
schemes show an extremely rapid increase of sensitivity to 
phase noise with increasing M. 
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Fig. 2 Error probability as a function of EJN, 
a 2-POLSK 
b CPOLSK square 
c CPOLSK tetrahedron 
d 6-POLSK octahedron 
e 8-POLSKcube 
A Binary DPSK 
B Quaternary DPSK 
C Octonary DPSK 

Beyond the scope of this letter, there remains the problem 
of the recovery of the constellation {S,} at the receiver start- 
up time. This topic is investigated in Reference 6. 

Conclusions: We have proposed and exactly analysed four 
new multilevel modulation schemes based on the state of pol- 
arisation of a fully polarised lightwave. A suitable modulator 
structure has also been described. 

The results expressed in terms of P(e) against E J N ,  show 
significant improvements with respect to other standard 
modulation schemes and make M-POLSK modulation a 
good candidate for power and bandwidth eflicient optical 
communication. 

ESTIMATION OF INSTANTANEOUS 
FREQUENCY USING THE DISCRETE 
WIGNER DISTRIBUTION 

Indexing terms: Signal processing, Frequency modulation, 
Mathematical techniques 

Analytical expressions for the performance of the discrete 
Wigner distribution (DWD) in estimating the instantaneous 
frequency of linear frequency modulated signals in additive 
white noise are derived and verified using simulation. It is 
shown that the DWD peak provides an optimal estimate at 
high input signal-to-noise ratios. The applicability of these 
results to the general case of nonlinear FM signals is dis- 
cussed. 

Introduction: Measuring the instantaneous frequency of a 
signal is important for many applications. Timefrequency 
distributions, such as the Wigner distribution (WD) have been 
used to describe the instantaneous frequency of time-varying 
signals.’ Boashash’ developed the concept of instantaneous 
frequency (IF) and discussed various estimation methods 
based on timefrequency distributions. The use of the peak of 
the time-frequency distribution to estimate the IF  was deter- 
mined to be the most computationally attractive of these 
methods. Since the WD provides a concentrated time- 
frequency representation, its application to the estimation of 
the IF is of interest. Estimating the IF  from the WD peak has 
limitations which are determined by the nature of the time- 
varying signal and the input signal-to-noise ratio (SNR). 
Experimental results comparing the performance of the WD 
estimator to other methods for the estimation of the instanta- 
neous frequency and amplitude of an FM signal in additive 
white noise have been reported by Harris and Salem.’ In this 
letter we analytically examine the performance of the instanta- 
neous frequency estimator for a frequency modulated signal in 
additive white Gaussian noise (WGN) using the peak of the 
discrete-time WD (DWD). Exact expressions for the variance 
of the estimate of IF  for signals with quadratic phase func- 
tions are derived and validated using computer simulation. 

The class of signals considered is assumed to be given in the 
complex form, by 

s(n) = v(n)8+(”’ + z(n) (1) 
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where ~ ( n )  is complex white Gaussian noise with zero-mean 
and variance ,,;, The DWD of s(n) is given by 
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The basis for applying the DWD to the estimation of the 
instantaneous frequency of a signal is the first moment pro- 
 pert^.^ The first-order moment with respect to frequency of 
the DWD provides what is considered an acceptable defini- 
tion of the instantaneous frequency of a time-varying signal. 
The DWD can therefore be. used to recover the IF since it’s 
first moment, with respect to frequency, provides an unbiased 
estimate and is independent of any amplitude of frequency 
modulation that is present in the signal. The presence of noise, 
however, leads to serious degradation of the first moment 
estimate because of the absence of any averaging in its defini- 

variance even at high values of input SNR. Since the WD 
provides a highly concentrated distribution of signal energy in 
tim*fwuency for the type of signals being considered, a 
natural alternative is the use of the peak detection of the 
DWD to estimate the IF. For the general case of the signal 
given by eqn. 1, the peak estimator is biased, depending on the 
amount of amplitude and frequency modulation present in the 
signal. That is, only for signals of constant amplitude and 
quadratic phase functions, or linear FM signals, is an 
unbiased estimate of IF  obtained using this approach. For 
signals that meet this condition, it will be shown here that the 
DWD peak provides an optimal estimate of the IF  at high 
values of SNR and degrades only slowly as the SNR decreases 
down to a threshold value. The threshold SNR for the break- 
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down of the DWD peak estimator of IF will be evaluated. The 
effect of nonlinear FM signals on the performance of the esti- 
mator is discussed and windowing is suggested to improve 
performance. 

Performance of the estimator: In practice the DWD (eqn. 2)  is 
implemented over a finite data record of N samples, using a 
standard DFT.4 Hence the DWD can be looked upon as the 
frequency-scaled DFT of the kernel sequence with a scaling 
factor of two. For the signal given by eqn. 1, assume for the 
present a constant amplitude v(n) = A which yields an input 
SNR = A2/u: ,  we obtain for the DWD kernel 

$n + k)p( , ,  - k )  = A ~ ~ l ' 4 1 ~ ~ * ~ - ' 4 ~ ~ - k I l  + A&'4("+*Iz8(n - k )  

+ Ae-"'"-k'z(n + k )  + z(n + k)z*(n - k )  

(3) 

For signals with a quadratic phase function, the first term is a 
constant frequency sinusoid of amplitude A*.  The noise in the 
kernel consists of the last three terms in eqn. 3 (which arise 
from the input noise components as well as from signal x 
noise terms). Since the input noise sequence is assumed white 
and Gaussian, the noise terms in the kernel are uncorrelated 
and hence white. The resultant noise is not Gaussian however 
due to the introduction of the product term. The resultant 
noise power in the kernel is then the sum of the variances of 
the three uncorrelated noise components 

(4) NP,,,,,, = 2A'u: + U: 

There are only N / 2  independent samples in the (conjugate 
symmetric) kernel, so the variance of the noise in the DWD 
spectrum is scaled by the factor N / 2  rather than the expected 
factor N over the input SNR. Hence the SNR in the DWD 
spectrum is 

A4 x ( N / 2 )  
2A2a:  + a: SNR,, ,  = ~ 

The problem is now reduced to that of estimating a constant 
frequency sinusoid in white noise using the peak of the DFT 
magnitude. Using Reference 5 it is seen that the variance of 
the DFT estimate at high SNRs is dven by 

6 
varDpTCn = (2rr)'(SNR)(N2 - 1) 

where S N R  in eqn. 6 stands for the SNR in the DFT and is 
given by N A 2 / u : .  The frequency scaling by a factor of two 
inherent in the DWD means that the frequency estimate 
obtained from its peak must be corrected by the same factor. 
This leads to a reduction of variance by a factor of four for the 
DWD. Substituting the SNR of the DWD spectrum, as given 
by eqn. 5, into eqn. 6 and scaling by four, we obtain the 
variance of the DWD peak estimator of IF of a linear FM 
signal in white Gaussian noise, which is 

6(2A2a:  + U:) 
var,,& = 

(2n) '2A4N(NZ - 1) (7) 

At high input SNRs ( A 2  S U:) the above expression reduces to 

which is the same as the variance of the maximum-likelihood 
estimate of the frequency of a stationary sinusoid in white, 
Gaussian noise.5 The DWD peak is therefore an optimal esti- 
mator of IF for linear FM signals in WGN at high SNRs. As 
the SNR decreases a threshold effect is expected to occur as in 
the case of the DFT estimate of a stationary sinusoid in noise. 
The threshold effect is due the phenomenon (known as 
outliers) of frequency estimates falling outside the main lobe in 
the DWD spectrum and on one of the minor maxima leading 
to a sharp increase in the mean squared error (MSE). The 

probability of occurrence of an outlier is related to the SNR in 
the spectrum, and it is known from the DFT case that the 
threshold SNR below which the MSE starts to increase 
abruptly is about 15dB.5 The SNR in the DWD is related to 
the input SNR by eqn. 5. Hence the threshold SNR for the 
DWD peak estimator is given by 

A 4  x ( N / 2 )  
2A2u:  + U: 

SNRDwD = ~ - - 15dB (9) 

which at high input SNRs ( A 2  p U:) reduces to the condition 

A'N 

0: 
--2ldB 

Some reduction in the probability of an outlier is obtained by 
directly using the real valued DWD rather than its magnitude 
to estimate the peak value. Computer simulations indicate 
that this reduction is slight (between O . H . 7 5 )  resulting in a 
nearly insignificant effect on the MSE. 

In the case of nonlinear FM signals, the DWD peak estima- 
tor is typically biased with the amount of bias depending on 
the extent of the nonlinearity (or more accurately, on the devi- 
ation of the IF law from skew-symmetry within the data 
window6). The bias arises in the attempt to apply a least- 
square's fit of a constant frequency sinusoid to the kernel 
which is no longer narrowband. For an arbitrary nonlinear 
FM signal, the bias can be controlled by suitably windowing 
the input signal before generating the DWD. For a slowly 
varying FM signal, the window length can be chosen so that 
the IF law is practically linear within the window. In this case 
the performance results derived in this section can be directly 
applied. This approach reduces the bias at the expense of an 
increase in the variance of the estimate due to the increased 
main lobe width in the DWD. Alternative window types such 
as, for example, the Gaussian window can be employed in 
order to minimise the trade-off between bias and variance of 
the estimator. 

Computer simulations: Computer simulations were used to 
verify the performance of IF estimation using the DWD peak. 
The MSE at various input SNRs for a linear FM signal in 
WGN was estimated by taking the average of the squared 
errors between the actual and estimated frequencies, obtained 
over between 300 to 3000 trials. A @-sample data window 
was used and a large, zero-padded FFT computed in order to 
minimise errors in the IF estimate due to frequency quantisa- 
tion (in practice an efficient interpolation scheme can be 
substituted). Fig. 1 compares the simulation results with the 
theoretical MSE given by eqn. 7. It is seen that at SNRs above 

0 2 4 6 8 1 0 1 2  
MSE-', d B  

143111/ 

Fig. 1 Performme of D W D  peuk estimutor for linear F M  signal in 
W G N  
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~ eqn. 7 
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the threshold the experimentally obtained values closely described here exhibit simplicity, universality, modularity and 
match the theoretical values of MSE. The threshold SNR is fault tolerance. We describe a fast, routing algorithm with 
correctly predicted at 3 dB for the given value of N. time complexity O(N log (N)). 

Summary: Analytical expressions for the performance of the 
DWD peak in the estimation of IF  of a linear FM signal in 
WGN have been presented. The estimator is optimal at high 
SNRs above a threshold value. These results enable one to 
properly choose estimator parameters such as data window 
length and type under given input signal conditions. 
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SINGLE SIDED SWITCHING NETWORKS 

Indexing terms: Switching and switching circuits, Networks, 
Algorithms 

A novel and simple architecture for realising single-sided, 
rearrangeably-nonblocking, N-port switching networks (N is 
a power of 2), that uses NI2 log (N/2) elements, together with 
an efficient routing algorithm with time complexity O(N log 
(N)) is presented. The networks also exhibit a useful measure 
of fault tolerance. 

Introduction: Matrix switches provide a dynamic architecture 
invaluable for controlling the connectivity of networks. They 
iind numerous applications within computer and communica- 
tion centres in rearranging the configuration of processors, 
terminals and communications entities, and also as a dynamic 
connectivity tools within parallel processors. 

Since crosspoint architecture requires O ( N 2 )  switch ele- 
ments, recent work has concentrated on multistage networks 
using fewer components consisting of exchange elements (also 
called betaelements, or swoppers). Most authors have worked 
with double sided (DS) networks’ which interconnect only 
between ports on opposite sides. Here we are concerned with 
single sided (SS) rearrangeably nonblocking, N-port networks 
which provide dynamic connectivity for any of the 

sible interconnection patterns of pairs of ports. 
An SS architecture has been proposed by Osatake and 

Ogawa’ resembling a folded DS network. Hill3 recently 
described an unusual looking and ingenious SS architecture 
for optical networks for which there is, unfortunately, no 
known routing algorithm. Both these designs use ( N / 2 )  log 
( N / 2 )  elements (all logarithms are base 2). The networks 
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(N - 1) x (N - 3) x (N - 5)  x _ _ .  x 3 x 1 =(N - l)!! pos- 

Theory: Since there are (N - l)!! possible, distinct connection 
patterns, no universal, SS, N-port network can be con- 
structed with less than log [(N - l)!!] independent, binary, 
switching elements. This number is asymptotically close to 
( N / 2 )  log (N/2) .  

A typical single sided network is illustrated in Fig. 1. Repre- 
sentations of this kind will be called routing diagrams. Signals 
pass through the network from left to right, then through a 
‘short circuit’ at the right before returning from right to left. 

stgnals depth numbers 

Let N = 2”, each of the N signals (numbered 0 to N - 1) 
enters the network at a port (numbered the same as the signal) 
then passes through n ‘phases’, 0 to n - 1. Each phase consists 
of a bank of swoppers followed by a wiring permutation. It is 
convenient to use phase and depth number for the horizontal 
and vertical position in the routing diagram, where the depth 
number (0 to N - 1) of a given signal at any phase is just the 
vertical position, measured in wires counted from the top of 
the routing diagram. It is written in binary. 

The architecture illustrated in Fig. 1 was carefully chosen to 
generate critical relationships (a) between the wiring permu- 
tation and the depth number, and (b) between the swopper 
state and depth numbers. In particular, (a) the wiring permu- 
tations cause a right-rotation of the bits of the (binary) depth 
number, and (b) the effect of swoppers in the swopped state is 
to complement the least significant bits of the depth number 
of both signals passing through it, while a swopper in the 
non-swopped state has no effect on depth number. 

Theorems: First we briefly describe two algorithms 
(algorithm-1 and algorithm-0) by means of the two theorems 
upon which they are based. These are in effect extensions of 
the ‘looping algorithm’ (of, for example, Huang4 and Opfer- 
man and Tsao-Wu5). 

Both algorithms are described by means of a topological 
structure we will call an (N, E, e)-net: a network consisting of 
N vertices numbered 0 through N - 1 (N = 2*) and two sets 
{E} and {e}, each consisting of N / 2  edges, each edge joining 
two vertices and each vertex connecting two edges, one edge 
from each set. No vertex is connected by two edges from the 
same set. 

Theorem 1 :  For any (N, E, eknet, it is possible to assign a 
binary digit (0 or 1) to each vertex such that (a) all vertices 
joined by a common edge in {E} have opposite parity, and (b) 
vertices joined by a common edge in {e} also have opposite 
parity. 
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