
M.Tech Thesis - First Stage Report

Tuning of

High Performance Computing Systems

Ramya Raghavendra

Advisor: D. Manjunath

July 2, 2008

Abstract

Recent developments in e-commerce and web-based applications have inspired ‘performance
tuning’ of computing systems. Typically, the workload offered to a computer system has different
requirements. The rate of change of the workload is also very rapid. Thus, there is a need to
track the changes and allocate resources autonomically. Tuning techniques like the simplex and
the stochastic optimization techniques have been considered and their convergence properties
have been investigated on a queuing model of a computer system. The stochastic optimization
technique performs better when compared to the simplex techniques.

1 Introduction

Recent advancements in web-based application and services have increasingly impressed upon
the need for autonomic computing or self-managing systems. Self-managing systems are those
that are capable of setting their parameters of interest without any human intervention. Some
examples of the parameters of interest are the total number of threads allocated to a particular
process and the total number of jobs in the system.

The workload offered to an application can be classified into different categories depending
on their resource requirements. The self-tuning mechanism should be able to track the change
in the workload, preferably automatically, especially when the rate of change is rapid. This
motivates the need for self-tuning of computing systems as the server needs to allocate its
resources on a need basis which in turn depends on the class of request coming in.

The project explores different optimization techniques for tuning a computer system. We
have used queuing models to model a computer system. A basic model describing the computer
system has been considered for tuning. Our tuning algorithm is basically an admission control
mechanism in which we restrict the number of customers in the system. The following sections
describe the related literature and our attempt to tune a model computer system.

The report is organized along the following lines:

• Workload Classification

• Performance Measures

• Optimization Algorithms for Tuning

• Queuing Models

2 Workload Classification

The resource requirement of an incoming request depends on the type of workload it belongs
to. Thus, the type of workload is crucial for the tuning process [3],. A possible classification
of workloads is to determine whether the incoming workload is an OLTP (Online Transaction
Processing) or a DSS (Decision Support System) workload. An OLTP workload is characterized
by transaction oriented applications in which a number of data entry and retrieval operations

1



are involved. This type of workload stresses the Input/Output (I/O) subsystem of a computing
system due to its frequent I/O accesses. A DSS workload is characterized by operations which
are larger and longer and more CPU intensive. Thus a DSS workload stresses the CPU of a
computing system. The typical transactions in a month for a banking system is an example
of an OLTP kind of workload; while preparing financial reports at the end of the month is a
DSS-like workload [3]. Other examples of OLTP and DSS include the TPC-C and the TPC-H
benchmarks and the ‘browsing’ and the ‘ordering’ profiles from the TPC-W benchmark.

In practical systems, no workload is purely OLTP-like or DSS-like. Typically, a mix of the
two workloads is presented to a server. The workload classifier, however, needs to find out the
percentage of DSSness or OLTPness in the workload [3].

In our model we consider a system in which we have two classes of workloads with one class
stressing the I/O subsystem and the other class bottle-necking the CPU subsystem.

The computing system services the requests (workload) that are input to it. While doing so,
we need to ensure that the system is behaving in an acceptable manner, for instance, a desired
level of throughput may need to be maintained or the response time needs to be lower than a
given threshold. In order to do so, we need to define some performance indicators which tell us
how well the system is handling its workload.

3 Performance Measures

Typically, throughput, response time and blocking probability are taken to be good character-
istics describing the performance of a system [7].

Throughput measures the number of packets receiving service from the system. Response
time is the total time spent by a request, which is a sum of its time spent waiting for service
and receiving service. Blocking probability is the probability that a request is not taken into
the system.

Other measures of performance include the ‘Fairness Index’ [5] and ‘Power of a Queue’ [7].

3.1 Fairness Index

This is a quantitative measure of how fairly the system is treating its users. This index lies
between 0 and 1. An index value of 1 indicates that the system is 100% fair to all its users and
a value of 0 states that its is completely unfair. 0.2 indicates that the system is unfair to 80% of
its users. This index is independent of the type of resource that is being shared. The expression
for the Jain’s fairness index is given by

JFI =
[
∑

i xi]
2

∑

i x2
i

(1)

where xi is the share of the resource received by the user i in the system.
However, using fairness index may not be acceptable in some situations as value of the index

is close to 1 even when the resource distribution is ‘equally unfair’ among all the contenders.

3.2 Power of a Queue

This performance index combines two of the most commonly used measures for performance.
The Power of a queue is defined as the ratio of the throughput to the normalized response time
for a lossless system.

P =
λ

R
(2)

where, λ gives the throughput of the system and R gives the response time of the system.
As the input load to a system increases, the throughput increases, but the response time

increases as well. There needs to be a trade-off between the two. The power function is brings
about this compromise. We use a modified power function in our objective function. This
modification was done in order to have better utilization of the resources at the optimum. The
generalized power function is as follows

P =
λα

R
(3)

where α is any number that can be set according to one’s parameter of interest. The maximum
of the power function shifts to the right with the increase in the value of α.

2



We have used the power function and the fairness index to describe the objective function
that we would like to maximize. Our objective function for a two-class workload is as given
below.

F (k1, k2) = a1P1 + a2P2 + a3JFI(P1, P2) (4)

where, P1 is the normalized power for customers of class one and P2 is the normalized power
for class two customers. k1 and k2 are the number of customers of class one and class two
respectively. ai are the weights associated with each term in order to make the objective
function convex with respect to k = (k1, k2). ai also describes which quantity in the expression
is of greater importance to us. For instance, if P1 is to be maximized, we could use a greater
value for a1 than for a2.

The following section describes the optimization techniques that we have used to find the
maximum of F (k1, k2).

4 Optimization Algorithms for Tuning

The Optimization algorithms are techniques that are used to find the value of the vector U =
(u1, u2...ui) such that a function f(U) is either maximized or minimized. They work when a
convex relationship exists between the objective function and the variables involved.

Gradient based optimization functions use the gradient as the direction of maximum rate of
change of the function and proceed in that direction to find the optimum of a function. But, the
computation of the gradient becomes a very tedious task when the objective function is multi-
dimensional. Hence we look at ‘direct search’ techniques which do not involve computation of
the gradient. These techniques require very little knowledge of the target system that needs to
be tuned. Hence, these techniques could also be termed as model-free optimization techniques.

Some techniques which fall into this category are the simplex techniques and the stochastic
optimization techniques.

4.1 Simplex Techniques

A simplex is a geometric figure in the space formed by the configuration parameters. A point in
that space is defined by U given by (u1.u2, ....un) where ui gives the value of the parameter i.
The value of the objective function is given by f(U). We discuss two kinds of simplex techniques,
namely

• Nelder-Mead Simplex Technique

• Anderson and Ferris Direct Search Technique

The Nelder-Mead simplex procedure for function minimization [8] evaluates a simplex in
each iteration. The value of the objective function is evaluated at each point in the simplex.
The point where the value of the function is maximum is removed.

Consider a two dimensional simplex with vertices A, B and C. Let us assume that the
simplex is sorted such that f(C) ≤ f(B) ≤ f(A), where f(A) is the objective function at point
A. f(E) is compared with f(C) and f(B) and f(A). An extended point is considered in the
direction AE if E is the best point. If E is an intermediate point, the point A is replaced by
point E. If E is worse than point A, the point to be replaced, the simplex is contracted to form
BCG. The figure explaining the algorithm is given below.

The Anderson-Ferris direct search algorithm is an optimization technique used when the
function evaluation is inaccurate [1]. Unlike the NM-simplex method, this method pivots the
simplex or the structure about the point where the cost function is at its least value (considering
objective function minimization). The algorithm initially reflects about the best point and
expands in case the new structure has a cost function thats lower than the original cost function.
The structure contracts in case the cost function is greater than that of the original simplex. A
variable called the level ensures that the size of the structure lies within reasonable limits.

Of the two simplex techniques, we have found that the Nelder-Mead algorithm gives better
convergence. The reason as to why this behaviour is observed is yet to be investigated.

4.2 Stochastic Optimization

Stochastic Optimization techniques deal with the iterative algorithms that are used to find the
roots of an equation or to find the maximum of an objective function under a noisy environment

3



A

B

C

G

H 

E

F

A’

B’

FUNCTION CONTOUR

U
1

U2

Figure 1: Nelder-Mead Simplex Technique for Function Minimization

[11], [6]. The Keifer-Wolfowitz algorithm iteratively finds the value z = θ such that the function
y(z) is maximized. The procedure generates a set of values zn such that it converges to θ in
probability.

The update scheme is given by

zn+1 = zn + an

y(xn + cn) − y(xn − cn)

cn

(5)

where an can be treated as a step size parameter. an and cn are such that

•
∑

an = ∞

•
∑

ancn ≤ ∞

•
∑

(an

cn

)2 ≤ ∞

We have observed that the Keifer-Wolfowitz algorithm performs much better when compared
to the simplex techniques in a noisy environment. However, the performance of the algorithm
depends heavily on the choice of the step size parameter. A small value for the parameter is
desirable always to ensure better convergence.

We now proceed to describe the target system which was tuned using the algorithms de-
scribed above.

Several techniques have been used for performance evaluation like benchmarking, simulation
methods and analytical queuing models. Benchmarking is the most expensive and the most
complicated out of the approaches. However, this technique does not provide us with a rich
mix of the different classes of workloads and is not a very suitable platform to test the tuning
algorithms. Hence, we have used analytical queuing models to describe our target computer
system.

The following section provides a brief overview of the different types of queuing models and
explains the queuing model that we have considered for tuning.

5 Queuing Models

A single server queuing model can model a system in which a customer demands a certain
amount of service and leaves the system after receiving it. In more complex situations like
a computing system, where resources are being shared among different contenders we need a

4



FUNCTION CONTOUR

Pivot

S i

R

C

L

S  Initial structure

R   Reflected Structure

C   Contracted Structure

L    Expanded Structure

i

1
U

U2

Figure 2: Anderson-Ferris Direct Search

network of single or multiple server queues [4]. A server or station (also called a node) represents
the resource like CPU or the I/O channel. Customers move from one node to another as they
receive service. Systems in which the customers eventually leave are called ‘Open Queuing
Systems’ and the ones in which there are no external arrivals are called a ‘Closed Queuing
System’.

Queuing networks with multiple nodes and multiple input classes are solved using BCMP
(Baskett, Chandy, Muntz, Palacios) theorem [2].

5.1 BCMP Theorem

Consider a network with N nodes and R job classes. The jobs may change class as they get
serviced from one node and move to another. Let pir,js denote the probability that a job of
class r at node i moves to node j as a class s customer. The probability that the job leaves the
network is pir,0 given by 1−

∑

pir,js Let i represent the node number and r represent the class
of the request. The state of the system N is given by N = (n1, n2, ...ni) where ni is the number
of customers at node i.

The general solution [2]for the steady state distribution of the system is given by

f(S) =
1

G
d(S)f1(S1)f2(S2)......fn(Sn) (6)

The factor fi(Si) depends on the type of scheduling discipline thats followed at the node. G
is the normalizing constant. Si denotes the state of the node i.

One the basis of the scheduling strategy adopted, the nodes can be characterized as

• First Come First Serve (FCFS)

• Processor sharing (PS)

• Server Per Job (SPJ).

For an FCFS station, the node state is defined as (r1, r2, ...rn) where n is the number of jobs
present and ri represents the class of the job with index i.

For a PS node and a SPJ node, the state is defined by (a1, a2...aR) where ar is defined as
(nir1, nir2...nirl). nirl denotes the number of class r jobs at node i in the l-th stage of service.
R is the number of classes present in the system.

fi for FCFS queues is given by

fi(Si) =

n
∏

r=1

[

eir

µir

]

(7)

5



fi for PS and SPJ nodes is given by

fi(Si) = (ni)!

R
∏

r=1

(eir/µir)
nir

nir !
(8)

where the stage of service l is not considered.
d(S) is 1 for a closed system.
The normalizing constant G is given by

G =
∑

∀nir s.t.
i=n
P

i=1

nir=Kr

(f1(n11, n12....n1R)f2(n21, n22...n2R)......fn(nn1, nn2..nnR)) (9)

where Kr is the number of class r jobs in the network.
Calculating the normalization constant in this way is very tedious and compute-intensive.

So, we use the discrete convolution method as suggested by [10]. The method is as follows

G′ = P1 ∗ P2 ∗ P3.....Pn

G(K1, K2...Kr) = G′(K1, K2...Kr)
(10)

where,Pi is [fi(ni1, ni2...niR)], ij = 0, ..., Kj

The different measures of performance, namely the throughput and the response time can
be evaluated as follows using Little’s law.

The throughput denoted by λr for a class r customer.

λr(n) =
nr

Zr +
∑

Rr,i(n)
(11)

where, n is the vector (n1, n2...nn) where nr denotes the number of customers of class r. Zr

denotes the think time of the customers. Rr,i denotes the response time of the class r customers
at node i.

The queue length of a given class of customers is given by,

Qr,i = Xr(n)Rr,i(n) (12)

The response time of the customers of class r is given by

Rr,i(n) = Dr,i(1 + Ar,i(n)) (13)

where,Ar,i(n) is the queue length as seen by a class r customer into the node i.

5.2 Our Queuing Model

We have considered a closed queuing network for our target system with two classes of workload.
Class 1 stresses the CPU and class 2 stresses the I/O subsystem with the total number of jobs
being K1 and K2 respectively. The CPU requirement and the probability of disk access of the
two classes is different. Node 1 represents the inactive threads in the system and is an M/M/∞
queue. Node 2 represents the CPU and is a M/M/1 queue with egalitarian processor sharing
scheduling procedure. Node 3 represents the I/O and is a M/M/1 FIFO queue. The Figure 3
describes the model.

The steady state distribution of the queuing network can be obtained from the BCMP
theorem.

The Power of a queue is calculated for this model. The objective function as given by 4 is
then optimized by the tuning algorithms.

6 Work to be Done

The queuing model that has been considered is a basic model and there is scope for modifying
this model so as to mimic a real system better. Some areas that can be explored in this regard
are

6



NODE 1
Server per job

CLASS 1

CLASS 2

p
d 2

p
d 1

CPU

NODE 2
PS

I/O

NODE 3
FIFO

CLASS 1

CLASS 2

Figure 3: Our Queuing Model

• Priority Queue

Every request coming is associated with a priority number and the service it receives from
the system depends on this number. These systems can be classified into preemptive and
non-preemptive systems.

• Balking Systems

These are systems in which the customers choose to renege. Such customers do not con-
tribute to the throughput, but utilize the system resources.

• Systems with correlated arrival streams

Such a model may offer a greater number of tunables that need to be varied. Thus the
dimensionality of the objective function that needs to be optimized increases. In such a situation,
it may not be straight forward to determine if the given function is convex.

The optimization techniques that have been considered for tuning could be improved for
better performance. A more elaborate literature survey might give us more techniques for
tuning.

7 Acknowledgment

This project has been a collaborative work with Sudheer Poojary. There is significant overlap
with [9].

References

[1] Anderson, E. J., and Ferris, M. C. A direct search algorithm for optimization with
noisy function evaluations. SIAM Journal on Optimization 11, 3 (2000), 837–857.

[2] Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G. Open, closed, and
mixed networks of queues with different classes of customers. Journal of the Assoclatlon

for Computing Machinery 22, 2 (1975), 248–260.

[3] Elnaffar, S., Martin, P., and Horman, R. Automatically classifying database work-
loads. In CIKM ’02: Proceedings of the eleventh international conference on Information

and knowledge management (New York, NY, USA, 2002), ACM Press, pp. 622–624.

[4] Gelenbe, E., and Mitrani, I. Analysis and Synthesis of Computer Systems. Academic
Press, 1980.

[5] Jain, R., Chiu, D. M., and Hawe, W. A quantitative measure of fairness and dis-
crimination for resource allocation in shared systems. Tech. Rep. DEC TR-301, Digital
Equipment Corporation, Littleton, MA, 1984.

[6] Kiefer, J., and Wolfowitz, J. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics 23, 3 (1952), 462–466.

7



[7] Kolias, C., and Kleinrock, L. The power function as a performance and comparison
measure for ATM switches. Global Telecommunications Conference, 1998. GLOBECOM

98. The Bridge to Global Integration. IEEE 1 (1998), 381–386 vol.1.

[8] Olsson, D. M., and Nelson, L. S. The Nelder-Mead simplex procedure for function
minimization. Technometrics 17, 1 (1975), 45–51.

[9] Poojary, S. A study of self-tuning algorithms using queueing models. Master’s thesis,
IIT Bombay, 2008.

[10] Reiser, M., and Kobayashi, H. On the convolution algorithm for separable queuing
networks. In SIGMETRICS ’76: Proceedings of the 1976 ACM SIGMETRICS conference

on Computer performance modeling measurement and evaluation (New York, NY, USA,
1976), ACM, pp. 109–117.

[11] Robbins, H., and Monro, S. A stochastic approximation method. The Annals of

Mathematical Statistics 22, 3 (1951), 400–407.

8


