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Static and Dispersion Analysis of Strip-like
Structures

Ravindra.S.Kashyap (06307923)

Abstract— Different models for the static and dispersion
analysis of strip-like structures will be studied. We will be
studying, in particular, Tri-plate stripline, Micro stripline,
Coupled micro stripline, Inverted and suspended micro
striplines, Slot lines, and Coplanar waveguide. We delve
into the analysis of the losses involved in some of these
transmission structures. We will also look at the design
equations for these transmission structures

I. INTRODUCTION

Millimeter waves are extensively being used for Radar
and Wireless communication. Wireless communication
includes wireless computer networks, voice and data net-
works etc., Transmission lines forms an integral part of
these Microwave Integrated Circuits (MICs) and Mono-
lithic Microwave Integrated Circuits (MMICs). One ma-
jor constraint on the transmission lines for their use in
MICs is that they have to be planar. Microstrip lines, slot
lines and coplanar structures are used as the fundamental
blocks in building these circuits. All these structures
are planar, their characteristics being controlled by their
dimensions in that plane.

Over the years various static and dispersion mod-
els have been developed for the analysis of striplines.
Various models for the analysis of these structures has
been consolidated here. Different methods adopted for
Static and dispersion analysis of microstrips are shown
in Fig 1 (next page). We shall begin with a brief
introduction on the classic methods employed for the
static and dispersion analysis of the various strip line
configurations. We shall then proceed with the static and
dispersion analysis of the individual striplines mentioned
above. We shall conclude with a section on the various
design equations that can be used during the stripline
design process.

II. STATIC ANALYSIS

Static analysis of striplines involves the analysis of
the transmission structure at frequency, f = 0. The
analysis is carried out to find the vital parameters of the
transmission lines viz., Characterisitc impedance(Z0),
Effective dielectric permittivity (εeff ), and the phase

velocity (vp). These three parameters are related to the
Capacitance (C) of the structure [2]. We know that
the wave propagates through a medium with velocity
v = 1/

√
µε. If the medium is not free space but a

uniform dielectric, then the velocity of propagation is
given by (1).

v = v0/
√
εr (1)

where v0 = 1/
√
µ0ε0 is the free-space velocity and εr

is the relative permit

Z =
V0

I0
=

V0

Qv
=

1
Cv

(2)

where C is the capacitance between the conductors
per unit length. The electrostatic capacitance used in (43)
is independant of the operating frequency and depends
only on the static field configuration in the transmission
line [3]. If the substrate is thin in terms of wavelength
and the strip width is also narrow compared to the
wavelength, and high dielectric substrates are used, then
static analysis itslef can be enough [4], [5].Substituting
the dielectric by air (εr = 1) in (43), we have

Za =
1

Cava
(3)

where Ca is the capacitance per unit length of the
transmission line with dielectric replaced by air. Dividing
(3) by (43) and putting εr = C/Ca we get

Z =
Za√
εr

(4)

[2]Open transmission lines like Microstrip lines are
examples of mixed dielectric problem and as such cant
support TEM waves. To aid in the analysis of these
structures, a new quantity called ’effective dielectric con-
stant’is defined under quasi-static approximation. This
quantity is defined as

εeff =
C

Ca
(5)

The expressions for the phase velocity and character-
istic impedance Z then follows

v = va/
√
εeff (6)
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Fig. 1. Various techniques for Microstrip Analysis [1]

Z = Za/
√
εeff (7)

Propagation constants calculated using (5) - (7) give
results accurate enough for most of the practical cases
[2].

The electrostatic capacitance is found by the solution
of a two dimensional Laplace Equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (8)

The solution of (8) would then give us the field within
the structure. The total charge can be found out by using
Gauss law

Q = ε0εr

∫ ∫
E · dS (9)

The integration in (9) being carried out over the entire
surface of the transmission structure.

The determination of the characteristic impedance Z0

proceeds with first finding the capacitance C of the
transmission line and then using that in (5) to find the
effective dielectric constant and then putting it into (6)
and (7) to find out phase velocity and characteristic
impedance respectively.

We will now discuss the theoretical aspects of the
static analysis techniques namely, The Conformal map-
ping method, The Variational method, and The Finite
Difference method.

A. The Conformal Mapping method

[6]A mapping w = f(z) defined on a domain D is
called conformal at z = z0 if the angle between any two
curves in D intersecting at z0 is preserved by f . Such a
mapping is known as Conformal mapping (a.k.a Angle-
preserving mapping). If f(z) is analytic in domain D
and f

′
(z0) 6= 0, then f is conformal at z = z0. The

criterion for analyticity is that: if u(x, y) and v(x, y)
satisfy the Cauchy-Reimann equations, ∂u

∂x = ∂v
∂y and

∂u
∂y = − ∂v

∂x at all points in domain D, then the function
f(z) = u(x, y) + jv(x, y) is analytic everywhere in D
provided u(x, y) and v(x, y) are continious and has first-
order partial derivatives.

The reason we can apply conformal mapping to solve
Laplace equations follow directly from a result in Com-
plex analysis, which states that: If f is an analytic
function that maps from a domain D to D

′
and if

W is harmonic in D
′
, then the real valued function

w(x, y) = W (f(z) is harmonic in in D [6].

Fig. 2. A system of curves

[3], [2] Consider the solution of a two dimensional
laplace equation ∇2φ = 0 for the system of conductors
shown in Fig 2 with the boundary conditions as φ = φ1

on S1 and φ = φ2 on S2. The principle behind conformal
mapping approach is to transform the given system of
conductors to a different complex plane where it may be
easier to solve the given laplace equation. This technique
gives an upper bound on Z0. Let us consider a conformal
transformation W given by (10)

W = F (z) = F (x+ jy) = u+ jv (10)
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where,
u = u(x, y)

and
v = v(x, y)

Assuming a Transverse Electromagnetic Mode (TEM),
we shall define the gradient operator as ∇t

∇tu =
∂u

∂x

ax
h1

+
∂u

∂y

ay
h2

(11)

and

∇tv =
∂v

∂x

ax
h1

+
∂v

∂y

ay
h2

(12)

The scale factors h1 and h2 are given by

1
h2

1

=
(
∂u

∂x

)2

+
(
∂u

∂y

)2

1
h2

2

=
(
∂v

∂x

)2

+
(
∂v

∂y

)2

1
h2

1

=
1
h2

2

=
1
h2

=
∣∣∣∣
dW

dz

∣∣∣∣
2

where the last step directly follows from the Cauchy-
Reimann equations. Laplace equations in uv plane are
given by

∂

∂u

h2

h1

∂φ

∂u
+

∂

∂v

h1

h2

∂φ

∂v
=
∂2φ

∂u2
+

∂2

∂v2
= 0 (13)

The above result shows that the potential function φ
satisfies the same Laplace equations in uv co-ordinate
systems. The same result has been shown in a slightly
different way in [7].

Fig. 3. The system of curves after conformal mapping

If the curves S1 and S2 can be represented in terms
of constant co-ordinate curves as shown in Fig 3, then
the solution of Laplace equation will be simpler than the
original Laplace equation.

The energy stored in the electrostatic field is given by

We =
1
2ε

∫ ∫ [(
∂φ

∂x

)2

+
(
∂φ

∂y

)2
]
dxdy

=
1
2ε

∫ ∫
|∂tφ|2 dxdy

=
1
2ε

∫ ∫ [
1
h2

1

(
∂φ

∂u

)2

+
1
h2

2

(
∂φ

∂v

)2
]
h1dxh2dy

=
1
2ε

∫ ∫ [(
∂φ

∂u

)2

+
(
∂φ

∂v

)2
]
dudv

= 1/2C(φ2 − φ1)2 (14)

The last equation shows that capacitance C is same in
the conformal mapped domain.

Situations may sometimes arise where a particular
type of a stripline can be considered as a polygon.
This polygon can then be conformal mapped to the
upper half of a plane by the use of Schwarz-Christoffel
Transformation. The transformation is formulated as [6]:
Let f(z) be a function that is analytic in the plane y > 0
having the derivative

f
′
(z) = A(z−x1)α1/π−1(z−x2)α2/π−1 · · · (z−xn)αn/π−1

(15)
where x1 < x2 < · · · < xn and each αi satisfies
0 < αi < 2π. Then f(z) maps the upper half of the
plane y > 0 to a polygon with its interior angles
α1, α2, · · · , αn Successive applications of this transfor-
mations would sometimes be needed to end up with the
desired configuration. Detailed explanation on Schwarz-
Christoffel Transformation and the method to obtain the
functions for such a mapping is outlined in [6].The steps
followed while using the conformal mapping approach
shall be outlined during the analysis of Micro stripline.

B. Variational approach

The principle is based on finding the maxima or the
minima of an integral involving a functional1.The aim
is to determine the stationary condition of a functional.
This is usually defined in terms of a differential equation
with the boundary conditions on the required function
[8].Consider a problem of finding a function y(x) such
that the function

I(y) =
∫ b

a
F (x, y, y

′
)dx

1functional is defined as function of functions.Examples include
distance between two points, which is a function of the path taken,
which again is another function. Other example is the inner product
of two vectors 〈u, v〉
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subject to the boundary conditions y(a) = A and y(b) =
B is rendered stationary.F (x, y, y

′
) is the given function

of x, y, y
′

and I(y) is the functional or variational
principle.The necessary condition for I(y) to have an
extremum is

δI = 0

It can be shown that the necessary condition for a
function y(x) to yield an extremum for I(y) is that y(x)
should satisfy the Euler-Lagrange equation [8].

∂F

∂y
− d

dx

(
∂F

∂y′

)

The solution of the problem involves the construction of
a functional from a given Parial Differential Equation
(P.D.E) and the extremising the resulting variational
principle.

Table 1: Variational principles associated with
Common P.D.Es [8]

Table 1 gives the variational principle associated with
some of the P.D.Es commonly encountered in Electro-
magnetic waves.There are several methods of solving the
Variational principle which are

1) Rayleigh-Ritz Method
2) The Weighted Residual Method
3) Collocation Method
4) Subdomain Method
5) Galerkin Method
6) Least Squares Method
This principle is used for systems whose function

attains either of the extremes. This is true for electrostatic
systems where the energy function attains a minimum
value stated as Thomson’s theorem, which says ”Charges
residing on conducting surfaces giving rise to an electric
field E will distribute themselves such that the energy
function is minimized”.

Noting that the electric field E is the gradiant of φ,
we can write the electrostatic energy stored as [2]

We =
ε

2

∫ ∫
∇φ · ∇φdV (16)

We can readily recognize that We in (16) is in fact a
variational principle. We can write the change in We,
δWe for a small change in φ to φ+ δφ as

δWe =
ε

2

[∫

vol
∇(φ+ δφ) · ∇(φ+ δφ)dV −

∫

vol
∇φ · ∇φdV

]

(17)
By using the linearity property of ∇ operator, (17) can
be re-written as

δWe =
ε

2

[∫

vol
2∇φ · ∇δφdV +

∫

vol
∇δφ · ∇δφdV

]

(18)
Using Green’s first identity2, we can write the first

integral as

2
∫

vol
∇φ·∇δφdV = 2

(∫

surf
δφ∇φdS −

∫

vol
δφ∇2φdV

)

Using Gauss divergence theorem for the second integral
in the above equation, we can show that

2
∫

vol
∇φ · ∇δφdV = 0

So (18) can be written as

δWe =
ε

2

∫

vol
∇δφ · ∇δφdV (19)

The important point to note here is that change in We

is proportional to (δφ2). A first order change in φ will
lead to a second order change in We.

Suppose we have a two conductor transmission line
S1, S2 with one being held at a potential V0 and the
other at the ground potential, the energy stored is

We =
ε

2

∫ ∫
|∂tφ|2 dxdy =

CV 2
0

2

The above integral being over the transverse plane. The
capacitance per unit length C can then be written as

C =
ε

V 2
0

∫ ∫
|∂tφ|2 dxdy =

∫ ∫ |∂tφ|2 dxdy(∫ S2

S1
∇tφ · dl

)2 (20)

We can see that (20) is a variational principle. The value
of C is determined by employing a trial function in sev-
eral variables. If these variables are βi, i = 1, 2, · · · , N ,
then the capacitance will then be a function of all

2R
vol

�
U∇2V +∇U · ∇V � dV =

H
U∇V · dS
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these βs so that C = C(β1, β2, · · · , βN ). Extremizing
the variational principle then involves solving the N
simultaneous equations ∂C/∂βi, i = 1, 2, · · · , N . The
right choice of a trial function will lead to the extremum
for the capacitance C, but any other trial function will
give a value of C, which is greater than the actual
capacitance. Hence this approach will always yield an
upper bound on the capacitance. The Variational can also
be solved in a different way by transforming the given
Poisson’s or Laplace equation to the Fourier domain [9],
[10].

Let us consider a system of conductors as shown in
Fig 4. The two conductors S1 and S2 are infinetly long

Fig. 4. A system of two conductors comprising the problem

conductors along the z−direction. The potential on the
two surfaces are as shown in Fig 5. For the conductor S2

to be at potential V0 there should be a charge distribution
ρ on its surface. The magnitude of the charge is of course
given by −εEn = −ε∂φ/∂n where En is the normal
component of the electric field. So the system should
obey the Poisson’s equation subject to the boundary
condition [2], [3]

∇tφ2 = −ρ(x0, y0)
ε

(21)

The method followed to solve such problems is to use
a trial function in the form of a unit charge at the
point (x0, y0) replacing the given conductor S2. The unit
charge is represented in terms of the Dirac-delta function.
So (21) can be written as

∇tφ2 = −δ(x− x0)δ(y − y0)
ε

(22)

The solution for the potential φ can be written in terms
of Green’s function, which gives the potential at a point
(x, y) for a unit charge at (x0, y0) as 3

φ(x, y) =
∮

S2

G(x, y|x0, y0)ρ(x0, y0)dl0 (23)

3The integral in (23) can be compared to the convolution integral in
systems theory involving the system impulse response and the input
function

where the integration is carried out over the contour of
S2. The integral should then be equal to V0 on the surface
S2. So, (23) can be written as

V0 =
∮

S2

G(x, y|x0, y0)ρ(x0, y0)dl0 (24)

considering the charge distribution ρ(x, y) as the trial
function, the integral is converted to functional

V0

∮

S2

ρ(x, y)dl =
∮

S2

∮

S2

G(x, y|x0, y0)ρ(x0, y0)ρ(x, y)dl0dl

(25)
by recognising that

∮
S2
ρ(x, y)dl gives the total charge

Q. So,(25) can be written as

1
C

=
1
Q2

∮

S2

∮

S2

G(x, y|x0, y0)ρ(x0, y0)ρ(x, y)dl0dl

(26)
Using (23) we can write the final variational form for
the capacitance C as

1
C

=
1
Q2

∮

S2

φ(x, y)ρ(x, y)dl (27)

For any trial function ρ(x, y) the variation principle
always takes a value greater then its true extremum. So
the solution for the variational principle (27) will give
us a lower bound on capacitance C and hence an upper
bound for Z0. This method of solving for φ in terms of
the integral involving the Green’s function is sometimes
referred to as the Integral equation method [1]. However
the crux of this problem is to determine the form of the
Green’s function. A method to determine this for the
microstrip lines has been outlined in [1].

C. Finite Difference Method (FDM)

[8], [11] As we now know that the fundamental
problem in finding Z0 for a given transmission line is
the solution of either the Laplace equation

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0 (28)

or the Poisson’s equation

∇2φ = −ρ/ε
An approximate solution for these equations can be
obtained by using FDM. Well known basic techniques
being the Newton’s forward, Newton’s backward dif-
ference formula and the central difference formula. For
numerical computations, We divide the whole region of
analysis into small discrete regions (a.k.a meshes), each
intersection of horizantal and vertical lines representing
a node at which the value of the potential is determined.
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The difference between the potential at a node A and
the node P can be represented as a infinite series using
Taylor’s theorem

φB − φP = ∆x
∂φ

∂x
+

(∆x)2

2!
∂2φ

∂x2
+

(∆x)3

3!
∂3 phi

∂x3
+ · · ·

and similarly between another node B and P

φA − φP = −∆x
∂φ

∂x
+

(∆x)2

2!
∂2φ

∂x2
− (∆x)3

3!
∂3φ

∂x3
+ · · ·

Neglecting the higher order terms,

∂2φ

∂x2
≈ φA + φB − 2φP

(∆x)2
(29)

Fig. 5. The region of analysis being divided into meshes

(29) can be re-written using the notation shown in Fig
5

∂2φ

∂x2
≈ φ(i+ 1, j) + φ(i− 1, j)− 2φ(i, j)

(∆x)2
(30)

Using the same argument,

∂2φ

∂y2
≈ φ(i, j + 1) + φ(i, j − 1)− 2φ(i, j)

(∆y)2
(31)

Taking ∆x = ∆y = h and putting (30) and (31) in
(28)

[φ(i+ 1, j) + φ(i− 1, j) + φ(i, j − 1) + φ(i, j + 1)]

−4φ(i, j) = 0 (32)

or

φ(i, j) =
[φ(i+ 1, j) + φ(i− 1, j) + φ(i, j − 1) + φ(i, j + 1)]

4
(33)

Looking at (33), we can infer that the potential φ at a
point is being approximated in terms of the potentials
at its four neighbouring points.The original Laplace
equation has now been approximated by a set of linear
equations. The bottleneck in FDM is the solution of the
large set of simultaneous equations.

There are two popular approaches to solve the simu-
lataneous equations in FDM.

1) Band Matrix Method : (33) is applied to all
the free nodes in the solution region. The set of
simulataneous equations are then formulated as a
matrix equation

AX = B

where A is the sparse matrix representing the
relationship between the nodal voltages, X is a
coloumn vector containing the variables represent-
ing the unknown nodal voltages, and B being
the Right hand side constants, which are obtained
from the given boundary and initial conditions.
The solution of the linear equation is then obtained
by the use of Gauss-elimination method

X = A−1B (34)

2) Iterative method: One of the iterative method
is the successive over-relaxation method4. Here
we define the residual R(i, j) at the node (i, j)
denoting the error by which the value of φ(i, j)
deviates from (33).

R(i, j) = φ(i+ 1, j) + φ(i− 1, j) + φ(i, j − 1)

+φ(i, j + 1)− 4φ(i, j) (35)

The value of the Residual at the kth iteration is
then propagated to the next iteration using

φk+1(i, j) = φk(i, j) +
Ω
4
Rk(i, j) (36)

The method is convergent for values 0 < Ω < 2,
and repaidly convergent for 1 < Ω < 2 [11]. The
optimum value of Ω is usually found out on trial-
and-error basis.

Any of these two methods can be used to determine
the value of the potential φ. The value of φ will then
be used to determine the value of the charge on the
conductor.

Q = ε0εr
∑∑(

∂φ

∂n

)
(37)

The double summation in (37) covers the entire cross
section of the transmission line. ∂φ

∂n is approximated as

∂φ

∂n
=
φ(i+ i, j)− φ(i, j)

∆x
The value of the capacitance is then C = Q/Vt, where
the Vt is the voltage applied between the plates of a
stripline. The air Capacitance Ca can be found out by
putting εr = 1 in (37).

The accuracy of FDM relies on the fineness of the
mesh. Finer the mesh better will be accuracy of the

4the others being the Jacobi and the Gauss-Siedel methods [8]



8

solution. The algorithm usually starts with a coarse
mesh and then advances to a finer net [11]. Coupled
lines usually need finer mesh as the field variations are
significant at the edges of the strip [2].

D. Losses

Two kinds of losses are associated with striplines,
Conductor and dielectric losses. The total loss of the
stripline in question is then the combination of these
two i.e., the total loss α is the sum of Dielectric loss
(αd) and the conductor loss (αc)

α = αc + αd

The loss is attributed to the finite conductivity of the strip
and the ground planes and lossy dielectric as substrates.

The techniques used to analyze losses assume a low−
loss line, which is used to simplify the expressions for
the propagation constants and Z0. The expression for the
propagation constant γ is given by [12]

γ =
√

(R+ jωL)(G+ jωC) (38)

where R,G,L, andC are the values of the distributed
elements of the transmission line

γ =

√
(jωL)(jωC)

(
1 +

R

jωL

)(
1 +

G

jωC

)

= jω
√
LC

√
1− j

(
R

ωL
+

G

ωC

)
− RG

ω2LC
(39)

using Taylor’s expansion for
√

1 + x 5we can write (38)
as

γ ≈ jω
√
LC

[
1− j

2

(
R

ωL
+

G

ωC

)]
(40)

separating the real and imaginary parts we have,

α ≈ 1
2

(
R

√
C

L
+G

√
L

C

)
=

1
2

(
R

Z0
+GZ0

)
(41)

and
β ≈ ω

√
LC (42)

Characteristic impedance, Z0 is approximated as

Z0 =

√
R+ jωL

G+ jωC
≈
√
L

C
(43)

5which is also a standard binomial expansion in the form of

(1± x)n = 1± nx

1!
± n(n− 1)x2

2!
± · · ·

There are two main techniques used to analyze the
two types of losses mentioned above

1) Perturbation method [12]: The technique avoids
the determination of the transmission line param-
eters L,C,R, and G. It uses the field equations
to determine the losses assuming that there will
be little changes between the field of a lossy
line and that of a loss-less line, thus justifying
its name. The method considers the power flow
along a transmission line with attenuation α (in
the absence of reflections), which is given by

P (z) = P0e
−2αz (44)

where P0 is the power at z = 0 plane. The
power loss per unit length can be represented as a
derivative

Pl =
−∂P
∂z

= 2αP0e
−2αz = 2αP (z) (45)

Attenuation constant α is now defined using (44)
and (45) as

α =
Pl(z)
2P (z)

=
Pl(z = 0)

2P0
(46)

The crux of the problem, as we can see, is the
computation of the power (P0) and the power
loss (Pl). Due to the generality of this technique,
this method is applicable for both conductor and
dielectric losses. P0 is in general given by the
Poynting theorem

P0 =
1
2
Re

∫

s
E×H∗ds (47)

The Ohmic conductor loss can be written as

Pl =
Rs
2

∫

s
|Js|2ds =

Rs
2

∫

s
|Ht|2ds (48)

The Dielectric power loss is

Pl =
ωε′′

2

∫

V
|E|2dv (49)

where ε′′ is imaginary part of the dielectric per-
mittivity

ε = ε′ + jε′′ = ε(1 + jtan δ)

where tan δ is the loss tangent of the dielectric.
Depending on the expression used for Pl in (46),
the attenuation constant will refer to either the
conductor loss or the dielectric loss.

2) Wheeler’s incremental inductance rule [12],
[13] :The rule gives the effective resistance due
to the skin effect and begins with inductance
calculations. The method holds good for all types



9

of metallic surfaces for which skin effect plays
a significant role. The only constraint being that
the thickness of the conductor should be great
compared to the skin depth (at least twice). The
incremental rule can be stated as: the effective
resistance in any circuit is equal to the change of
reactance due to the penetration of magnetic field
into the metal surfaces as would be caused by the
surface receeding to a depth of δ/2. As we can see
that the field cannot penetrate a perfect conductor
and hence the losses in the conductor is due to
their non-infinite conductivity. The power loss into
a cross section S of a perfect conductor is

Pl =
Rs
2

∫

s
|Js|2ds =

Rs
2

∫

C
|Ht|2dlW/m2

(50)
The above integral refers to the power loss per
unit length, the contour integral being carried out
across the two conductors. The inductance per unit
length is given by

L =
µ

|I|2
∫

S
|H|2ds (51)

The expression for L assumes a lossless conductor.
However there will be penetration of the field and
thus H will bo no longer 0 inside the surface.
This will add an incremental inductance ∆L to
L in (51). Knowing that the mean depth of current
inside the conductor is δ/2 we have

∆L =
µ0δ

2|I|2
∫

C
|Ht|2ds (52)

Putting (52) in (50), we have

Pl =
|I|2ω∆L

2
W/m (53)

Using (46) and proceeding further, we have the
final expression for α as [12]

αc =
Rs

2Z0η

dZ0

dl
(54)

where η =
√
µ0/ε is the intrinsic impedance of the

dielectric. As can be observed from our argument,
that this rule is applicable only for the evaluation
of conductor losses.

III. DISPERSION ANALYSIS

Microstrip lines due to presence of two different
dielectric boundaries does not support a pure TEM wave.
It is assumed that only the fundamental mode will
propagate, but the propagation constant, γ, is a non-
linear function of frequency. This non-linearity causes

dispersion [14]. [15] Due to the presence of two dif-
ferent dielectrics, the fringing fields experience an in-
homegenous dielectric leading to a discontinuity on the
field. A parameter called effective permittivity (εeff ) is
introduced, which is always lesser than the permittivity
of the substrate as the fields exists both in air and the
substrate. Due to the non-TEM nature of the fields, the
effective permittivity is dependent on the frequency. This
is due to the fact that more field lines will penetrate the
substrate with increasing frequency thus increasing the
effective permittivity 6.

Quasi-static method used for low-frequency analysis
doesn’t predict the frequency dependence of the micro
stripline transmission parameters.The deviation is due
to the fact that hybrid modes get excited as frequency
increases. The Quasi-static analysis does not take the
higher order modes into account. The number of higer
order propogating modes increases with frequency [16].
εeff varies significantly over frequency thus leading to
distortion in pulse shapes.A typical variation is shown in
Fig 6

Fig. 6. Variation of εeff with frequency for a microstrip of w =
h = 1 and εr = 80 (water) [15]

The velocity of propagation varies with εeff as v =
c/
√
εeff (f) where c is the velocity of light in vacuum.

If a pulse is made of different spectral components,
then each frequency component will travel with different
velocities thus leading to the pulse shape distortion.
Large variations in εeff are observed at wavelenghts
comparable to the transverse dimensions of the micro
stripline. The variation in εeff has a direct bearing on

6This can be understood by observing the Maxwell’s equation in
the absence of conduction current as ∇×H = ε ∂E

∂t



10

the Z0 as well, making even Z0 a frequency dependent
parameter. As the frequency increases higher modes
start to contribute significantly. The cutoff frequency
above which the first longitudinal mode (TE) begins to
contribute significantly is approximately given by [15]

fTE = c/(4h
√
εr − 1) (55)

Operating the micro stripline above this frequency leads
to what is known as modal dispersion. 55 shows that
the effective range of quasi-static analysis reduces with
increasing εr. This also means that the frequency range
of operation decreases with increasing εr.

Various analytical, empirical and semi-empirical meth-
ods are employed to study the dispersion effects. Some
of them are

1) Spectral domain immitance method
2) The integral equation method
3) Finite difference techniques
4) Modal analysis
5) Method of lines
6) Planar waveguide model

A. Spectral Domain Analysis

In this method, a set of algebraic functions is formu-
lated relating the Fourier transform of the currents on
the strip conductors to that of the fields at the dielectric
interface in the plane of the conductor [2].

B. Method of Lines

[17], [18] For a Partial Differential Equation, the
principle lies in the discretization of all but one of the
indpenant variables to obtain a set of ordinary differential
equations or difference equations. The procedure is also
known as ”semidiscretization by the Method of Lines”.
Consider the scalar potential φ(e) and φ(h) satisfying the
Helmoltz’ equation

∂2φ(e,h)

∂x2
+
∂2φ(e,h)

∂y2
+ (k2 − β2)φ(e,h) = 0 (56)

We begin with discretizing the x−axis, which is done by
drawing N parallel lines along y−axis. Let the spacing
between the lines be same and be equal to h. Now due
to the discretization, the potential φ is now divided into
a set of N values (φ1, φ2, · · · , φN ) at the lines xi =
x0 + ih, i = 1, 2, · · · , N . The discretization then yields
a set of N coupled ordinary differential equations

∂2φi
∂y2

+
1
h2

[φi−1(y)− 2φi(y) + φi+1(y)]

+(k2 − β2)φi(y) = 0, i = 0, 1, · · · , N (57)

writing φ as

~φ = [φ1(y), φ2(y), · · · , φN (y)]t

and the matrix P as

P =




p1 −1 · · ·
−1 2 −1 · · ·
· · · −1 2 −1 · · ·

...
...

...
...

· · · · · · · · · −1 p2




with the constants p1 and p2 representing the boundary
conditions. we have (57) as

h2∂
2~φ

∂y2
− [P− h2(k2 − β2)I]~φ = 0 (58)

where I is the identity matrix. The potential vector ~φ
is then transformed using the orthogonalizing vector Tt

such that
Tt~φ = ~U

Using this (57) will then be

h2∂
2φi
∂y2

− [λi − h2(k2 − β2)Ui = 0, i = 0, 1, · · · , N]

where λis are the eigen values of P. The resulting
uncoupled differential equations are then solved for φ.

Due to the presence of the edge signularities in the
strip conductors, there is usually a discretization error
associated with it. This can however be minimized by
ensuring that the edge conditions are met, which states
that the strip should exceed the last φ(h) line by 3h

4 and
the last φ(e) line by h

4 [17].These edge conditions are
difficult to be met in the case of multiple conductor
lines and strips with small strip dimensions. A modified
method of lines has been suggested which transforms the
given strip configuration to another dimension where the
edge conditions can possibly be met. This is achieved by
the use of some transfomration functions [19].

IV. NEW TECHNIQUES FOR MICROWAVE CAD

The conventional approach used in Microwave CAD,
as already outlined, is either an accurate but mathemat-
ically rigorous analytical model that might be diffult
to obtain for new devices, a computationally intensive
numerical techniques or a semi-emperical design equa-
tions. Semi-emperical relations have a definite range only
over which the relationship actually models the device
at hand.

One of the emerging trends in Microwave CAD, which
can even be used to model and analyse the interconnects
(the various strip transmission lines) is the Artificial
Neural Network approach (ANN) [20]. The approach
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consists of a training phase where the ANN is trained
with the data pertaining to the input-output relationship
of the device. ANN has an edge over the conventional
approaches, where the analytic approach can be tidious
for newer devices and the emperical curve-fitting tech-
niques has limited accuracy and input ranges. Once ANN
is trained with accurate data about the device, then ANN
acts as an accurate and speedy model for that device.The
training data for the ANN is obtained by EM simulations.
The reason ANN ca represent the RF device is due
to the universal approxiamtion theorem, which states
that ” a three leveled Multi Level Perceptron (MLP)
network can simulate any arbitrary continious non-
linear multidimensional function to any desired accuracy
” .

A technique call diakoptics has been suggested for
millimeter-wave CAD [21]. Diakoptics (called domain-
decomposition method) can be used to analyse the Quasi-
static and frequency dependent charecteristics of a mi-
crowave structure. The analysis divides the transmission
structure into different homogenous regions and these
individual regions are then analysed using Boundary
Element Method (BEM). The individual results are then
combined to yield the final results. The analysis, due to
its segmentation, can be helpful for local modification
where only those segments have to be re-analysed where
the modifications were done.

V. STATIC ANALYSIS FOR VARIOUS MICROSTRIP

LINE CONFIGURATIONS

Various static analysis techniques employed for the
determination of Z0 for different micro striplines will be
studied along with the closed form expressions for Z0

and εeff .

A. Tri-plate R©
It is also called as a Stripline or a Sandwich Line.

Typical structure of a stripline is as shown in Fig 7 The

Fig. 7. Typical configuration of a stripine

technique used for analysing striplines is the Conformal
technique. Conformal mapping is applied twice to one

quarter of the stripline to map it into a form similar
to that of a parallel plate capacitor. Schwarz-Christoffel
transformation is used for conformal mapping. The final
expression for the distance between the two plates of a
capacitor is given by [2]

d =
K

K ′
=
K(k)
K(k′)

(59)

where K and K ′ are the complex elliptic integrals of the
first kind given by

K(k) =
∫ 1

0

dζ

[(1− ζ2)(1− k2ζ2)]1/2

and

K(k′) =
∫ 1

0

dζ

[(1− ζ2)(1− ζ2 + k2ζ2)]1/2

k is given by
k = sech

(πw
2b

)
(60)

and
k′ =

√
1− k2 = tanh

(πw
2b

)
(61)

finally noting that the capacitance C = (4ε0εr/d) we
have the expression for Z0 as

Z0 =
√
µ0ε0εr

C
=

29.976π√
εr

· K(k)
K(k′)

(62)

Approximations are used for K(k)/K(k′) to obtain
closed-form expressions for Z0 [22]

For 0.5 ≤ k2 ≤ 1

K(k)
K(k′)

=
1
π
ln2

(
1 +
√
k

1−
√
k

)
= F2(k) (63)

For 0 ≤ k2 ≤ 0.5

K(k)
K(k′)

=
1

F2(k′)
(64)

Closed form expressions are finally obtained by putting
(63) and (64) in (62).

α = αc + αd

αd is given by [23]

αd =
27.3
√
εrtanδ

λ
dB/unit length

αc can be determined by using Wheeler’s incremental
inductance rule. This has been done for various cases
in [23] for a shielded stripline. Similar analysis can be
carried out by noting that ∂Z0/∂w used in [23] is 0 for
the case of stripline.
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B. Microstrip Lines

Microstrip are similar to a two conductor transmission
line in principle. The field configuration is very similar
to a two conductor line except for the presence of the
fringing fields due to the inhomogeneity in the dielectric.
Fig 8 shows the field configuration in a Microstrip line.
Due to the inhomogeneity in the dielectric, Microstrips

Fig. 8. Field lines in a Micro stripline

cannot support pure TEM waves. Consider a microstrip
as shown in Fig 8 aligned so that y-axis is normal to
the surface of the strip and z-axis is the axis of propaga-
tion.Applying continuity condition across the dielectric
boundary, we have

Exdiel = Exair (65)

Applying the continuity condition for H we have

(∇×H)xdiel = εr(∇×H)xair (66)

Expanding the curl operation and taking only its i
component, we have

(εr∂Hz/∂y)air − (∂Hz/∂y)diel = (εr − 1)∂Hy/∂z
(67)

Since εr 6= 1, (67) means that Hz is non-zero making
it non TEM. Quasi-static analysis assumes that the
deviation from the pure TEM behavior is very small.
Conformal mapping is applied for the microstrip line
configuration to map it into a parallel plate configuration.
For the evaluation of C, the concept of effective dielec-
tric is introduced. The transformation used for mapping
from z − plane to z′ − plane for (W/h > 2) is [1]

z = jπ + dtanh(z′/2)− z′ (68)

A filling fraction q is used to define the effective dielec-
tric constant

εeff = (1− q) + qεr (69)

Different expressions for εeff is used for wide
strips(W/h > 2) and narrow strips(W/h < 2)

q = 1− 1
d
ln
d+ c

d− c +
0.732
dεr

[
ln
d+ c

d− c
]

−0.732
dεr

[
cosh−1(0.358d+ 0.595)

]

+
εr − 1
dε

[
0.386− 1

2(d− 1)

]
(70)

where d = 1 +
√

1 + c2 where c is the solution for the
equation

πW

2h
= c− sinh−1c

For narrow strips

εeff =
εr + 1

2
+
εr − 1

2
lnπ2 + 1

εr
ln 4

π

ln8h
W

(71)

The final design equations are presented below [1].

Z0 =
η

2π√εeff ln
(

8h
W

+ 0.25
W

h

)
(W/h ≤ 1) (72)

For (W/h ≥ 1)

Z0 =
η√
εeff

[
W

h
+ 1.393 + 0.667ln

(
W

h
+ 1.444

)]−1

(73)
where η = 120π Ω

εeff =
εr + 1

2
+
εr − 1

2
F (W/h)

where

F (W/h) =
{

(1 + 12 h
W )−1/2 + 0.04(1− W

h )2 (W/h ≤ 1)
(1 + 12 h

W )−1/2 (W/h ≥ 1)

The synthesis equations are
for W/h ≤ 2

W/h =
8eA

e2A − 2

for W/h ≥ 2

W

h
=

2
π

[B − 1− ln(2B − 1)]

+
2
π

[
εr − 1

2εr

(
ln(B − 1) + 0.39− 0.61

εr

)]
(74)

where

A =
Zo
60

(
εr + 1

2

)1/2

+
εr − 1
εr + 1

(
0.23 +

0.11
εr

)

B =
60π2

Z0
√
εr
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Finite Difference method with relaxation technique
has also been employed for the analysis of Microstrip
lines [1], [11], [5]. Microstrips have also been analysed
using the integral equation approach, where the potential
φ is formulated as an integral using the Green’s function
as

φ(x, y) =
∫
G(x, y|x0, y0)ρ(x0, y0)dx0 (75)

The problem proceeds with the formulation of the
Green’s function and then solving (75) in the form of
a matrix equation

V = P ·Q
where V and Q represent potential and charge respec-
tively. The solution involves the inversion of P. The
capacitance C is then given by

C = Q/v =
∑

j

∑

k

(p−1)jk

where p−1 are the terms of P−1. The corresponding
Green’s function is given by [1]

G(h, x) =
1

2π(εr + 1)ε0

∞∑

n=1

Kn−1

ln





[
4n2 +

(
x−x0
h

)2]
[
4(n− 1)2 +

(
x−x0
h

)2]×
[
4n2 +

(
x+x0
h

)2]
[
4(n− 1)2 +

(
x+x0
h

)2]


 (76)

Variational method in Fourier transfer domain has
also been employed for Microstrip lines [10]. A similar
approach has been used by formulating Green’s function
as a sum of sinusoids [24].

A Spectral Domain Approach(SDA) is also used to
solve the Laplace equation using the Galerkin method.
The technique outlined in [16] is quiet similar to the one
in [10]. The closed form expressions are then obtained
by using the curve fitting techniques to match the results
obtained by the SDA [16] valid for 1 ≤ εr ≤ 500.

εeff =
{
Au3 +Bu2 + Cu+D if 0.05 ≤ u ≤ 2

Eln(u) + F if 2 ≤ u ≤ 10

where
A = 0.008149εr − 0.003118

B = −0.0397εr + 0.01726

C = 0.113εr − 0.0814

D = 0.546εr + 0.4764

E = 0.0968εr − 0.10851

F = 0.609εr + 0.4366

Z0 is given by [16]

Z0 =
{

57.839ln(1/u) + 127.415 0.05 ≤ u ≤ 2
136.6131− 30.88u+ 3.343u2 − 0.13384u3 2 ≤ u ≤ 10

u = (W/d).
The dielectric loss αd is given by [25]

αd = 27.3
(
qεr
εeff

)
tanδ

λg
dB/cm

or
αd = 4.34

q√
εeff

√
µ0

ε0
σ dB/cm

where q is the filling factor given by (70). The choice of
expressions to be used depends on whether the substrate
is non-conducting or not.The expressions for αc has been
derived by the use of Wheeler’s incremental inductance
rule as [25]

W/h ≤ 1/2π :

αcZ0h

Rs
=

8.68
2π

[
1−

(
w′

4h

)2
]{

1 +
h

w′
+

h

πw′
[
ln

(
4πw
t

+ 1
)
− 1− t/w

1 + t/4πw

]}

1/2π ≤W/h ≤ 2 :

αcZ0h

Rs
=

8.68
2π

[
1−

(
w′

4h

)2
]{

1 +
h

w′
+

h

πw′
[
ln

(
2h
t

+ 1
)
− 1− t/h

1 + t/2h

]}

2 ≤W/h :

αcZ0h

Rs
=

8.68{
w′
h + 2

π ln
[
2πe

(
w′
2h + 0.94

)]}2

[
w′

h
+

w′/πh
w′
2h + 0.94

]
×

{
1 +

h

w′
+

h

πw′

[
ln

(
2h
t

+ 1
)
− 1− t/h

1 + t/2h

]}

where
w′ = w + ∆w

∆w =
t

π
ln

(
4πw
t

+ 1
)

; w/h ≤ 1/2π

(2t/h < w/h, 1/2π)

=
t

π
ln

(
2h
t

+ 1
)

; w/h ≥ 1/2π
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C. Coupled Microstrip line

Coupled microstrip line consists of two microstrips
placed side by side on a substrate as shown in Fig 9.
Because of the two conductors present, two dominant

Fig. 9. A Coupled Microstrip line

modes exist called even and odd modes. An even mode
exists when both the strips are exited with inphase
signals. An Odd mode exists when strip excitations are
opposite in phase. Z0 and εeff will not be same for the
two cases as there is field penetration even through air
in the case of Odd mode excitation. Due to this, the two
cases has to be separately discussed.

Several techniques have been employed to analyse the
coupled microstrip lines. Variational method in Space
domain is used to represent the unknown potential func-
tions in terms of Fourier coefficients [1]. The method
proceeds with finding the fourier coefficients. These
potential functions are then used to find the stored energy
in a region

W =
ε

2

∫ ∫
(E2

x + E2
y)dxdy

Capacitance C is then found out by

C =
2
V 2

W

Variational method in the Fourier transform domain
involves the Fourier transformed variables for the varia-
tional principle involving C, written as [1]

ε0
Ce

=
1
π

∫ ∞
0

G(β)ρ̃e(β)dβ

and
ε0
Co

=
1
π

∫ ∞
0

G(β)ρ̃o(β)dβ

where

G(β) =
1

β[εrcoth(βh) + coth(βh′)]

Analysis has also been carried out using the expres-
sions for fringing capacitance of a single microstrip
line for even mode fringing capacitances. Odd mode

fringing capacitances are determined by using an equiv-
alent geometry for coplanar strips and coupled lines.
Fig 10 and Fig 11 shows the various fringing ca-
pacitances associated with odd and even modes of a
coupled microstrip.This analysis has yielded closed form
expressions for Z0 and εeff thus facilitating in its design
[26]

Ce = Cp + Cf + C ′f (77)

Co = Cp + Cf + Cga + Cgd (78)

Fig. 10. Even mode fringing capacitances in a Coupled Microstrip
line [26]

Fig. 11. Odd mode fringing capacitances in a Coupled Microstrip
line [26]

Cp is the parallel plate capacitance given by Cp =
ε0εrW/h. Cf is the fringing capacitance of a single
microstrip line with parameters Z0 and εeff given by

2Cf =
√
εeff/cZ0 − Cp (79)

where c = 3×108m/s is the velocity of light in vacuum.
An empirical relationship for C ′f is given by

C ′f =
cf

1 +A(h/s)tanh(8S/h)
(80)

where

A = exp[−0.1exp(2.33− 2.53W/h)]

Cga is the fringing field in odd mode across the air gap
given by

Cga = ε0
K(k′)
K(k)

(81)
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where
k =

S/h

S/h+ 2W/h

(63) and (64) can be used for approximating
K(k)/K(k′).

Expression for odd mode capacitance across the gap
through the dielectric (Cgd) is given by

Cgd =
ε0εr
π
ln

{
coth

(
πS

4h

)}

+0.65Cf

{
0.02
S/h

√
εr + 1− ε−2

r

}
(82)

putting (80) - (82) in (77) and (78), Ce and Co are
obtained. Charecterisitic impedance is got by

Z0i = c
[√

Cai Ci

]−1

and
εir = Ci/C

a
i

where i refers to either even or odd mode and Ca is the
capacitance with the dielectric replaced by air.

following are the width corrections due to thick strips
[26]

W e
t

h
=
W

h
+

∆W
h

[1− 0.5exp(−0.69∆W/∆t)]

W o
t

h
=
W e
t

h
+

∆t
h

where
∆t
h

=
1
εr

t/h

S/h

Ohmic conductor losses are given by [26]

αiC =
8.686Rs
240πZ0i

· 2

hc (Cati )2 ×
[
∂Cati
∂(W/h)

(
1 + δ

W

2h

)
− ∂Cati
∂(S/h)

(
1 + δ

S

2h

)

+
∂Cati
∂(t/h)

(
1 + δ

t

2h

)]

where Cati represents odd or even mode line capaci-
tances with air as dielectric and strips of finite thickness
and

δ =
{

1, for strips only
2, for strips and ground plane

Dielectric Losses are given by [26]

αid = 27.3
εr√
εieff

εieff − 1
εr − 1

tanδ

λ0

where tanδ is the loss tangent.

Fig. 12. Field lines in a suspended Microstrip line

D. Suspended Microstrip Lines

Suspended microstrip lines are inhomogeneous mi-
crostrip lines in which the substrate is separated by the
ground plane by an air gap as shown in Fig. 12.

With the addition of air gap εeff is reduced thus
increasing the bandwidth. Reduction of εeff also brings
down the guide wavelength, thus allowing for wider
strip dimensions and less stringent tolerances. Air gap
also reduces the field present near the ground plane thus
reducing the conductor losses [27].

An approximate CAD model has been derived in [28]
for εr ≤ 20, 0.5 ≤W/b ≤ 10, and 0.05 ≤ a/b ≤ 1.5

εeff = (1− f1f2)−1

where
f1 = 1− 1√

εr

and

f−1
2 =

3∑

i=0

ci(w/b)i

where cis are given by

ci =
3∑

j=0

dij

(
b

a

)j

expressions for dijs are given in [28]. After determining
εeff , Z0 is calculated as

Z0 = Zair/
√
εeff

where Zair is an identical air-filled suspended microstrip
line.

Zair = 60ln

[
f(u)
u

+

√
1 +

4
u2

]

where
u =

w/b

1 + (a/b)
and

f(u) = 6 + (2π − 6)exp
[−(30.666/u)0.7528

]

A slightly different set of expressions are present in
[29].
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E. Inverted Microstrip lines

Inverted Microstrip Line is a twin structure of the
suspended microstrip line studied earlier. A typical struc-
ture is as shown in Fig 13 A shielded variation of this

Fig. 13. Field lines in a Inverted Microstrip line

is also used which will then be identical to a shielded
suspended microstrip line.Due to presence of the air gap,
greater part of the electromagnetic waves pass through
the air gap thus making the effective dielectric constant
very small. A small effective dielectric constant also
increases the phase velocity in the microstrip line. Its
low dispersion characteristics makes it useful in broad-
band applications. It is also used in electromagnetically
coupled microstrip antenna [30].

A technique similar to the one used for suspended
lines are used. A curve fitting technique is used to
match the theoretical data, which has been contained by
variational principle in Fourier Transform Domain [28].

εeff = 1 + f1f2

where
f1 =

√
εr − 1

and

f−1
2 =

3∑

i=0

ci(w/b)i

where cis are given by

ci =
3∑

j=0

dij

(
b

a

)j
(83)

expressions for dijs are given in [28]. Z0 is calculated
as

Z0 = Zair/
√
εeff

where Zair is an identical air-filled suspended microstrip
line.

Zair = 60ln

[
f(u)
u

+

√
1 +

4
u2

]

where
u = w/b

and

f(u) = 6 + (2π − 6)exp
[−(30.666/u)0.7528

]

F. Slot Lines

Slot line was first proposed by Cohn [31]. It consists
of a conducting plane on a dielectric with a small gap
in them as shown in Fig 14. To minimize radiation,

Fig. 14. Slot Line

high permittivity dielectrics are used. This makes the
slot wavelength very small compared to the free space
wavelength, thus confining the waves [31].The field
configuration in a slot line is shown Fig 15

Fig. 15. E and H field in an slot line [32]

Various methods used for Slot lines are [1]
1) Approximate analysis
2) The Transverse resonance method
3) Galerkin’s method in FTD
4) Analysis in elliptical coordinates
Approximate analysis has been used for a zeroth order

value for εeff as [1]

εeff =
εr + 1

2
and slot wavelength λs is given by

λs
λ0

=
√

2
εr + 1

A transverse resonance method is used to determine
Z0 of the slot line in which the slot line is modeled as
a waveguide with a capacitive iris. Slot line impedance
is given by the power-voltage relationship

Z0 = V 2/2P
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where V is the peak voltage across the slot. The average
power P is expressed in terms of energy stored Wt,
which is related to the rate of change of total suseptance
Bt with frequency

Wt = (V 2/4)(dBt/dω)

but
Wt =

2πP
ω

v

vg

we have
Z0 = (v/vg)π/(ω∂Bt/∂ω)

Z0 is finally given by

Z0 = η
v

vg

π

p
· ∆p
−∆(ηBt)

A detailed method for the evaluation of Slot impedance
is given in [1].Galerkin’s method in Fourier Transfer
Domain has also been applied [1].

G. Coplanar Waveguide

It consists of a strip at the center placed on a dielectric
substrate with two ground planes placed on either side
of it parallely as shown in Fig 16. A conformal mapping

Fig. 16. Field lines in a Coplanar waveguide

approach has been used to calculate Z0 under Quasi-
static assumption.A closed form expression for Z0 has
been obtained through this method [1]

Z0 =
1

Cvcp
=

30π√
εr+1

2

K(k′)
K(k)

where
k =

s

s+ 2w

and k′ =
√

1− k2. A Finite Difference Method Ap-
proach and a Fullwave analysis using the Galerkin’s
method has also been applied to the case of coplanar
waveguides [1].

Though a detailed analysis of the losses were not
done for all of the different class of microstrip lines,
a qualitative idea can be obtained by fig 17

Fig. 17. Comparison of various parameters among different types
of microstrip lines [30]

VI. DISPERSION ANALYSIS FOR VARIOUS

MICROSTRIP LINE CONFIGURATIONS

The frequency dependence of the transmission param-
eters will be studied. Closed form expressions shall be
provided wherever available for the dispersive effects on
Z0 and εeff

A. Microstrip lines

The Dispersion analysis is done in two ways. In the
first category, an equivalent parallel plate model of the
waveguide is used which is then used to analyse the
frequency dependence. The following observations are
made regarding the dispersive effects in the Microstrip
[33]

1) The normalized phase velocity vp/v is a monoton-
ically decreasing function of frequency

2) The normalized phase velocity and its first deriva-
tive at f = 0 are given by

ṽp = vp/v|f=0 =
1√
εeff

and
dṽp
df

∣∣∣∣
f=0

= 0

3) The normalized phase velocity and its first deriva-
tive as f →∞ are given by

ṽp = vp/v|f→∞ =
1√
εr

and
dṽp
df

∣∣∣∣
f→∞

= 0

The second being the solution of field problem in spec-
tral domain and then using the power-current definition
for Z0 .The Dispersion model is based on considering
the microstrip as a Longitudinal-section Electric (LSE)
[34].The procedure begins with modeling the given mi-
crostrip as an LSE with a modified structure to aid in
analysis. The modified structure then is made to take the
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zero-frequency electrical parameters. A transverse reso-
nance analysis of the model relates εeff to the frequency.
A closed form expression for frequency dependence of
εeff is then obtained as [34]

εeff (f) = εr − εr − εeff (0)
1 +G(f/fp)2

(84)

where
fp =

Z0

2µ0b

[34] has quoted that G approaches unity according to the
experimental results, but the modified expressions are [1]

Z0(f) = Z0T − Z0T − Z0(0)
1 +G(f/fp)2

(85)

where Z0T is twice the characteristic impedance of a
stripline of width W and height 2h and

G =

√
Z0 − 5

60
+ 0.004Z0

and
fp(GHz) = 15.66Z0/h

An alternative set of expressions have been derived
based on the coupling of the surface wave and the LSE
modes. The expressions are [35]

εeff (f) = εr − K1(εr − εeff (0))
1 +K2(f/fp)2

(86)

where
fp =

Z0

2µ0b

K1 =
εr − εII
εr − 1

and

K2 =
π2

12
(εr − εeff (0))(εeff (0)− 1)(εr − εII)

(εr − 1)2εeff (0)

and
εII = εr + (s1 + s2 − a2/3)/k2

0

s1 = 3

√
η2 +

√
η3

1 + η2
2

s1 = 3

√
η2 −

√
η3

1 + η2
2

and
η1 = a1/3− a2

2/9

η2 = (a1a2 − 3a0)/6− a3
2/27

ai s are given by

a2 = (2p+ qp2 − r)/p2

a1 = (2pq + 1)/p2

a0 = q/p2

where
p = b/3

q = (εr − 1)k2
0

r = (b/εr)2

Another approach for dispersion analysis has been
used in [36] using the so-called Logistic Dispersion
Model(LDM) which makes use of the basic statement
that The rate of increase of effective dielectric constant
with frequency ∝ [Effective relative permittivity at the
given frequency] × [Remaining fractional relative per-
mittivity of the substrate]

B. Coupled Microstrip Lines

A semi-empirical dispersion model has been used for
the modeling. The model consists of an equivalent cou-
pled parallel-plate waveguide filled with the correspond-
ing dielectric. This structure is then analysed in terms
of the quasi-static line impedances and capacitances.
The frequency dependence of these parameters are then
assumed to be similar to that of a microstrip.

Expressions similar to Gentsinger’s relations are give
as [26]

εieff (f) = εr −
εr − εieff (0)

1 +G(f/fp)2

where

G =
{

0.6 + 0.018Z0o odd mode
0.6 + 0.045ZOe even mode

and

fp =
{

31.32Z0o/h odd mode
7.83ZOe/h even mode

Similar equations holds for Z0i, which are [26]

Z0i(f) = ZTi − ZTi − Z0i(o)
1 +G(f/fp)2

where ZTi is the impedance of a coupled stripline with
gap s and width of the strip w and spacing between the
ground planes 2h.

ZT i =
60π√
εr

K(ki)
K(k′i

where

ki =





tanh
(
πW
4h

)
/tanh

(
π(W+s)

4h

)
odd mode

tanh
(
πW
4h

)
tanh

(
π(W+s)

4h

)
even mode
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C. Suspended Microstrip lines

Suspended Microstrip lines are relatively low-
dispersion lines, but the flowing observations hold [37]

1) For a given W/b and a/b, the effects of dispersion
is more pronounced as εr increases

2) For a given εr and a/b, the effects of dispersion
decreases with W/b

3) For a given εr and W/b, no simple relationship
exists between the dispersion effects and a/b

4) dependence of the effects of dispersion on t is
negligibly small

The following design equations are developed based on
the modeling of the frequency dependence to match the
Spectral-domain full-wave analysis [38]

εeff (f) =
εeff (0) +Kεεr

1 +Kε

where

Kε =
4∑

i=0

(ci(εr, a/b, w/b))(f/fp)i

fp =
Z0

2µ0(a+ b)
a

0.064

ci s are given by (83). Dispersive effects of Z0 is given
by [38]

Z0(f) =
120π(a+ b)

We(f)
√
εeff (f)

a

0.074

where We(f) is the width of the equivalent planar
waveguide given by the solution of the equation

4∑

i=0

Fi(We(f)/λ)i = 0

where λ is the free-space wavelength in cm. All the
dimensions in cm.

F0 = d0W/λ

F1 = −d0 − 2
(
We(0)
λ
− d1

W

λ

)√
εeff

F2 = 2(1− d1)
√
εeff + 4d2

W

λ
εeff

F3 = −4
(
d2 − 2d3

W

λ

√
εeff

)
εeff

F4 = −8d3εeff
√
εeff

and
We(0) =

120π(a+ b)
Z0
√
ε0

a

0.064

expressions for d s are given in [28].

D. Inverted Microstrip Line

[38] suggests the same set of expressions used in the
previous subsection holds good for inverted microstrip
lines as well.

VII. CONCLUSIONS

A brief survey of the various techniques used in
Static and Dispersion analysis of various Microstrip line
configurations has been done. Wherever possible closed-
form expressions has been provided to aid in CAD of
these microstrip lines. Dispersion analysis for several
microstrip lines are absent as closed-form expressions
were not available for these. Dispersive effects on Di-
electric and Conductor losses has also been omitted in
the discussion. All the static equations given here were
tested against various other transmission line calculators
available. The equations were implemented as a part of
the Microwave transmission line tool written by me 7.
An excellent reference for the various analysis equations
is [39].

APPENDIX

SURFACE IMPEDANCE

The concept of surface impedance arises from the
phenomenon called ”skin effect”, which is the tendancy
of high frequency currents to penetrate into the surface
of a conductor only to a limited depth. The depth of
penetration (or skin depth), δ, is defined as the depth in
which the wave has been attenuated to 1/e times its
original value (the value at the surface). For a good
conductor (σ/ωε >> 1), the depth of penetration is
given by 8

δ =
√

2
ωµσ

Due to this skin effect, the transmission of high
frequency currents through conductors becomes a surface
phenomenon if the thickness of the conductor is large in
comparison to the skin depth. Due to this a parameter
called ”surface impedance” is associated with conduc-
tors, defined as the resistance of a conducting surface
of equal width and length. For a circular conductor,
the width of the surface is its circumference [13]. The

7a pre-beta version of this tool - LineMeter is available
8Skin depth (in m) as function of frequency, f , for some metals

at 300K are [40]: Silver: 0.0642f−1/2, Alluminium: 0.0826f−1/2,
Brass: 0.127f−1/2, Copper: 0.066f−1/2.
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surface impedance (a.k.a internal impedance), Zs, is
defined as [41]

Zs =
Etan
Js

(87)

where Etan is the tangential component of the electric
field and Js is the surface current density due to the
tangential electric field.The total conduction current will
then be

Js =
∫ ∞

0
Jdy (88)

assuming that the conductor is placed such that the y-
axis is normal to its surface. Putting J = J0e

−γy in (88),
we have

Js = J0

∫ ∞
0

e−γydy

= −J0

γ

[
e−γy

]∞
0

=
J0

γ
(89)

putting (89) in (87) and using Ohm’s law for J0, we have

Zs =
γ

σ

putting γ =
√
jωµσ we have

Zs =

√
jωµ

σ
= η (90)

(90) shows that for a good conductor whose thickness is
much greater than the skin depth, the surface impedance
is equal to its internal impedance. splitting Zs into
resistance and reactance we have

Rs = Xs =
√
ωµ

2σ
=

1
σδ

(91)

We can infer from (91) that a conductor having thickness
very great compared to δ and having an exponential
current distribution has the same resistance as would a
conductor with thickness equal to δ and having a uniform
current distribution.
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