. Post Processing via Aggregation

The frame-wise multilabels obtained as output from the
classifier (after thresholding), are at too fine a granularity
for easy analysis during downstream applications. Thus, there
is a need to convert these predictions into a form that best
resembles manual annotation. Also, frames close to segment
boundaries capture information from neighbouring events, and
classifier predictions for those frames (as described in Sec-
tion III-A) tend to be weaker in confidence. These predictions
can be refined by aggregating them with non-boundary frames
in their vicinity, based on automatically detected speaker
change boundaries as described in Section III-B. This aggre-
gation is performed so that all frames present between two
speaker change points have the same multilabel, removing any
irregularities in model predictions, and generating segment-
wise multilabels that have a lower granularity, better suited
for analysis. It is performed as follows.

Given a set of predicted boundaries B = {bk}Mk=1, where
b0 = 0 and M is the total number of boundaries predicted, a
segment sk is defined as the region between boundaries bk−1

and bk. For a segment sk containing frames {fi}qi=p, we select
the most common predicted multilabel for frames within sk
as the multilabel for all the frames in sk, i.e., {yci }

q
i=p =

mode({ŷi}qi=p). Hence, this method allows us to move from
fine- to coarse-grained predictions, to generate a label track
similar to that of manual annotation.

IV. EXPERIMENTS1

In order to assess the change in classifier performance on in-
cluding pre-trained embeddings, a model consisting of only the
log Mel-spectrogram branch is initially optimized (LogSpec
model), to which the Wav2Vec2 branch is added and tuned
(2 Branch model). Finally, we include the OpenL3 branch,
resulting in the 3 Branch architecture shown in Figure 3. The
models are trained, and class-wise f1-scores are obtained from
the multilabel predictions for both test sets, shown in Figure 4a
for Test 1 and Figure 4b for Test 2.

Model Comparison: We see that all three models perform
best on the dominant ‘TT’ class, with the f1-scores for
the other classes lying in the range of 0.3-0.6 for the best
model. On including the Wav2Vec2 branch, we see a marked
performance improvement for the speech classes. We get
better class-wise f1-scores for ‘S’ and ‘STR’ on introducing
OpenL3 features across both test sets. These justify our
motivation to include them. We also observe that there is
some degradation in performance from Test 1 (unseen
class sessions from previously seen instructors) to Test 2
(unseen class sessions from unseen instructors), however the
model generalizes comparably. Due to relatively fewer cases
of ‘CT’ and ‘STR’ present in Test 2 compared to the
original distribution (Figure 1), we see a noticeable drop in
performance, while for other classes the models’ performance
remains at par with that in Test 1.

Classifier Performance: In order to understand which
classes are typically confused by the best model, we look at
the confusion matrix generated on the predictions of both test
sets, when only a single class is active in the ground truth.

1Annotated data and code are available at:
https://gitlab.com/siddharthsh2/classroom-activity-detection-in-noisy-
preschool-environments.git

(a) CF on Test 1 (b) CF on Test 2

Fig. 4: Class-wise f1-score comparison of the 3 models



TABLE II: Confusion matrix when only a single class is active.
Shaded boxes indicate significant mis-classification

Predicted
G

ro
un

d
Tr

ut
h

CT GR MS S STR TT
CT 925 225 822 574 79 517
GR 267 1873 631 120 170 242
MS 173 551 595 80 15 216
S 22 1 16 128 3 21

STR 23 20 15 32 127 13
TT 1390 220 1024 1067 303 7754

The major cases of mis-classification are observed when we
look at classes ‘CT’ and ‘MS’, which have lower f1-scores
compared to the other speech classes. From Table II, ‘CT’ is
heavily mis-classified as ‘MS’, possibly due the noisy nature
of the classrooms, where children are gossiping even in the
presence of a dominant child speaker, which could be labeled
as either ‘CT’ or ‘MS’, depending on the annotator. ‘MS’
is majorly mis-classified as ‘GR’, since both classes have
children speaking together, the only difference being whether
or not they are in sync/ talking in chorus. Occasionally, ‘CT’
and ‘MS’ are also mis-classified as ‘TT’, due to the models’
inherent bias towards the majority class.

We also compare frame-level classification performance
with and without dynamic thresholding and post-processing
techniques, on the 3 branch model outputs, which can be seen
in Table III. First, we note the performance on using a single
global threshold for all classes, obtained by tuning on the
Validation set (threshold set to 0.3 for Test 1 and 0.25
for Test 2). Then, we look at the change in MF and WF
brought about using the dynamic thresholding explained in
Section III-A3. Finally, we implement post-processing (PP),
both with boundaries automatically detected at high recall
from the segmentation task (HR boundaries) and the ground
truth boundaries from manual annotation (GT boundaries) to
know the extent of performance improvement that could be
achieved given perfect segmentation.

From Table III, we observe that using a dynamic threshold
leads to an increase in macro and weighted f1-scores across
both Test sets, since our strategy allows different classes to
have different thresholds based on both confidence of model
prediction (easier to predict classes to have higher thresholds
and vice-versa) and estimated frame-level polyphony. Next,
we observe that post-processing with HR boundaries leads to
an improvement for Test 1 but not for Test 2, which may
be attributed to comparatively weaker predictions for unseen
teachers. However, on using GT boundaries, we see a signif-
icant improvement in scores with an overall 11 % increase

TABLE III: Frame-level F-scores with and without dynamic
thresholding and post-processing techniques on 3 branch
model

Technique Test 1 Test 2
MF WF MF WF

Single Threshold 0.52 0.63 0.46 0.63
Class-wise Thresholding 0.54 0.64 0.47 0.64

With PP (HR Boundaries) 0.54 0.65 0.45 0.62
With PP (GT Boundaries) 0.60 0.70 0.52 0.68

(a) Ground Truth (b) Predicted

Fig. 5: Classroom activity distribution during a 5 min snippet
with high engagement in a classroom session

in macro f1-score and an 8 % increase in weighted f1-score,
suggesting some scope for improvement of our segmentation
algorithm, and demonstrating the potential of this technique to
provide better predictions even when a models’ performance
saturates.

V. DOWNSTREAM APPLICATION

To demonstrate the usefulness of the system described in
Section III, even at its current performance levels, we apply
it in a classroom monitoring exercise. First, we analyze a
classroom audio recording over a 5 min interval to obtain the
distribution of various classes in the generated label track. This
provides a snapshot of the extent of participation or classroom
activity taking place. Based on our selection of classes, it is
possible to identify regions of high engagement, purely teacher
instruction, or those of low engagement.

In Figure 5, we see that the 5 min snippet is dominated by
3 classes - ‘TT’, ‘GR’ and ‘CT’, from which we can conclude
that this part of the session was one of high engagement. Such
distributions are typically found when a turn-taking behaviour
is observed, i.e., teacher and child(ren) speak alternatively,
suggesting question-answer sessions, teacher asking students
to repeat a particular word/phrase after her, or clarification of
doubts.

(a) Ground Truth (b) Predicted

Fig. 6: Classroom activity distribution during a 5 min snippet
with low engagement in a classroom session

Alternatively, Figure 6 shows a distribution from a 5 min
snippet where a significant portion is captured by the ‘MS’
and ‘STR’ classes, suggesting some disruption from children
during that time, repeated occurrences of which in a particular
session could indicate ineffective use of class time by the
instructor. In both cases, we observe that the predicted label
distribution comes close to the ground truth in terms of



capturing the environment of the classroom in that period,
making it a powerful tool for administrators.

As a by-product of our work, an analysis tool was developed
to extract the occurrences of any chosen label in a recording,
and synthesizing a new track while retaining information about
the original timestamps. This facilitates the rapid listening
based analysis of a classroom recording by an administrator.
For instance, if they wish to check whether the instructor
adheres to the curriculum, only regions corresponding to ‘TT’
in the label track can be played out. Given that ‘TT’ generally
occurs only 44 % of the time (Figure 1), the generated label
track along with the analysis tool eliminates the need to go
over the entire recording. Similarly, ‘CT’ and ‘GR’ regions
can be isolated to estimate the amount of positive engagement
of the class with the instructor.

VI. CONCLUSIONS

We proposed a system for classroom activity detection that
achieves a competitive performance with noisy classroom data
that also has significant speaker/event overlaps. We see signif-
icant benefits from combining pre-trained embeddings with
conventional acoustic features at the frame level. The chosen
pre-trained embeddings compensate for the shortage of labeled
speech and general audio data respectively. Introduction of
class-wise dynamic thresholding leads to better multilabel
predictions by incorporating information about frame-level
polyphony and the class imbalance inherent to the dataset.

Integrating high recall segmentation boundaries with
the frame-wise classifier outputs allows us to suitably
refine predictions using the knowledge of speaker change
points. The true potential of this technique is evident when
using ground truth (i.e. oracle) boundaries for aggregation
indicating avenues for future work on better segmentation
algorithms. We note that aggregation using homogeneity
based speaker change boundaries is applicable in general
to sound event detection (SED) or speaker diarization, for
refining frame-level predictions. Other possibilities for future
work include exploiting further speech-specific features such
as fundamental frequency similar to the OpenSmile features
[21] used to better separate speech classes [6] and the use of
techniques like mixup [22] for data augmentation.
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