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Abstract 
Landmark based recognition of unvoiced word-initial stops is 
investigated. The relative effectiveness of acoustic-phonetic 
attributes versus more global spectral shape features is 
experimentally evaluated for four-way place classification of 
unvoiced, unaspirated stops. Various feature sets derived 
from the burst and vocalic transition regions of word initial 
consonants are compared via GMM based classification under 
speaker, gender, and vowel-context variability. While a set of 
acoustic attributes derived from the burst shows the best 
invariance to vowel context, it is found that global spectral 
shape features provide the most robust representation of the 
vocalic transition region by overcoming the problem of errors 
in explicit formant tracking. A combination of features from 
the burst and vocalic regions was superior to burst-only cues, 
but still far from the near perfect identification achieved in 
human perception. 
Index Terms: Landmark based recognition, unvoiced stops, 
acoustic attributes, burst, vocalic transition 

1. Introduction 
Landmark based recognition of speech has recently re-
emerged as an active research area. The approach is 
anticipated to provide increased robustness to the various 
sources of variability that challenge present day HMM based 
systems using standard frame-based spectral representations 
[1,2]. In a landmark based system, important acoustic events 
related to speech production (e.g. stop release bursts, vowel 
onsets) are detected, and a fine analysis of signal segments in 
the vicinity provides the acoustic cues for recognition. The 
signal regions around landmarks are considered to be 
information rich with respect to the linguistic features of the 
underlying phones and hence expected to better preserve 
invariances across factors such as context and regional accent, 
and speaker gender and age. An advantage of landmark based 
signal representations is the possibility to define acoustic 
features tailored to the phone class defined by the landmark. 
The increased flexibility afforded by heterogenous feature sets 
however gives rise to several research issues. For instance, in 
the case of stop consonants, the release burst and the 
adjoining formant transition regions are known to provide the 
main cues to place of articulation. However the choice of the 
actual acoustic representation to be used in a statistical 
recognition framework still remains. Is the information on 
place of articulation best captured by raw spectral / cepstral 
representations, or, by acoustic attributes derived by 
processing the spectra and tailored to the underlying 
articulatory distinctions?  From an information theoretic point 
of view, information is lost as more processing is done. This 
assumes, of course, that the signal statistics are completely 
known or that infinite training data is available. Processing 
the data to convert the information into a potentially more 

useful form such as knowledge based acoustic attributes can 
help to make more effective use of finite training data [3].  
The objective of the present work is to consider this question 
for the class of unvoiced initial stops by automatic 
classification experiments using different acoustic 
representations and ways of combining them.   

Unvoiced stops in word initial position (prevocalic) are 
formed by the sequence of release burst, a frication segment 
and possible aspiration noise followed by a vocalic transition 
segment. Stop consonants are considered difficult to classify 
due to their dynamic nature and sensitivity to coarticulatory 
effects. The frontness of the following vowel influences the 
precise place of constriction of the stop. Both the perception 
and the automatic classification of prevocalic stop consonants 
have been subjects of active research. Perception studies on 
unvoiced initial stops across languages (English, French, 
Spanish, Dutch) have found that nearly perfect identification 
of stops can be achieved only when all the main cues (burst 
duration, burst spectrum and onset of vocalic formants) are 
present [4,5,6,7]. Research on automatic classification has 
focused on discovering the form of the cues that perform best 
in the place identification task. The acoustic representations 
investigated have ranged from static spectral cues observed at 
burst onset [8] to dynamic information (time evolution of 
static properties) observed throughout the burst and vocalic 
transition regions [9]. Further, a variety of acoustic attributes 
have been investigated based on applying knowledge of 
specific articulatory-phonetic distinctions [1,10]. In contrast 
to this, have been smoothed spectrum representations that 
capture only the global spectral shape. While similar to the 
MFCC based features used in state-of-the-art recognisers, in a 
landmark based system the spectra are aligned with the 
detected speech events. A prominent example of landmark 
based smoothed spectral representations are the cepstral 
coefficients of Nossair and Zahorian [4]. Dynamic spectral 
shape features obtained from the smoothed temporal 
trajectories of the cepstral coefficients beginning with the 
burst onset were found very effective in the encoding of place 
information in unvoiced initial stops in CVC isolated 
utterances [4]. 

In the present work, we consider the class of unvoiced, 
unaspirated stops of Marathi, a prominent language of the 
Indo-Aryan family. Like several related Indian languages, it 
distinguishes four places of articulation for stops in contrast 
to the three used in English. The four places of articulation 
are labial [p], dental [t�], retroflex [�] and velar [k] each of 
which can occur as unvoiced-unaspirated, unvoiced-aspirated, 
voiced-unaspirated and voiced-aspirated. Thus the unvoiced, 
unaspirated stops of Marathi differ from the prevocalic 
unvoiced stops of English in aspiration. Also, they differ from 
the corresponding stops of French, Dutch and Spanish by the 
presence of an additional coronal place of articulation, 
increasing possibly the complexity of the place identification 
task. We experimentally evaluate various choices for the 
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acoustic representation, and ways to combine cues from burst 
and vocalic transition regions in a statistical recognition 
framework. A special focus of this work is the evaluation of 
the robustness of the features to variations that are related to 
speaker vocal tract (of which gender difference is one extreme 
example [1]) and vowel context, which could arise possibly 
from differences in accent or language.  

2. Database description 
Utterances containing each of the four stops {p, t�, �, k} in 
word-initial position followed by one of the eight vowels of 
the language were recorded from each of 18 native speakers 
(10 male and 8 female). The 8 vowels are categorized as 
follows: {front: I,i,e}, {back: U,u,o}, {center: A,a}. Visually 
observed formant locations were found consistent with the 
vowel frontness. Two meaningful mono-/bi-syllabic words 
were chosen for each stop-vowel combination to obtain 64 
distinct words, which were each embedded in two different 
carrier phrases (one statement and one question). The 
resulting data set thus comprises of a total of 64 x 18 x 2 = 
2304 tokens (or 576 per stop consonant), recorded at a 
sampling rate of 16 kHz in quiet conditions.    

The spoken words were next isolated and normalized so 
that maximum amplitude of each word utterance is the same 
to compensate for varying loudness levels of different 
speakers. The time locations of the release burst and the 
voicing onset of the initial consonant were manually labeled. 
The burst onset was marked as the time instant after the 
closure silence at which a rapid change in the waveform 
amplitude sets in. The first negative to positive going zero 
crossing in the first cycle of the periodic waveform was 
labeled as the voicing onset. Table 1 gives a statistical 
summary of measured VOT (voicing onset time, or burst 
duration) across the Marathi words database. We note the 
relatively low VOTs of the unaspirated stops, with retroflex 
being the lowest.  The latter is explained by the relatively fast 
movement of the active articulator involved (the tongue tip) 
which offsets the effect of the more posterior PoA. Labials 
and dentals have comparable VOTs while velars are the 
longest.   

VOT (ms) Place of 
articulation Mean Std. dev. 

Labial 17.1 7.8 
Dental 15.0 5.9 

Retroflex 9.7 3.8 
Velar 27.8 10.5 

Table 1.  Statistics of the VOT for the four stops. 

3. Implementation 

3.1. Smoothed spectrum coefficients 

The global shape of the spectrum can be encoded by cepstral 
coefficients. We use the implementation of [4] to compute the 
cepstral coefficients by a cosine transform of a nonlinearly 
scaled and warped magnitude spectrum. The resulting 
“discrete cosine transform coefficients” (DCTCs) represent 
global spectral shape. Temporal trajectories of the first 6 
DCTCs sampled at fixed intervals are encoded using 3 cosine 
basis vector coefficients and that of the 7th DCTC encoded 

with 2 coefficients to obtain a 20-dim feature vector of 
“dynamic spectral coefficients” (DSC). The coefficients 
encode the smoothened trajectory of each DCTC with the first 
coefficient corresponding to the average value across time.  
The VOT of our unvoiced stops are much lower than those of 
the unvoiced aspirated stops of English [4]. As a 
consequence, it was found more effective to increase the 
sampling of the temporal trajectory to every 1 ms, with 
analysis window length = 6.4 ms.    

A further design decision involves the duration over 
which the DCTCs trajectory is observed. Nossair and 
Zahorian experimentally found a fixed duration of 60 ms from 
burst onset to be most effective [4].  In view of the fact that 
the Marathi stops have lower VOTs, we re-examine the 
choice of the fixed duration. We also investigate the 
possibility of using variable durations based on the detected 
voicing onset location. A fixed duration from the voicing 
onset onwards is appended to the burst region to obtain a 
continuous segment over which DCTCs trajectories are 
computed. While the method of [4] is based on the burst onset 
landmark only, the latter approach requires both landmarks. It 
also gives us the flexibility to compute the dynamic spectral 
coefficients separately at each landmark and later combine the 
feature vectors [5].    

3.2. Acoustic attributes 

Acoustic attributes are the acoustic correlates of the 
articulatory distinctions between the phones to be classified, 
i.e. place of constriction in the present problem. Given that 
the knowledge of speech production is as yet incomplete, 
experimental investigations must be relied upon to come up 
with precise features within the broadly accepted acoustic 
cues to place identification.  Features are extracted from each 
of the burst and vocalic transition regions. To limit the 
number of features in each set, feature selection by a greedy 
algorithm based on Shannon mutual information is applied 
whenever required [11].  

3.2.1. Burst 

Important acoustic cues provided by the burst region are the 
burst duration and level, spectral shape and its dynamics [7]. 
A compact set of spectral shape cues only, derived from an 
average power spectrum over the burst region, were shown to 
provide 78% accuracy in the classification of the 4 Marathi 
stops [12]. We now investigate the benefits of expanding the 
set of spectral shape attributes and further incorporating cues 
related to burst duration, level and dynamics. The burst region 
of the unaspirated stops is characterized by frication noise 
without well defined formants. A more global spectral shape 
description is easily obtained in terms of spectral prominences 
in fixed broad frequency bands. The bands selected (in Hz) 
are [0:750], [750:2500], [2500:5000] and [5000:7000]. 
Across the fixed sub-bands, the frequencies and amplitudes of 
the respective centers of gravity were found more effective 
features than were sub-band spectral tilts. To the set of sub-
band features, overall burst peak frequency and amplitude are 
added.  The burst peak is described by the ratio of the 
amplitude of the biggest peak in the frequency band 
[500:7000] to the average spectral amplitude in the band 
[0:500], and its frequency by the center of gravity in [0: 
7000]. The burst duration (VOT) and r.m.s. level over a fixed 
window located at the burst onset provided important 
additional static cues to place.  

Preliminary experiments revealed that the static cues, 
while effective overall, were marked by a prominent dental-
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retroflex confusion in the back vowel context. Spectral tilt 
cues were reconsidered. It was observed that spectral tilt in 
the band [2000:6000] which is expected to be low for dentals, 
was not found so at the burst onset but at a later instant in the 
burst. The set of static burst cues was therefore enhanced with 
two dynamic features (on the lines of [13]) derived from the 
temporal trajectory of tilts sampled at 1 ms intervals from 
burst onset to voicing onset. These were: the value of the 
largest tilt in [2000:6000] band, and the slope of a line fitted 
to the trajectory of tilts of the same band.

3.2.2. Vocalic transition 

Formant transitions are known to provide important 
perceptual cues to place of articulation. We use McCandless 
formant tracking algorithm to estimate the first three formants 
from the detected steady state of the following vowel back to 
voicing onset [14]. The formant frequency values and their 
log amplitudes at the voicing onset and steady state were 
obtained. Further features were derived from these 
measurements. Shifts in first and second formant frequencies 
from one end to the other end of the transition and log 
amplitudes of the three formants at voicing onset were found 
to carry significant information about the place of constriction 
as was determined by feature selection. The encoding of 
formant trajectories using cosine basis vector coefficients as 
in [4] was also considered, but was not found to perform as 
well as the formant parameters sampled at the two ends. 

4. Experiments 
Classification experiments were designed to test the various 
feature sets and their combinations for the place detection of 
the 4 consonants. Variability due to speaker, gender and 
vowel context were introduced as “cross-speaker”, “cross-
gender” and “cross-context” tests respectively. Cross-context 
testing is expected to reveal the extent of invariance of the 
specific feature set with respect to large changes in the 
frontness of the following vowel.  

 For each experiment, a GMM classifier with diagonal 
covariance matrices was trained by the EM algorithm for the 
4-way place classification.  The GMM was configured with 3 
mixtures per class based on preliminary experiments showing 
the most consistent performance across subsets of the data for 
this choice. The different classification tasks are described 
below.  
(a) Cross-speaker (CS): tested for speaker independence by a 
leave-one-speaker-out cross-validation. The training set was 
comprised of all tokens from 17 speakers and testing set was 
comprised of all tokens from the remaining one speaker.    
(b) Cross-gender (CG): tested for more extreme speaker 
variability. The training set was comprised of tokens from 
male only (or female only) speakers, and testing set, from the 
remaining female (or male) speakers.  
(c) Cross-context (CC): tested for variability in vowel 
frontness by excluding the test vowel frontness (i.e. one of the 
front, back, center categories) from the training set. The 
leave-one-frontness-out cross-validation thus involved 3 
complete rounds each round covering train and test tokens 
from all the 18 speakers. 

In each of the above experiments, the consonant 
classification accuracy is estimated for each of the feature sets 
under consideration. Table 2 shows the results in terms of 
percent correct over the 2304 test tokens from the cross-
validation testing. The feature sets are organized by the signal 

region they correspond to and whether they are smoothed 
spectral coefficients (DSC) or acoustic attributes (AA). 
Specific combinations of the feature sets are also considered.  

No. Feature set (dim) CS CG CC 
Burst region 

1 AA (12) 86.2 84.8 70.4 
2 DSC (20) 87.0 83.2 59.6 

Vocalic region 
3 AA (8) 49.8 40.8 35.7 
4 DSC: 20 ms from 

voicing onset (20) 
61.0 51.8 35.9 

Full region- fixed duration with one landmark 
5 DSC: 20 ms from burst 

onset (20) 
87.8 84.9 54.7 

Full region- variable duration with two landmarks 
6 DSC: burst+20 ms of 

vocalic (20) 
86.9 77.3 44.5 

Burst + vocalic (20 ms from voicing onset) -  direct 
fusion of  the 2 feature sets  

7  AA+AA (12+8=20) 87.6 84.8 72.7 
8 AA+ DSC (12+8=20)  88.2 86.6 73.3 
9 DSC+DSC (20+8=28) 88.6 85.5 60.1 

Table 2. Classification accuracies (%) for various 
feature sets and tasks. 

5. Results 
From Table 2, we can draw the following conclusions 
regarding the effectiveness of features for automatic place 
identification. The conclusions were drawn after verifying 
that the differences noted are statistically significant by 
applying McNemar’s test for two algorithms tested on the 
same data [15] (p<0.01 unless mentioned otherwise).  

5.1. Region wise comparison 

Burst region: We see that the accuracies of the DSC and AA 
are comparable in the CS and CG tasks but the AA show a 
significant superiority in the CC task indicating that the 
articulatory-acoustic features are far more context-invariant. 
Vocalic region: The DSC (20) are significantly superior in the 
CS and CG tasks. This is not surprising given the known 
difficulties of formant estimation in the highly dynamic 
vocalic transition regions. In fact, a vowel-context wise 
analysis of performance revealed that the AA-vocalic features 
performed well in center context only, where the first three 
formants are relatively well separated.    
Full region: When fixed duration starting with burst onset was 
used to obtain DSC, the best performance was found at 20 ms 
duration with performance degrading with further increases. 
This duration is likely to include the vocalic transition in the 
case of non-velar stops. DSC over variable duration based on 
actual VOT (item 6) showed no advantage over DSC from 
fixed duration segments.  

5.2. Combining feature sets 
We consider the combination of feature sets that have been 
separately obtained from each region (burst, vocalic). From 
the results of Sec. 5.1, we note that the possibilities worth 
investigating are: 1) AA from both regions, 2) AA from burst 
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combined with DSC from the vocalic region, and 3) DSC 
from both regions. In order to keep the total feature vector 
dimensionalities more or less comparable, the DSC vector 
from the vocalic region is pruned to 8 elements (from the 
original 20 dim) by the feature selection method mentioned in 
Sec. 3.2.  

We observe that DSC over a duration that includes the 
full burst and a fixed duration of vocalic transition (item 6) is 
clearly outperformed by the combination of DSC feature sets 
of the individual regions (item 9) under all three variabilities 
(although in the CS condition, the p value = 0.02). We find 
that adding AA-vocalic information to AA-burst changes only 
CC performance over AA-burst significantly. Similarly, 
combining the DSC-vocalic feature vector with the AA-burst 
feature (item 8) leads to a significant improvement in vowel 
context invariance while retaining the CS and CG 
performance of the DSC features’ combination (item 9).  
However, adding DSC-vocalic information (without pruning) 
to burst information of either form, gave poorer results in all 
the three tasks when compared with adding pruned DSC-
vocalic features. 

While Table 2 reports overall accuracy over consonant 
and vowel contexts, some specific observations were made. 
Adding DSC-vocalic information either to AA-burst or to 
DSC-burst showed the most marked improvements in the case 
of back vowels. Dentals in front vowel context were confused 
with other consonants with vocalic features alone, and this 
persisted in the feature combinations. Similarly, the retroflex 
consonant confusion in back vowel context that arises in the 
AA-burst features persists even when vocalic transition 
information is added. 

6. Conclusions 
The problem of landmark based place recognition of 
unvoiced, unaspirated word initial stops of Marathi was 
investigated. The database comprised of 64 Marathi words 
recorded from 18 native speakers. Various feature sets 
derived from the (manually labeled) burst and vocalic 
transition regions were compared for the 4-way place 
identification in a GMM classifier under speaker, gender, and 
vowel-context variations. A summary of results in point form 
follows. 
  
1) A maximum classification accuracy of 89% was obtained 
by combining feature vectors separately extracted from the 
burst and vocalic transition regions of the consonant. While 
the acoustic-phonetic feature set for burst representation 
proposed in this paper shows the best invariance to vowel 
context, it is found that the global spectral shape features 
provided the most robust performance in the vocalic transition 
region by overcoming the problem of errors in explicit 
formant tracking.  
2) The independent encoding of DSC in burst and vocalic 
regions retains more information about place compared to 
DSC that are derived from a single continuous region starting 
at the burst onset. Since the dynamics of the two regions are 
different, fitting their separate temporal trajectories is likely to 
be more accurate even if it increases the overall 
dimensionality. This indicates the utility of detecting both 
burst and voicing onset landmarks.  
3) Both AA and DSC features show relatively high 
performance in the cross-gender task, unlike the results 
reported on MFCC in HMM-based systems [1]. A possible 
interpretation of this is that performance gains are obtained by 
landmark-aligned analysis irrespective of the precise form of 

the features extracted. Of course, it may be noted that the 
present study was restricted to stops, and their acoustic 
properties are probably less affected by changes in vocal tract 
length than are those of vowels. 

We conclude that landmark based recognition is 
promising for automatic speech recognition when training 
data is constrained in some way, or when large feature space 
dimensionality (needed in order to capture context 
dependencies) is impractical. Methods for landmark detection 
in continuous speech are already under active research [2]. 

A preliminary perception test (not reported here) of 5 
listeners’ responses to a set of Marathi CV utterances by 2 
speakers, and to their isolated burst-only and burst-less 
segments, indicated that automatic classification was slightly 
better than the average listener score on burst-only stimuli but 
significantly worse on burst-less and full stimuli. Future work 
could address improvements in the representation of vocalic 
region cues to place identification. Research on novel ways to 
combine features and/or classifiers may help to further narrow 
the gap between human and machine identification.  
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