
Distraction Free Evolution of Active Contours

V. Srikrishnan, Subhasis Chaudhuri
V.I.P Lab, Electrical Engineering Department

Indian Institute of Technology Bombay, Mumbai-400076, India
krishnan@ee.iitb.ac.in

Abstract

We propose a novel energy term to make the curve evo-
lution quite robust to spurious edges. The physical intuition
behind the formulation is that an object edge is generally
continuous, but it could be composed of weak and strong
segments. We then formulate the energy term which depends
on a second order measure defined on the contour. Minimi-
sation of this energy term yields a space varying curvature
based curve evolution equation. An added advantage of the
formulation is that this term also acts as the regularising
term for smoothing the curve evolution. The proposed term
can therefore be used in conjunction with any of the numer-
ous gradient based active contour models. For our exper-
imentation purpose, we have used the well-known gradient
vector force model as the external force. We have performed
a number of experiments on images and obtained good re-
sults.

1. Introduction

Active contours or “snakes” are a very popular class of
models used in computer vision for segmentation and track-
ing. Contour evolution is obtained by deriving the Euler-
Lagrange equations corresponding to an energy functional
defined on the curve. The energy term consists of an im-
age based term and a smoothness or a regularising term.
The image force driving the active contours can be region
or edge based models or some combination of both depend-
ing on the energy functional. Region based contours[3][15]
use a probabilistic description of the target appearance. On
the other hand, gradient based contours[2][4][7][10][12] are
attracted to the image areas with higher magnitudes of gra-
dient. Region based models have generally better capture
range but the segmentation provided the edge based model
is more accurate in capturing the object boundary.

It is well known in computer vision literature that ac-
tive contours are quite sensitive to initialisation and easily
distracted by clutter. This is especially true for the case of

gradient based active contours, which are distracted by the
presence of stronger edges near the target. The contribu-
tion of this work is the definition of a new curve energy
term which makes the curve evolution robust to clutter and
at the same time plays the important role of the regularis-
ing term. The proposed energy term depends on a second
order measure defined on the curve and uses the image gra-
dient information. However, as we shall explain later, the
proposed term is not an external energy term in the conven-
tional sense.

For the sake of completion, we mention here that de-
pending on the implementation scheme used, active con-
tours have been classified as geometric or parametric ac-
tive contours[5]. Geometric active contours use the level
set methods[11][13] for implementation. In this work, use
cubic B Splines for implementation. It is to be noted that
the ideas presented in this work is quite independent of the
implementation scheme used.

Notation: We assume that the curve, denoted by
C(p, t) = (x(p, t), y(p, t)) is closed and planar. The curve
is parametrised by p and t is the artificial time parameter of
evolution. Thus, C(p, 0) is the initial contour. The curva-
ture is denoted by κ and the inward normal and tangents are
denoted by N and T, respectively. The image is denoted
by I . The curve speed parameter is g = |Cp|. The general
curve evolution equation, consisting of both tangential and
normal term is,

Ct = ηN + ρT (1)

where η and ρ denote the normal and the tangential evolu-
tion term respectively.

2. Gradient Based Contour Models: Overview

In this section, we provide a overview of the gradient
based models and discuss the shortcoming common to all
the models. This will provide the motivation for the work
presented in the paper.
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2.1. Energy Models

The generic energy functional defined on the contour is
as follows,

E(C) = Eext(C) + αEint(C) (2)

For the gradient based models, the external energy term
Eext(C) attracts the curve towards high gradient in the im-
age. The internal energy Eint(C) term is used as a reg-
ularising term for stable evolution and smoothness of the
evolved curve. The relative strengths of each term is con-
trolled by α.

The first active contour model was proposed by Kass,
Witkin and Terzopoulos[7] in their seminal work. The en-
ergy term defined by Kass et al. is

E(C) =
∫ 1

0

f(C(p))dp+
∫ 1

0

γ(p)|Cp|2dp

+
∫ 1

0

β(p)
2

|Cpp|2dp
(3)

where f(C) = −|∇I(C)|2. The first term on the RHS
moves the curve towards the nearest local edge. The next
two terms, weighted by γ and β are called the membrane
term and the thin plate term respectively. In this model, both
the membrane and thin plate terms are modelled as space
variant. However, there is no specification of their exact
functional form. In the implementation, it is assumed that
these terms are constant. The Euler Lagrange equations ob-
tained by minimising equation(3) provided the velocity field
for evolving the contour. The geodesic active contour[2]
model proposed by Caselles et al. basically reformulates
the problem as that of finding a geodesic on a Riemannian
space defined by the image. Their energy functional leads
to the following evolution equation

Ct = h(I)κN− (∇h � N)N, (4)

where h = 1
1+|∇I|2 .

Prince et al.[4] proposed an formulation for computation
of the motion field for contour evolution, called the gradient
vector force(GVF) model. The force field F = (u, v), is
obtained as the minimisation of the following functional,

Eext = EGV F =
∫ ∫

(F−∇I)2

+ γ(u2
x + u2

y + v2
x + v2

y)dxdy
(5)

where γ, with an overuse of notation, is the term control-
ling the spatial extent of the force field. The calculated
force field is equal to the local gradient in regions of strong
edges and is extended to the other regions by penalising
rapid variations, controlled by γ. The GVF model increased

the capture range and produced better segmentation in con-
cave regions than the earlier models. However, the motion
field obtained from this model often attracts the curve to-
ward stronger edges. In real life scenario, such edges could
be present near the object of interest and hence led to in-
correct segmentation. Li et al.[8] present an useful exten-
sion to the GVF model to solve the problem associated with
the GVF model, called the edge preserving gradient vector
force(EPGVF) model. The EPGVF model adds one more
term to the GVF model. This is the Jacobian of the mo-
tion field,

∫ ∫
|Jvp|2dxdy, and is called the edge preserv-

ing term. This term penalises the deviation of the motion
field from the local image gradient direction. This prevents
the stronger gradient from overwhelming the weaker gradi-
ent.

In [9], the authors have proposed a higher order active
contour model(HOAC). They have used this model for seg-
menting out road networks in satellite images where the tar-
get boundaries are elongated and parallel in structure. Im-
posing the condition of Euclidean invariance, the energy
functional used by the authors was,

E(C) = Eint(C) − λ

2

∫ ∫
[T(p) ·T(p′)]ψ(R(p, p′))dpdp′

Here ψ is an interaction function which controls the extent
of the interaction and R(p, p′) is the Euclidean distance be-
tween the points C(p) and C(p′). Although interesting, the
curve evolution equations are extremely dependent on the
values of different parameters.

Our work is inspired by this work, however there are
some crucial differences. The physical significance of our
model is that it conforms to the notion that object bound-
aries are continuous entities and penalise disjoint sections of
the curve. There is no such intuition in the HOAC model.
Also, a crucial point to note is that the energy functional
proposed in [9] leads to structural elongations. This is po-
tentially disastrous for most practical segmentation prob-
lems.

2.2. Motivation

In figure 1(a), we illustrate the general problem associ-
ated with the gradient based edge models. As we have men-
tioned earlier, we use the GVF model to generate the motion
field and the following problem is quite independent of the
energy functional used to attract the curve toward the object
boundaries. The curve in red shows a general initialisation
for segmentation and the final converged curve is shown in
green. As can be seen in the figure, the final curve segments
out the cell of interest only partially and the segmentation
“spills” into the next cell. This is because the edges of the
adjacent cells act as the sources of attraction for the snake.
Here, clearly the poor segmentation is due to the initialisa-
tion because a significant portion of the red curve lies in the
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(a) Due to initialisation, final
curve traces the border of the
adjacent cell.

(b) Stronger edge of the
white square overwhelms the
weaker gray boundary of the
circle.Image taken from [8]

Figure 1. Results of GVF[4] segmentation.
Initial curve in red, final curve in green.

adjoining cell. Therefore, it is not perhaps too surprising
that the final curve also leaks into the adjacent cell.

Figure 1(b) shows another example where the traditional
gradient based method fails. In this case, the initialisation
is made inside the circle to be segmented and therefore we
expect an accurate segmentation. However, we see in the
figure that the stronger edge of the square near the bottom
portion of the circle has attracted the contour. Summarising,
the gradient based model fails in many cases practically, ei-
ther due to incorrect initialisation or due to the presence of
stronger but distracting edge near the target boundary.

3. Structurally Salient Snake

In computer vision, high level knowledge about the prob-
lem is incorporated as some kind of prior. For example,
energy terms based on shape priors are frequently used in
segmentation problems to provide robustness to occlusion.
For a gradient based segmentation task, specifying a prior
has its own merits in the form of a goal directed evolution
of the contour and demerit in the form of having to define
and enumerate and learn the prior. Here we use structural
saliency, a feature that can be easily computed, to provide
robustness during curve evolution.

To get a intuitive feel of prior term, we re-examine the
terms of the generic curve evolution equation(2). The first
term, which is the external energy term, forces the curve
towards the local edge, which could be the proper edge or
a spurious one. The smoothness or the regularisation term
maintains the coherence of the curve. Examining figures
1(a) and 1(b), we see that in the converged contour there are
parts of it which do not lie along the edge. However, these
segments form a link between two sections of the contour
which themselves lie along the edges. Therefore, the seg-
mentation does not make sense visually because of these
“breakages”. Of course, it is not necessary nor is it pos-
sible that the whole of the curve lie along one continuous
edge; minor deviations are to be expected. The drawback

Figure 2. Illustration of contour segment
in these models is that there is no feedback from those por-
tions of contour which are “sitting” on the true edges to the
rest of the curve. Keeping these points in mind, therefore
our aim is to design a model wherein a contour is made
aware of the edge it is following and to prevent it from leav-
ing that edge in search of a nearby stronger edge, providing
the much needed robustness against clutter. We must pe-
nalise those excursions of the contour which are small in
comparison to the longer section of the contour.We there-
fore encourage the contour to evolve towards the relevant
local edge rather than the strongest local edge.

The key idea of this work is to define a smoothness term
which varies along the curve dynamically during evolution
to guide the curve to the proper edge as discussed earlier.
If a section of the curve lies on a long edge section, then
the deviation of the curve away from that section should be
penalised, even if the deviation itself is toward a stronger
but a shorter edge, thus emphasising the importance of edge
saliency further. The mathematical details of the model is
given next.

3.1. Energy Functional

The proposed energy term has the following form,

Eint(C) =
∫ 1

0

α(p)f(C)dp. (6)

This energy term consists of the space varying weighing
term α(.) and the energy functional defined on the contour
f(C). We now define the function α(.). Before that,let
us assume that the curve is divided into N segments; we
shall describe how to divide the curve later. The param-
eter values corresponding to the segments are denoted by
pi, i = 0, .., N − 1. The factor α(p) for any point lying
within the i−th segment weighting the smoothness function
f(C) is defined as follows

α(p) = ωiθ(p), (7)

Here g(p) = ||Cp(p)|| is the curve speed parameter. Equa-
tion 7 which governs the weight of the smoothness term, is
a product of two terms. The first term, ωi is constant for a
segment and is defined as

ωi = 1 −
∫ pi+1

pi
|∇I(C(p′))|g(p′)dp′∫ 1

0
|∇I(C(p′))|g(p′)dp′

(8)
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From the expression, it can be seen that ω is depends both
on the curve length and the strength of the edge along which
it lies. It is nothing but a normalised weighted length of the
curve segment, where the weight is the gradient magnitude.
Therefore, for a curve segment lying along a strong edge, it
will be a small number. For example, in figure 2, ω3 < ω1.
To make the concept clearer, let us consider two curve seg-
ments of unequal lengths. Let the shorter segment lie along
a strong edge while the longer segment lie along a relatively
weaker edge. Therefore, there is a distinct possibility that
ω for the shorter edge would be greater. If we now view
the strong edge to be part of clutter and the weaker edge to
be the part of the curve, we have that the smoothness term
f(C), whatever be its functional form, would have a higher
weight for the shorter curve segment lying on the distract-
ing edge. It is worth noting here that adjacent segments
would have completely different value of ω. Therefore, at
the junction of two successive segments, the weight would
vary drastically. This could potentially lead to instabilities
in curve evolution.

The potential instability leads us to define a smoothing
term in equation 7. One requirement of the term is that at the
boundaries, it should ensure that α(p) changes smoothly.
Therefore, this means reducing the value ω to that of its
neighbour or rather, to the minimum value of all the seg-
ments. However, we also need to maintain the α(p) as close
to ωI for the segment for the i−th segment. Keeping these
in mind, θ is defined as follows

θ(p) = exp
{
− D2(p)

σ2
i

}
(9)

where D(p) is defined as,

D(p) =
∫ p

pi

g(p′)dp′ − 1
2

∫ pi+1

pi

g(p′)dp′ (10)

The value D(p) is nothing but the Euclidean distance of the
point C(p) from the centre of the segment. Therefore, θ is
symmetric about the centre of the segment. The maximum
value of α for the i−th segment occurs at the centre of the
segment and is equal to ωi. It gradually reduces as we move
toward either end of the segment. There remains the prob-
lem of selection of σi. We can fix the value of σ as follows.
Let us take the minimum of ω for all the segments and de-
note it as ωmin. We now choose a value v < ωmin and set
α(pi) = v for i = 0...N − 1. Now, we can determine σi,
because we know the boundary value α(pi) and we know
the value of D.

We now discuss the choice of the smoothness func-
tional f(C) in equation 6. In [5], the authors have dis-
cussed a wide variety of smoothness functional. We set
f(C) = |Cp|2. This is the length based regularising term
occurring in the Kass et al. model. There are two rea-
sons for this choice of f(C). Firstly, it has been shown by

(a) Segmentation re-
sults for the image in
fig. 1(a)

(b) Results for image
in fig. 1(b) internal ini-
tialisation

(c) external initialisa-
tion of the contour.

Figure 3. Results using the proposed model.
Grayson[6] that the evolution Ct = κN, obtained by min-
imising E(C) =

∫ 1

0
|Cp|2dp, is guaranteed to be smooth.

Secondly and more importantly, all planar simple curves
shrink to a round point by this evolution. During evolu-
tion, concave regions become convex and then this convex
region shrinks to a point.

Substituting α and f(C) in equation 6, the Euler-
Lagrange equation minimising this energy functional lead
to the following curve evolution equation,

Ct(p) = α(p)κ(p)N (11)

This constitutes the position varying smoothness term of the
model. Since we use parametric B splines for implemen-
tation, we add a tangential reparametrisation term as sug-
gested in [14]. The need for reparametrisation is discussed
in this work and the references therein. The complete evo-
lution equation is

Ct(p, t) = (κ(p)α(p) + F(C(p)) � N)N + ρT (12)

4. Results and Discussion

For implementation, we have used the OpenCV com-
puter vision library[1]. In figure 3 we show the results ob-
tained using our model for the images in figure 1. It is to
be noted that the segmentation is as desired. To show the
robustness of the proposed model with respect to initiali-
sation, for the image in figure 1(b), we initialise the curve
such that it cuts through the square, see figure 3(c). We
again notice the the segmentation is quite accurate. We note
that though for the internal initialisation of the curve in fig-
ure 3(b), the EPGVF model[8] has comparable results, for
the external initialisation the method would completely fail.
This is because of the fact that the EPGVF model would
force the curve toward the stronger edge of the square.
Figures 2 and 4(a) show the segmentation results obtained
using the GVF and proposed model respectively for another
image. In this image, the GVF snake is distracted by the
presence of the stronger edge of the monitor. Again, we
note that the proposed model is able to segment the hand
correctly. Figure 4 shows another example of segmentation
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(a) Result using pro-
posed model for the
image in figure 2

(b) Edge leakage using the
GVF[4] model.

(c) Result using the
proposed model

Figure 4.

(a) GVF Segmentation:the GVF
model gets attracted to the strong
edge of the white region inside the
quadrilateral.

(b) Segmentation using the pro-
posed model

Figure 5. Results on a synthetic image.

using the proposed model. Figure 4 again demonstrates the
efficiency of our model in a segmentation task.

Next, we show the results of experimentation using both
the GVF and the proposed model on a synthetic image as
shown in figure 5. We use this example to demonstrate
the robustness of the proposed model to spurious strong
edges. The edge formed by the white path at the centre of
the pinkish quadrilateral is much stronger than the edge if
the quadrilateral with the background. The evolution using
the GVF model therefore latches onto this edge. Due to the
varying internal force, the proposed model is able to seg-
ment out the quadrilateral properly. Here we see the impor-
tance of the curvature flow as the smoothing term. Since the
distracting edge is located within the actual target, we need
a smoothness term which moves the curve in the outward
direction. This is contrast to the other cases where the dis-
tracting edge is locate outside the true object. In such a case,
the smoothness term should pull the curve inward toward
the object. Motion by curvature takes care of both these
cases because of its property mentioned earlier. Finally, we
show some results on a real world example where the GVF
model is completely overwhelmed by the stronger edges.
In figure 6, the contour is distracted by the strong edge of
the blackboard. Using our model, the segmentation is much
better.

(a) GVF Segmentation (b) Segmentation using the
proposed model

Figure 6. Result on the hand image.
5. Conclusion

We proposed a model wherein the weight of the smooth-
ness term is not constant along the contour but varies along
it. This enables distraction free evolution of active contours.
Although the results are shown on the GVF gradient based
active contour model, this new energy term can be used with
any other gradient based active contour model in literature.
We demonstrated the effectiveness of our model on differ-
ent test images with complex initialisations and show good
results.
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