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ABSTRACT 

Vocal music is characterized by a melodically salient singing 
voice accompanied by one or more instruments.  With a pitched 
instrument background, multiple periodicities are simultaneously 
present and the task becomes one of identifying and tracking the 
vocal pitch based on pitch strength and smoothness constraints. 
Frequency domain harmonic matching methods can be applied to 
detect pitch via the harmonically related frequencies that fit the 
signal’s measured spectral peaks. The specific spectral fitness 
measure is expected to influence the performance of vocal pitch 
detection depending on the nature of the polyphonic mixture.  In 
this work, we consider Indian classical music which provides 
important examples of singing voice accompanied by strongly 
pitched instruments. It is shown that the spectral fitness measure 
of the two-way mismatch method is well suited to track vocal 
pitch in the presence of the pitched percussion with its strong but 
sparse harmonic structure. The detected pitch is further used to 
obtain a measure of voicing that reliably discriminates vocal 
segments from purely instrumental regions. 

1. INTRODUCTION 

A rough definition of the melody of a song is the monophonic 
pitch1 sequence that a listener might reproduce if asked to hum a 
piece of polyphonic music [1]. This pitch sequence is usually 
manifested as the F0 contour of the lead or dominant musical 
instrument in the polyphonic mixture, which is why the term 
melody detection is used interchangeably with predominant F0 
estimation. The recent explosion of music on the internet has led 
to a surge in CB-MIR research, which in turn has caused a sig-
nificant increase in interest in the melody detection problem. 
Although it may seem that melody detection is nothing but the 
first iteration in the process of multiple-F0 estimation, they differ 
in that the former, along with the estimation of the predominant 
F0, is also required to identify locations where the dominant 
instrument is present in the polyphony [2] (known as the voicing 
estimation problem for singing). 

 Different approaches to melody transcription were compara-
tively evaluated in [1]. It was found that most of the approaches 
fall into the framework shown in Figure 1. Here, the first block 
titled multi-pitch extraction identifies a set of candidate pitches 
                                                           
1 Although the term pitch is known to be a perceptual attribute of 
sound and fundamental frequency, referred to as F0, is consid-
ered its physical correlate, both terms are used interchangeably 
throughout this paper to refer to the physical parameter. 

that appear to be present at a given time. The melody identifica-
tion block identifies which of these candidate pitches (if any) 
belong to the melody line. Finally the raw melody line is post-
processed to increase smoothness and to remove spurious notes. 
The task of identifying whether the lead instrument is actually 
present at a given instant may be part of the system or be an 
independent process. 
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Figure 1: General framework for melody transcription 

This paper investigates the melody detection problem in the 
context of Indian Classical Music (ICM), in particular, Indian 
classical singing. The accompaniment provided to the vocalist is 
very characteristic, with a continuously present drone and 
rhythmic percussion that is tonal and relatively strong. In a pre-
vious publication [3], a harmonic matching pitch detection algo-
rithm (PDA) was experimentally found to be superior to the time 
domain autocorrelation PDA for vocal pitch detection in the 
presence of Indian percussion characterized by a sparse but 
strongly harmonic spectrum. Harmonic matching PDAs operate 
in the frequency domain and facilitate the explicit selection and 
weighting of spectral peaks in the predominant-F0 detection 
process. In the present work we look more closely at the working 
of harmonic matching PDAs for the problem of vocal F0 track-
ing in the presence of sparse tonal interferences. The melody 
identification and smoothing blocks are combined in a dynamic 
programming- based (DP) post-processor. Voicing detection is 
accomplished by a newly proposed pitch-derived feature.   

In the next section we review two harmonic matching PDAs 
that have been developed for musical F0 tracking [4] [5]. While 
both methods are based on fitting a harmonic sequence to the 
measured signal spectrum, they differ on the important aspect of 
the error, or fitness, criterion. In Section 3, we give a brief over-
view of signal characteristics of the music under consideration. 
The performances of the two PDAs are compared for predomi-
nant F0 detection on simulated signals. The experimental analy-
sis of the pitch accuracies is used to obtain insights on the role of 
the spectral error criterion. Next, real multi-track recordings are 
used to validate the results. Finally, a simple method for voicing 
detection based on the estimated predominant F0 is presented, 
followed by a discussion on the nature of the voicing errors and a 
proposed method to reduce these. 
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2. PITCH DETECTION BY HARMONIC MATCHING 

Harmonic matching PDAs are based on the frequency domain 
matching of measured spectrum with an ideal harmonic spec-
trum. Like most of the multi-pitch extractors described in [1], 
they make use of the magnitude of the short-time Fourier trans-
form (STFT) for the initial processing. For all cases, we use a 
high-resolution FFT (8192 points at a sampling frequency of 
22.05 kHz) computed from a Hamming windowed signal seg-
ment of fixed length chosen so as to reliably resolve the harmon-
ics at the minimum expected F0 (four times the maximum ex-
pected time period). The two PDAs discussed in this section are 
the pattern recognition (PR) PDA [5] and the two-way mismatch 
(TWM) PDA [4]. The PR PDA belongs to the large family of 
“harmonic sieve” methods based on integrating evidence for 
every predicted frequency partial from the corresponding energy 
in the measured spectrum.  The TWM PDA uses a less conven-
tional spectral matching error function as discussed later in this 
section. Both PDAs were originally proposed for the musical F0 
tracking problem and have been shown to provide highly accu-
rate pitch detection for clean monophonic voices. 

2.1. Pattern Recognition PDA 

The PR PDA exploits the fact that for a logarithmic frequency 
scale, corresponding to musical intervals, a harmonic structure 
always takes on the same pattern regardless of the value of its 
F0. Consequently, a pattern recognition algorithm is applied to 
detect such patterns in the measured spectrum by correlation 
with ideal spectral patterns for different trial F0 values in the 
expected pitch range. 

2.1.1. Initial Processing of STFT Magnitude 

The PR PDA requires the frequency bins of the spectrum to be 
logarithmically spaced. It was originally recommended to com-
pute the magnitude spectral values at logarithmically spaced 
frequency locations using cubic spline interpolation at a resolu-
tion of 24 points per octave [5]. We use an increased resolution 
of 48 points per octave. 

2.1.2. Cross Correlation Score 

For each trial F0, a cross correlation function is computed be-
tween the measured magnitude spectrum and an ideal spectrum 
represented by a logarithmically spaced impulse train of fixed 
number of components. If X(f) and I(f) are the signal and ideal 
magnitude spectra, with M frequency bins,  respectively, then the 
cross correlation function is given as 

1

0

( ) ( ) ( )
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f
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The local peaks in C(ψ) provide the pitch candidates for the 
melody detection, with the magnitude of the peak indicating the 
pitch strength or salience.  

2.1.3. Parameter Tuning 

In the original paper [5] the optimal number of components in 
the ideal spectrum, I(f), was empirically selected for different 
musical instruments (e.g. flute – 4 components, violin – 11 com-
ponents). In the present study the optimal number of components 
for each of the examples used in the subsequent experiments was 

determined as that which resulted in the optimal performance of 
the PR PDA for the clean (monophonic) singing voice signal. 

2.2. Two-Way Mismatch PDA 

The TWM PDA detects the F0 as that which minimizes a mis-
match error, which is computed between a predicted harmonic 
spectral pattern and the measured peaks in the signal spectrum. 

2.2.1. Initial Processing of STFT Magnitude 

The magnitude spectra are reduced to a set of peaks correspond-
ing to the sinusoidal partials only.  The implementation of TWM 
in [6] achieves this by selecting all local maxima in the spectrum 
above a fixed threshold below the maximum peak. Due to the 
large dynamic range of the singing voice spectra, however, it is 
found that spurious peaks are detected corresponding to the win-
dow sidelobes. Additionally, the weak higher harmonics may 
escape detection. To improve selectivity, we incorporate the 
more effective measure of local sinusoidality to choose from the 
local maxima. Sinusoidality measures how closely the shape of a 
detected spectral peak matches the known shape of the window 
main lobe [7]. To include the higher harmonics that may undergo 
some shape distortion due the rapidly varying F0 in ICM we 
apply a relatively relaxed lower threshold (0.6) on sinusoidality 
as compared with the recommended threshold (0.8).   

2.2.2. TWM Error 

The overall TWM error function, for a given trial F0, is com-
puted as shown below. 

/   /total p m m pErr Err N Err Kρ→ →= +  (2) 

Here N and K are the number of predicted and measured 
harmonics respectively. The error Errp→m is based on the mis-
match between each harmonic in the predicted sequence and its 
nearest neighbour in the measured partials while Errm→p is based 
on the frequency difference between each partial in the measured 
sequence and its nearest neighbour in the predicted sequence. 
The recommended value [4] [6] of ρ is 0.33. The locations of 
local minima in Errtotal are then the possible F0 candidates. 

Both of the above errors share the same form.  Errp→m, which 
is the more important of the two [8], is defined below. 
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Here fn and an are the frequency and magnitude of a single 
predicted harmonic. Δfn is the difference, in Hz, between this 
harmonic and its nearest neighbour in the list of measured par-
tials. Amax is the magnitude of the strongest measured partial.  
Thus an amplitude weighted penalty is applied to a normalized 
frequency error (Δf/f) between measured and predicted partials 
for the given trial F0. Recommended values of p, q and r are 0.5, 
1.4 and 0.5 respectively [4] [6]. Higher values of “p” serve to 
emphasize low frequency region errors. 

2.2.3. Parameter Tuning 

Unlike originally proposed, here N is not fixed over all trial F0 
but is computed as round(Fmax/F0), where Fmax is the upper limit 
above which the spectral content is not considered useful for 
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voice F0 extraction (we select Fmax =5 kHz). Additionally, it is 
found that using ρ = 0.2 favours the target voice fundamental, 
when the interference is characterized by a few partials only, by 
placing higher emphasis on Errp→m. 

3. SIGNAL CHARACTERISTICS 

A typical Indian classical vocal performance has three compo-
nents: the voice, which carries the melody, the percussion, which 
provides a rhythmic framework and the drone.  

3.1.1. The Indian Classical Singing Voice 

Indian classical singing is characterized by the dominating pres-
ence of subtle, but sometimes rapid, modulations in the form of 
ornaments, embellishments, and pitch slides. Further, unlike 
Western music, where the scale steps are fixed and grounded in 
the tempered scale, the location of the scale steps in Indian clas-
sical music is variable for different singers and also over differ-
ent performances by the same singer. This is because at the start 
of every performance, the singer tunes the tonic location accord-
ing to his/her comfort level. 

In terms of acoustic features, there is a large variability in the 
spectral distribution of energy across singers, perceived as dif-
ferences in timbre. However, the locations of significant voice 
harmonics in the spectrum rarely cross 7 kHz. 

3.1.2. Percussion: The Tabla 

The tabla consists of a pair of drums, one large bass drum, the 
bayan, and a smaller treble drum, the dayan. Tabla percussion 
consists of a variety of strokes, often played in rapid succession, 
each labeled with a mnemonic. Two broad classes, in terms of 
acoustic characteristics, are: 1. tonal (pitched) strokes that decay 
slowly and have a near-harmonic spectral structure and 2. impul-
sive (unpitched) strokes that decay rapidly and have a noisy 
spectral structure. If we consider the signal of interest to be the 
singing voice, the local signal-to-interference ratio (SIR) can dip 
as low as -10 dB around a tabla stroke onset. 
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Figure 2: Spectrogram of three typical tonal strokes (Ghe, Na 
and Tun) tuned to F0 = 283 Hz. 

From studying an extensive database of tabla strokes [9], it 
was found that while all the impulsive strokes had similar acous-
tic characteristics, there was a large variability in those of the 
different tonal strokes. The acoustic features of three typical 
tonal strokes, associated with the mnemonics ghe, na and tun, are 
compared by means of narrowband spectrograms in Figure 2. All 
the three strokes, soon after onset, exhibit harmonics that lie in 
the same frequency range as those of the singing voice. Ghe is 
produced by the bayan, and its harmonics all lie in a low fre-

quency range. In contrast, the pitch of the dayan is tuned to the 
tonic of the singer prior to the performance, with the harmonics 
of its strokes (na, tun) occupying a higher region in the spectrum. 
The strokes ghe and tun have a more gradual decay than na, 
which decays quite rapidly, but still much slower than any of the 
impulsive strokes. The spectrograms of ghe and na exhibit up to 
five dominant harmonics for a brief period after the onset. Tun, 
on the other hand, is dominated by a single harmonic, giving it 
an almost sinusoidal timbre. 

3.1.3. Drone: The Tanpura 

The tanpura is an overtone-rich, stringed instrument, mainly 
pitched at the singer’s tonic and additional strings at the fourth or 
the fifth, plucked continuously throughout the music perform-
ance. Its purpose is to provide an immediate pitch reference to 
the singer and the listeners. The SIRs for the voice with respect 
to the tanpura range from 20 to 30 dB. In spite of its low 
strength, the tanpura sound is audibly prominent due to the fact 
that its energy is nearly uniformly spread over harmonic partials 
throughout the spectrum up to 10 kHz. This leads to frequency 
bands dominated entirely by tanpura partials, thus enhancing its 
perceived loudness.  

4. COMPARATIVE EVALUATION ON SIMULATED 
SIGNALS 

In this section we compare the performances of the TWM PDA 
and the PR PDA in terms of robustness to sparse tonal interfer-
ences using synthetic target and interference signals, based on 
the signal characteristics described in the previous section. The 
simulation allows the signal characteristics to be varied system-
atically with the ground truth pitch known for evaluation. A pitch 
estimate is computed every 10 ms. The PDAs are operated 
within the framework of dynamic programming-based (DP) 
smoothing. DP uses a combination of suitably defined local 
measurement and smoothness costs into a global cost, which is 
optimized over a continuous voiced segment. Here the measure-
ment costs are the TWM error (Errtotal) for TWM and the correla-
tion score (C) for PR, each normalized to lie in the interval [0, 
1]. The smoothness cost is derived from the distribution of inter-
frame pitch transitions over a training dataset of clean voice 
pitch contours [3].  

4.1. Data 

The target signal is a sustained vowel (/a/), generated using a 
formant synthesizer, at a sampling frequency of 22.05 kHz, with 
time-varying F0. In order to simulate the F0 variations in Indian 
classical singing and the typical vocal range of a singer (about 2 
octaves), the time variation of the F0 of the synthetic vowel 
smoothly sweeps ± 1 octave from a chosen base F0 at a maxi-
mum rate of 3 semitones/sec. Two different target signals are 
synthesized using low (150 Hz) and high (330 Hz) values of base 
F0 respectively. The synthetic vowels have durations of 21 sec in 
which the instantaneous F0 completes six oscillations about the 
base F0. 

Since the tabla is tuned to the tonic of the singer, we can ex-
pect interference partials at the harmonics of the tonic. The inter-
ference signals for each of the base F0s, are complex tones hav-
ing 1, 3 and 5 equal magnitude harmonics at F0 equal to the tar-
get’s base F0. The amplitude envelope of a sequence of tun 
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Table 1: PA values (in %) for the PR and TWM PDAs, before and after DP, for the low and high target base F0s for increasing number 
of interference harmonics at fixed SIR.

Base F0 = 150 Hz Base F0 = 330 Hz 
Interference 

PR PR-DP TWM TWM-DP PR PR-DP TWM TWM-DP 
None 100.0 100.0 99.6 100.0 100.0 100.0 98.5 100.0 

1 harmonic 70.8 68.1 92.5 100.0 69.9 74.2 92.3 100.0 

3 harmonics 64.7 63.1 88.7 94.3 66.3 69.1 90.8 97.4 

5 harmonics 62.8 61.4 86.9 93.4 65.1 70.2 86.6 93.7 

 
strokes, each of which decays over 2 seconds, is superimposed 
on the complex tone. This results in 14 strokes over the target 
signal duration. These complex tones are added to the target 
signals such that the worst-case local SIR around the onset of 
any stroke is -10 dB. For each base F0, there are four cases: 1 
clean vowel and 3 noisy vowels. Figure 3 shows spectrograms 
for the target with low base F0, the interference with 5 harmonics 
at the target base F0 and the mixed signal at -10 dB SIR. 
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Figure 3: Spectrograms of the target (top) at low base F0, the 
interference (middle) with 5 harmonics at the target F0 and the 
mixed signal (bottom) at -10 dB SIR.  The target harmonics vary 
sinusoidally. The vertical lines in the interference spectrogram 
mark the onset of each stroke after which the harmonics of the 
interference decay. 

4.2. Experiment and Results 

To keep the comparison between PDAs as fair as possible, the F0 
search range is kept fixed for both PDAs for each target signal 
i.e. from 70 to 500 Hz for the low base F0, and from 150 to 700 
Hz for the high base F0. The PDAs only use spectral content 
below 5 kHz, above which harmonic content in the voice is gen-
erally sparse and weak. F0 is estimated every 10 ms resulting in 
2013 estimates for each target signal case. The PDA parameter 
settings for TWM were kept fixed for the low and the high base 
F0 targets, but for the PR PDA, the number of ideal spectral 
components is 10 and 6 for the low and high base F0 targets 
respectively. This is done to achieve optimal performance for the 
clean target. 

The comparison of PDAs, based on the pitch accuracy (PA) 
values expressed as percentages, before and after DP, appears in 
Table 1. In the computation of PA, the estimated F0 values are 
treated as correct if they lie within 50 cents of the known target 

F0 [1]. We see from Table 1 that for the clean signals both the 
PDAs display very high PA values and the combination of both 
PDAs with DP-based post-processing results in 100% accuracy. 
This indicates that the PDAs are working under suitable parame-
ter settings for the monophonic signals. The addition of a single 
harmonic, tonal interference, a close approximation of the stroke 
tun, results in a severe degradation of the PA values for the PR 
PDA but not for TWM, as indicated by row 2 of the Table. In the 
presence of the sparse tonal interferences, it is clear that the best 
results, indicated by the highest PA, are obtained for the combi-
nation of TWM and DP. Also, in this case we observe that the 
PA values tend to decrease with an increase in the number of 
harmonics at constant noise power. 

4.3. Discussion 

The results of Table 1 indicate two things. 1. At fixed SIR, the 
TWM PDA is least sensitive to harmonic interference when the 
number of interference partials is low and, 2. DP-based post-
processing is able to correct the majority of errors in the TWM 
output caused by sparse tonal interferences. 
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Figure 4: Plots of Term1 (dashed curve), Term2 (crosses) and 
Errp→m (solid curve), vs. trial F0 for a single frame for the 
target at high base pitch for interferences with 1 and 5 harmon-
ics added at -5 and -10 dB SIR 
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4.3.1. Robustness to Sparse Tonal Interferences 

The robustness of TWM to sparse tonal interferences and its 
sensitivity to the interference spectral structure can be attributed 
to the specific form of the TWM error, defined in Equations 2 
and 3. Errp→m can be viewed as a combination of two terms as 
shown below.  

( ) ( )max1 1

                        1 2
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Term1, called the frequency mismatch error, is only affected 
by location of partials. That is, it is maximum when Δf/f is large. 
Term2 is affected by relative amplitudes of the partials further 
weighted by the frequency mismatch error leading to minimum 
error when Δf/f is small and a n/Amax is large. Therefore, for a 
given trial F0, specific emphasis is placed on the presence of 
harmonics at the expected frequency locations. 

To illustrate the relative significances of the two component 
terms, consider Figure 4, which displays plots of term1, term2 
and Errp→m against trial F0, for a single frame of a target signal 
at high base pitch to which are added interferences with 1 and 5 
harmonics at -5 and -10 dB SIR. In this frame, the target F0 is 
217 Hz while the interference F0 is 330 Hz. For all four cases, 
we can clearly see that Errp→m is dominated by term1 and term2 
is of lesser significance. The dominance of term1, which is only 
affected by partial locations, explains the robustness of TWM to 
sparse tonal interference.  

For the interference with a single harmonic, the global mini-
mum in Errp→m occurs at the target F0, independent of SIR, and 
is much lower than the value of Errp→m at the interference F0. 
This occurs because all the target harmonics result in low fre-
quency mismatch terms but the numerous missing interference 
harmonics lead to large frequency mismatch terms irrespective of 
the overall strength of the interference. As the number of inter-
ference and target harmonics become comparable, the value of 
Errp→m at the interference F0 decreases in value and the global 
minimum shifts to the interference F0, again independent of SIR. 
This occurs because now all the interference harmonics result in 
lower frequency mismatch. 
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Figure 5: Relative strength (RS) contours of the target F0 for PR 
(above) and TWM (below) PDAs for the target at low base F0 
added to an intermittent interference with a single harmonic. 
Vertical dotted lines indicate location of synthetic stroke onset. 

There is a slight increase in the error at the target F0 due to 
some of the weaker target harmonics becoming distorted by in-
teraction with the interference harmonic lobes in their close vi-
cinity resulting in shifted or suppressed target harmonics. The 
low PA value of TWM for the case of the target at high base 
pitch combined with the interference having 5 harmonics is thus 
caused primarily by the number of interference harmonics, as 
compared to target harmonics, rather than their strengths. 

In contrast, there is no clear trend in the PA values of the PR 
PDA with an increase in the number of interference harmonics. 
The PR PDA computes a similarity score that depends on the 
cross correlation between the actual spectrum and an assumed 
harmonic spectrum at the trial F0. The overall spectral match at a 
trial F0 is affected by the energy of the contributing harmonics, 
independent of whether the overall energy is concentrated in a 
few strong partials or distributed over several weaker partials. 

4.3.2. Suitability to DP-based Post-Processing 

In the context of predominant (melodic) F0 extraction, the suit-
ability for dynamic programming-based post-processing is de-
pendent on the quality of the pitch candidates extracted in each 
frame by way of their local strengths (i.e. measurement costs).  
The relative strength (RS) of a pitch candidate at the underlying 
melodic F0 is computed as indicated below 

1 tr mf

tr

MC MC
RS

MC
−

= −    (5) 

where MCtr and MCmf are the measurement costs of the top-
ranked and the true melodic F0 candidates respectively.  

Since the identical smoothness cost [3] was used for both 
PDAs, a better performance indicates a superior measurement 
cost, or equivalently, better RS of the underlying melodic pitch.  
To confirm this, the RS of the true F0 is computed for each 
frame using Equation 5. If the target F0 is not present in the list 
of candidates then its RS is set to 0. Figure 5 displays the me-
lodic pitch RS computed by each PDA across the signal duration 
for the case of the target with low base pitch and a single har-
monic interference. We observe that the RS values of the PR 
PDA are severely degraded around the onset of most interference 
strokes (marked by vertical dashed lines). The corresponding 
degradation in target F0 RS for the TWM is relatively mild. This 
is consistent with its performance in terms of PA. The higher the 
relative strength of the candidate at the melodic pitch, the better 
is the potential for accurate reconstruction by DP-based post-
processing, especially when the interference is not continuous.  

5. EVALUATION ON REAL MULTI-TRACK MUSIC 

In this section we validate the performance of the TWM-DP 
predominant F0 estimator, which was found to perform with a 
high degree of accuracy on synthetic signals in the previous sec-
tion, on real music signals. 

Table 2: PA values (in %) for TWM-DP for Male/Female ex-
cerpts for clean voice, voice + tabla, voice+ tabla + tanpura.

Audio content Male Female 

Clean voice 99.55 99.76 
Voice + tabla 99.51 99.51 

Voice + tabla + tanpura 99.28 98.81 
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5.1. Data and Ground Truth 

The voice, tabla and tanpura signals used here were obtained 
from multi-track data consists of two 1-minute excerpts from 
each of two different professional vocal performances (one male 
singer and one female singer). One excerpt is taken from the start 
of the performance where the tempo is slow and the other ex-
cerpt is taken towards the end of the performance where the 
tempo is faster and rapid modulations are present in the voice 
track. Three separate tracks (one for each of voice, tabla and 
tanpura) are available for each performance segment. To ensure 
time-synchrony and acoustic isolation for each instrument the 
performing artists were spread out on the same stage with con-
siderable distance between them and recorded on separate chan-
nels simultaneously. 

The availability of the relatively clean voice track facilitates 
the extraction of ground truth pitch, which is then used to evalu-
ate the accuracy of the TWM-DP PDA on the corresponding 
polyphonic recording created by mixing at normally expected 
levels. Three different monophonic PDAs are each applied to the 
clean voice, and the estimated ground truth pitch at 10 ms inter-
vals is determined by a majority vote. The PDAs used here are 
YIN [10], SHS [11] and TWM [3]. With each based on essen-
tially different assumptions regarding the underlying signal pe-
riodicity, they tend to react differently to the different signal 
perturbations. For the purpose of evaluation, only the ground 
truth pitch estimates corresponding to voiced regions (i.e. the 
sung vowels, which comprise about 97 % of the vocal segments) 
are considered. 

5.2. Experiments  

For each voice excerpt, its time-synchronized tabla counterpart 
was added at an audibly acceptable, global SIR of 5 dB. Further 
the time-synchronized tanpura is added to the voice and tabla 
mixture such that the SIR for the voice with respect to the tan-
pura is 20 dB.  

The first two rows of Table 2 show the PA values for TWM-
DP (with respect to the “ground truth”) on the clean voice and 
the mixture of voice and tabla. That the algorithm is robust to 
tabla interference can be clearly inferred by the almost similar, 
and also high, values of PA for both cases. The PA values of the 
TWM-DP algorithm on the tanpura included signal (Row 3 of 
Table 2) do not show any significant degradation and are still 
very high. Even though the tanpura signal is spectrally dense, a 
majority of its partials escape detection during voiced frames 
because of their very low strength and so are not involved in the 
TWM error computation.  

6. VOICING DETECTION 

The TWM-DP PDA produces an estimate of the predominant 
pitch at every instant irrespective of the underlying signal con-
tent. For any useful representation of the melody, it is necessary 
to find a means to automatically detect frames where the vocal 
signal is indeed present. An attempt was made at using the TWM 
error as an indicator of voicing [12], but it was found that the 
variability of the error was very large as compared to mean. Ad-
ditionally it is expected that, in the present context, the TWM 
error takes comparable values in the voiced and unvoiced regions 
because of the tonal accompaniment (pitched percussion and 

continuous drone). We propose an alternative measure of voicing 
based on the signal energy associated with the predominant pitch 
estimate. Following the overall framework of [13], the output of 
a frame-level classifier is further smoothened over homogenous 
segments as determined by boundary detection. 

6.1. Implementation  

6.1.1. Frame-Level Classification.  

Based on the confidence in pitch estimates provided by the high 
PA values in Table 2, we propose a new, pitch-related feature 
that is indicative of voicing called pre-dominant F0 harmonic 
energy. It is defined as the sum of the energies of individual 
harmonics, in the low frequency region up to 5 kHz, correspond-
ing to the predominant pitch, and is given by 
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where F0  is the detected fundamental frequency and NF0 is the 
largest integer multiple of F0 below 5 kHz. The spectral bin 
numbers (k) corresponding to the closest local maxima, within a 
3% neighbourhood, of the expected harmonic location are used 
in the computation. The HE is normalized by its maximum at-
tained value over a single musical performance. From Figure 6 
(bottom), we can see that the HE values are seen to be high for 
voiced regions and low for instrumental regions. During tonal 
tabla strokes it is possible that the HE values will be high for 
short durations of time. We can also see the high variability in 
the TWM error (Figure 6 top) as mentioned in [12]. Clearly HE 
seems to be a better indicator of voicing than the TWM error.  

The MAP classification rule was then applied to the 2-class 
(vocal/instrumental) problem with the distribution of the HE 
feature modeled separately for each class by a Gaussian mixture. 
The HE feature extracted from approx. 22 minutes of hand-
labeled recordings of Indian classical vocal performances of 
various singers is used to train a Gaussian Mixture Model 
(GMM) with 4 mixtures for each class to account for the ob-
served distinct modes of the underlying signal within each class. 
Also the prior probabilities of the vocal and instrumental classes 
were estimated to be 0.7 and 0.3 respectively. The frame-level 
decisions are then smoothened by grouping frames over bounda-
ries of homogenous regions obtained as described next. 
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Figure 6: Plots of normalized TWM error (above) and HE (be-
low) for the same extract of a typical female vocal performance 
(from Section 5.1). The thick grey horizontal lines under the 
curves indicate the presence of the voice. 
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6.1.2. Automatic Boundary Detection and Grouping 

On observing the HE feature we see that while vocal and instru-
mental regions are reasonably well separated, there are localized 
fluctuations within regions. On the other hand, boundaries be-
tween regions are marked by broad (not abrupt) transitions. A 
segmentation based on detecting stable transitions in HE feature 
is expected to help in smoothing frame-level decisions. This can 
be achieved via a similarity matrix [14], a 2-dimensional repre-
sentation of how similar each frame is to every other frame. The 
absolute difference of the HE feature for corresponding frames is 
smoothened with a 2-d Gaussian difference kernel to obtain a 
“novelty” score. Peaks in the novelty score above a global 
threshold correspond to significant changes in the audio content 
and are picked as potential segment boundaries. A pruning of 
boundaries is done using a minimum segment duration criteria 
i.e. if two boundaries are closer than the minimum segment dura-
tion threshold then the one with the lower novelty score is dis-
carded. The optimal values i.e. ones that give the best trade-off 
between true boundaries and false alarms, of the difference ker-
nel duration, the global threshold and the minimum segment 
duration are empirically found to be 500 ms, 0.15 and 150 ms 
respectively. 

Grouping of frame-level classification decisions over the 
automatically detected segments is done by a process of majority 
voting, i.e. the segment assumes the label of that class into which 
the majority of the frames in that segment have been classified.  

6.2. Performance 

The voicing detector is tested on the composite data described in 
Section 5.1. Its performance is evaluated using a measure of 
overall accuracy, defined as the ratio of the sum of the correctly 
detected vocal frames and correctly detected instrumental frames 
to the total number of (vocal and instrumental) frames. At the 
frame-level stage we see (first row of Table 3) that the overall 
accuracy is quite high (87.8 %). From Table 4, we can also see 
that the vocal and instrumental classification accuracies are com-
parable, which indicates that the voicing detector is not biased 
towards any one class. 

Table 3: Overall classification accuracies (in %) at the classifier 
output and after grouping for the composite data with and with-

out pre-processing

 Overall Accuracy 

Classifier output 87.80 Before 
SS After grouping 92.44 

Classifier output 91.88 After 
SS After grouping 96.17 

Table 4: Vocal (V) - Instrumental (I) confusion matrix (in %) for 
the composite data after grouping, before and after pre-

processing. 

Before SS After SS 
 

V I V I 

V 92.26 7.74 96.55 3.45 

I 6.20 93.80 6.60 93.40 

 It was found that instrumental to vocal errors tend to occur 
during tonal tabla strokes. Vocal to instrumental classification 
errors are made during unvoiced speech sounds in the middle of 
sung phrases as well during sung phrase endings where the voice 
trails off gradually. The grouping process is able to reduce spuri-
ous errors caused by tonal tabla strokes and unvoiced singing 
sounds, which is visible in the increased the frame-level classifi-
cation accuracy post grouping (92.44%). However, the classifica-
tion errors due to the trailing voice at the ends of sung phrases 
are more persistent and may not always be corrected by the 
grouping process. These errors occur when the voice HE be-
comes comparable to the tanpura HE, given that the tanpura 
pitch will be detected during instrumental segments with no per-
cussion. In an attempt to alleviate these errors we propose a 
method to suppress the tanpura partials without significantly 
attenuating the singing voice.  

6.3. Spectral Subtraction-based Pre-Processing  

We attempt to exploit the relative stationarity of the tanpura 
partials for suppression. The use of spectral subtraction (SS) [15] 
was chosen over RASTA processing [16] since it was found that 
the latter severely attenuated voice harmonics during the steady, 
held notes. This is attributed to the fact that vibrato (F0 modula-
tion around the note frequency) is not a generally prevalent prac-
tice in ICM. 

Spectral subtraction is a well-known technique for noise 
suppression in speech communication. It involves the subtraction 
of an average noise magnitude spectrum, estimated during non-
speech regions, from the magnitude spectrum of the noisy signal 
followed by signal reconstruction from the modified spectrum. In 
the present case, we exploit the fact that the initial part of most 
north Indian classical music performances contains at least 4 
seconds of only tanpura. From this initial tanpura segment, an 
average magnitude spectrum is estimated once only and then 
subtracted from all subsequent frames in the mixed track. The 
relatively long segment serves to include the effects of the dif-
ferently tuned strings plucked in sequence. In the resulting tan-
pura-suppressed signal, it is found that there is no perceptible 
degradation of the voice while the tanpura sound is reduced to a 
low level of residual noise due to the partial subtraction of its 
harmonics. 

The vocal-instrumental classification was re-executed taking 
care to now train the classifier with the pre-processed data. From 
Table 3, we see that there is a significant increase in both frame-
level accuracy as well as the accuracy post grouping for the data 
that has been pre-processed using SS. This increase in classifica-
tion accuracy is due to the increased separability achieved by the 
HE feature because of the suppression of tanpura energy, result-
ing in a significant improvement in vocal classification accuracy 
(as can be seen in Table 4).  

7. CONCLUSION 

This paper investigates the effectiveness of harmonic matching 
based PDAs for the pitch tracking of the singing voice in the 
presence of strong, pitched accompaniment; the case of Indian 
classical vocal music was considered as a specific example. A 
harmonic matching PDA can be described by a spectrum compu-
tation/peak picking stage and the characteristic spectral fitness 
measure used in computation of the match between the signal 
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and ideal harmonic spectra. On comparing the TWM PDA and a 
representative harmonic sieve based PDA, it was found that the 
specific form of the TWM error function led to greater robust-
ness to strong tonal percussion (represented by signals with 
sparse, harmonic spectra). A feature based on the energy of the 
harmonics corresponding to the detected predominant F0 was 
found to be an accurate indicator of voicing in the same context.  

A separate evaluation (not reported here) of the TWM-DP 
PDA on vocal excerpts from the ISMIR 2004 melody extraction 
contest dataset [17] indicated high pitch accuracies. The overall 
PA value for 8 segments of audio (4 female and 4 male, total 
duration= 2 min 12 sec), in which the voice is dominant, was 
found to be 92 % using the TWM-DP algorithm. We conclude 
that while the TWM-DP system is comparable to other predomi-
nant F0 detection algorithms when the melodic voice is domi-
nant, it exhibits superior pitch accuracies in the presence of sig-
nificantly stronger harmonic interference that is spectrally sparse 
relative to the melodic voice. Specific knowledge of the compo-
nent spectral envelopes was not utilized in this work but will be 
considered in future as a way to extend its scope to a wider class 
of polyphonic signals. 

Related audio examples along with their corresponding re-
synthesized melodic lines are available for listening at 
http://www.ee.iitb.ac.in/daplab/MelodyExtra
ction/
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