LIST OF CITATIONS OF THE JOURNAL PAPERS OF LAST 5 YEARS

[Source: Google/Google Scholar/Scopus/Chinese journal database etc.]

1. Jain, S. and Agarwal, V. (2004): A New Algorithm for Rapid Tracking of Approximate Maximum Power Point in Photovoltaic Systems, IEEE Power Electronics Letters Vol. 2, pp. 16-19.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Resistor Emulation Approach to Low-Power RF Energy Harvesting	Thurein Paing, Jason Shin, Regan Zane and Zoya Popovic	2008	IEEE Transactions on Power Electronics	23, No. 3	1494- 1501
2.	Optimum matching parameters of an MPPT unit used for a PVG-powered water pumping system for maximum power transfer	Mehmet Akbaba	2006	International Journal of Energy Research	30	395– 409
3.	High-performance algorithms for drift avoidance and fast tracking in solar MPPT system	Pandey, A., Dasgupta, N., Mukerjee, A.K.	2008	IEEE Transactions on Energy Conversion	23, No. 2	681- 689
4.	Solar tracking system design based on linear switched reluctance motor	Cheung, N.C., Zhao, S W., Gan, WC., Sun, Z G., Kwok, SC.	2008	Kongzhi Lilun Yu Yinyong/Control Theory and Applications	25, No. 2	316- 320
5.	Comparison of photovoltaic array maximum power point tracking techniques	Esram, T., Chapman, P.L.	2007	IEEE Transactions on Energy Conversion	22, No. 2	439- 449
6.	Research on MPPT methods of photovoltaic power generation system	Li, J., Dou, W., Xu, Z., Peng, Y., Xu, H.	2007	Taiyangneng Xuebao/Acta Energiae Solaris Sinica	28, No.3	268- 273
7.	Maximum power point tracking techniques for photovoltaic systems	Cavalcanti, M.C., Oliveira, K.C., Azevedo, G.M., Moreira, D., Neves, F.A.	2006	Przeglad Elektrotechniczny	82, No. 2	49-56
8.	Dynamic maximum power injection control of AC	Rodriguez, C., Amaratunga, G.A.J.	2006	IEE Proceedings: Electric Power	153, No. 1	83-87
	photovoltaic modules using current-mode control			Applications		
9.	Photovoltaic Literature Survey (NO. 33)	Bryce S. Richards	2004	Progress in Photovoltaics: Research and Applications	12, No. 7	569- 572
10.	Photovoltaic power generation system,	Jing, Xn Zheng-guo, Peng, Xu Hong-hua	2007	Journal of Solar Energy	28, No. 3	

maximum power point tracking algorithm 11. Study on a Limit MPPT Ju-Sung Kang, Kong-2007 Journal of the 854691 53-59 Controller for the Modelling Hoon Koh, Kwong-Ju Society of of a Wind Power Generator Choi, Jae-Yoon Park Electrical Equipment 12. A Modified MPPT Scheme Michael Sokolov, Doron 2008 IEEE trans. on 23, No. 4 1105for Accelerated Convergence Shmilovitz Energy 1107 Conversion 13. A Current-Control-Loop KH Koh, T Kitano, M 2005 Technical 1 47-52 Error Based Simple MPPT Matsui Meeting on Controller Using Single Semiconductor Current Sensor Power Converter. IEE Japan 14. Modified PAO algorithm for P. Raja and S. Ashok 2007 **IEEE Power** 10 -Maximum Power Point Electronics 13 Tracking of PV Systems Newsletter, Third Quarter 15. Advanced Incremental 2006 International 603-Jae Ho Lee, HyunSu Bae art. no. Conductance MPPT and Bo Hyung Cho Power 4061770 607 Algorithm with a Variable Electronics and Step Size Motion Control Conference 16. Investigating the Armstrong, S. Hurley, 2005 **IEEE Power** 204art. no. Effectiveness of Maximum W.G. Electronics 1581625 209 Power Point Tracking for a **Specialists** Solar System Conference An efficient photovoltaic DC IEEE Conference 17. Sharaf, A.M. Liang 2005 1325art. no. village electricity scheme Yang on Control 1507315 1330 using a sliding mode **Applications** controller Toronto, Canada 18. Maximum power point Ortiz-Rivera, E.I. 2008 **IEEE** Applied art. no. 987tracking using the optimal Power 4522841 991 duty ratio for DC-DC Electronics converters and load Conference and matching in photovoltaic Exposition applications 19. Modeling & control of a Chong, B.V.P. Li 2007 European 1-10 art. no. bidirectional converter for a Zhang Dehghani, A. Conference on 4417357 standalone photovoltaic Power power plant Electronics and Applications, 2007 20. 2006 345-Study on maximum power Ju Sung Kang, Kang Korea Society of art. no. point tracking a controller Hoon Koh, Hyun Woo electric facilities 781266 349 for the wind power generator symposium Lee 21. Load line emulation based Sokolov, M., Shmilovitz, IEEE Annual 4098-2008 art. no. maximum power point Power 4592595 4101 Electronics tracking Specialists Conference 22. A novel maximum power Sharaf, A.M., Yang, L. 2007 Canadian art. no. 450tracking controller for a Conference on 4054533 453

Electrical and

Computer

stand-alone photovoltaic DC

motor drive

				Engineering,		
23.	Maximum power point algorithm in PV generation: An overview	Desai, H.P., Patel, H.K.	2007	International Conference on Power Electronics and Drive Systems	art. no. 4487766	624- 630
24.	Photovoltaic maximum power point tracking based on an adjustable matched virtual load	Sokolov, M., Shmilovitz, D.	2007	IEEE Applied Power Electronics Conference and Exposition	art. no. 4195915	1480- 1484
25.	Maximum power point estimator for photovoltaic solar arrays	Blanes, J.M., Garrigós, A., Carrasco, J.A., Ávila, E., Maset, E.	2006	Proceedings of the Mediterranean Electrotechnical Conference	art. no. 1653241	889- 892
26.	Analysis and design of simple limit cycle MPPT controller using error signal- based current control loop	Koh, KH., Kang, JS., Hong, DS., Lee, HW., Matsui, M.	2006	IEEE Annual Power Electronics Specialists Conference	art. no. 1711740	1-7
27.	Design issues in implementing MPPT for improved tracking and dynamic performance	Pandey, A., Dasgupta, N., Mukerjee, A.K.	2006	IECON Proceedings (Industrial Electronics Conference)	art. no. 4153599	4387- 4391
28.	Research on methods of tracking the maximum power points for a photovoltaic conversion systems	Li, J., Dou, W., Xu, Z., Peng, Y., Xu, H.	2006	IET Conference Publications		107- 112
29.	An improved maximum power point tracking algorithm with current-mode control for photovoltaic applications	Tan, C.W., Green, T.C., Hernandez-Aramburo, C.A.	2005	International Conference on Power Electronics and Drive Systems	art. no. 1619736	489- 494
30.	Investigation of the harmonic response of a photovoltaic system with a solar emulator	Armstrong, S., Lee, C.K., Hurley, W.G.	2005	European Conference on Power Electronics and Applications	art. no. 1665896	1-8
31.	Modeling and Simulation of Solar PV Array under Partial Shaded Conditions	R.Ramaprabha and B.L.Mathur	2008	IEEE International Conference on Sustainable Energy Technologies	art. no. 4746963	7-11
32.	Research on Power Control for Stand-alone Photovoltaic Generating Systems	Chunlan	2007	Master's Dissertation, Inner Mongolia University of Technology, Hohhot, China		
33.	Research on Photovotaic	Pan jian	2009	Master's		

	Grid Generation System Based on DSP			Dissertation, Jiangnan University		
34.	Research on Stand-alone LED Lighting System Supplied by Photovoltaic Panel	Chen Shangwu	2008	Master's Dissertation, Zhe Jiang University		
35.	The Research of Inverter for PV Generation	Wu Chunhua	2008	Doctoral Dissertation, Shanghai University		
36.	Evaluation on MPPT Methods of Photovoltaic Power Systems	Li Jing; Dou Wei; Xu Zheng-guo; Peng Yan- chang; Xu Hong-hua	2005	Proceedings of the 15th International Photovoltaic Science & Engineering Conference (PVSEC-15) Shanghai, China.		925- 926
37.	Modeling Of Integrated Power Conditioner For Photovoltaic Systems	Ashok, S.	2006	1ST IEEE Conference on Industrial Electronics and Applications	art. no. 257083	1-5
38.	A New Maximum Power Point Tracking for Photovoltaic Systems	Mohemad Azab	2008	Proceedings of World Academy of Science, Engineering and Technology	34	
39.	Development of Propulsion and Monitoring System of the Solar Ship Integrated with MPPT Solar Energy Technique	Lin Yi-yin	2007	Master's Dissertation National Cheng Kung University		
40.	Study of Z-Source Inverter for Grid-Connected PV Systems	Po XU, Xing ZHANG', Chong-wei ZHANG Ren- xian,Cao and Liuchen CHANG	2006	37th IEEE Power Electronics Specialists Conference, 2006.	art. no. 1712266	1-5
41.	Photovoltaic system MPP tracker investigation and implementation using DSP engine and buck-boost DC-DC converter	Peftitsis D., Adamidis G., Bakas P., Balouktsis A.	2008	2008 13th International Power Electronics and Motion Control Conference, EPE- PEMC 2008	art. no. 4635533	1840- 1846
42.	A Single-Stage Grid Connected Inverter Topology for Solar PV Systems With Maximum Power Point Tracking	S. Jain and Agarwal, V.	2007	IEEE Transactions on Power Electronics	22	1982- 1940
43.	New current control based MPPT technique for single stage grid connected PV	Sachin Jain, Agarwal, V.	2007	Energy Conversion and Management	48, No. 2	625- 644

4.	systems Comparison of the	S. Jain and Agarwal, V.	2007	IET Electric	1	753-
₩.	performance of maximum	5. Jani and Agaiwai, V.	2007	Power	1	762
	power point tracking			Applications		702
	schemes applied to single-			11		
	stage grid-connected					
	photovoltaic systems					
45.	An integrated hybrid power	Jain, S., Agarwal, V.	2008	IEEE	23, No. 2	622-
	supply for distributed generation applications fed			Transactions on Energy		631
	by non-conventional energy			Conversion		
	sources			Conversion		
46.	MATLAB-based modeling	Patel, H., Agarwal, V.	2008	IEEE	23, No. 1	302-
	to study the effects of partial			Transactions on		310
	shading on PV array			Energy		
17	characteristics	Daddy V M A commod V	2007	Conversion IEEE	22 No. 2	666-
47.	Utility-interactive hybrid distributed generation	Reddy, K.N., Agarwal, V.	2007	Transactions on	22, No. 3	673,
	scheme with compensation			Energy		075,
	feature			Conversion		
48.	A comparative study of	Agarwal, V.,	2007	International	art. no.	1769-
	PWM schemes for grid	Vishwakarma, A.		Conference on	4487948	1775
	connected PV cell			Power		
				Electronics and Drive Systems		
49.	Power Electronics	M.H. Rashid		Academic Press	2 nd Ed	
.,.	Handbook: Devices, Circuits	111111111111111111111111111111111111111		110000		
	and Applications					
50.	Patent No. 2006-	Prof. Mikihiko Matsui	2006	Tokyo		
	252320(P2006-252320A)			Polytechnic		
				University		
51.	An investigation of new	D Peftitsis, G Adamidis,				
	control method for MPPT in	A Balouktsis				
	PV array using DC–DC					
	buck-boost converter					
52.	Evaluation and design of a	Fabiano Fernandes Rocha	2005	Master's		
	power source for system detection of faults in rural			Dissertation, Federal		
	distribution networks			University of		
				Minas Gerais		
53.	Regulation of the electric	M. El Ouariachi, T	2009	International	4, No. 5	294-
	power provided by the	Mrabti, B Tidhaf, Ka.		Journal of		309
	panels of the photovoltaic	Kassmi,		Physical Sciences		
54.	systems Energy planning of a	M.B. Ammar, M.	2008	World Renewable		1344 -
JH.			2000			
	domestic PV panel	Chaabene, M. Kamoun		Energy Congress		1349

2. Jain, S. and Agarwal, V. (2007): A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking, IEEE Tran. on Power Electronics, Vol. 22, pp. 1928-1940.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	A Family of Interleaved DC–DC Converters Deduced From a Basic Cell With Winding-Cross- Coupled Inductors (WCCIs) for High Step- Up or Step-Down Conversions	Wuhua Li and Xiangning He	2008	IEEE Transactions on Power Electronics	23, No. 4	1791- 1801
2.	Single-stage asymmetrical half-bridge regulator with ripple reduction technique	Chen, RT., Chen, YY., Yang, YR.	2008	IEEE Transactions on Power Electronics	23, No. 3	1358- 1369
3.	A Simplified Control Method for the Grid- Connected Inverter With the Function of Islanding Detection	Jou HL, Chiang WJ, Wu JC	2008	IEEE Transactions on Power Electronics	23, No. 6	2775- 2783
4.	Performance of grid connected inverter with maximum power point tracker and power factor control	Saad Mekhilef	2008	Int. J. Power Electronics	1, No. 1	49-62
5.	Photovoltaic Literature Survey (No. 58)	Avi Shalav	2007	Progress in Photovoltaics: Research and Applications, Wiley Inter Science	15, No. 8	749- 754
6.	A novel multiple output grid-connected inverter based on DSP control	Yao, Z., Xiao, L., Yan, Y.	2008	IEEE Annual Power Electronics Specialists Conference	art. no. 4591948	317- 322
7.	Low cost Distributed Solar Power Generation	Neeraj Shandilya	2008	IEEE International Conference on Industrial and Information Systems, Indian Institute of Technology Kharagpur		
8.	Performance of Grid Connected Photovoltaic Inverter with Maximum Power Point Tracker and Power Factor Control	Mekhilef, S., Ahmed, M.E., Younis, M.A.A.	2008	Canadian Conference on Electrical and Computer Engineering	art. no. 4564714	1129- 1134

9.	An integrated hybrid power supply for distributed generation applications fed by non- conventional energy sources	Jain, S., Agarwal, V.	2008	IEEE Transactions on Energy Conversion	23, No. 2	622- 631
10.	EMC Issues in High- Power Grid-Connected Photovoltaic Plants	Rodolfo Araneo, Sergio Lammens, Marco Grossi and Ivano Rodolfi		IEEE Tran. on EMC	In press	
11.	A review of non-isolated high step-up DC/DC converters in renewable energy applications	Li, W., Lv, X., Deng, Y., Liu, J., He, X.	2009	IEEE Applied Power Electronics Conference and Exposition - APEC	art. no. 4802683	364- 369.
12.	Three-phase series active power filter without isolation transformer and active DC source	Jacobina, C.B., Oliveira, A.C., Rocha, N., Matias, R.R., Santos, W.R.N., Correa, M.B.R.	2009	IEEE Applied Power Electronics Conference and Exposition - APEC	art. no. 4802881	1596- 1601
13.	A systematic approach to synthesizing multi-input DC-DC converters	Liu, YC., Chen, YM.	2009	IEEE Transactions on Power Electronics	24, No. 1	116- 127
14.	MPPT scheme for a PV- fed single-phase single- stage grid-connected inverter operating in CCM with only one current sensor	Patel, H., Agarwal, V.	2009	IEEE Transactions on Energy Conversion	24, No. 1	256- 263
15.	A single-stage single- phase transformer-less doubly grounded grid- connected PV interface	Patel, H., Agarwal, V.	2009	IEEE Transactions on Energy Conversion	24, No. 1	93-101
16.	Control strategy for series and parallel output dual- buck half bridge inverters based on DSP control,	Yao, Z., Xiao, L., Yan, Y.	2009	IEEE Transactions on Power Electronics	24, No. 2	434- 444
17.	Dual-buck full-bridge inverter	Yao, Z., Xiao, L., Wu, T., Yan, Y.	2008	International Conference on Electrical Machines and Systems, ICEMS	art. no. 4771122	2245- 2250
18.	Research on 5kW Photovoltaic Grid- connected Inverter	Liang Xuefeng	2008	Master's thesis of Beijing jiaotong University, Beijing, China		
19.	The Design of Grid- connected Photovoltaic Inverter	Yang Jun	2008	Master's thesis of Beijing jiaotong University, Beijing, China		

20. Single-stage sine-wave inverter for an autonomous operation of solar photovoltaic energy conversion system

G. Saravana Ilango, P. Srinivasa Rao, A. Karthikeyan and C. Nagamani 2009 Elsevier Science, Renewable Energy

In press

3. Reddy, N. and Agarwal, V. (2007): Utility Interactive Hybrid Distributed Generation Scheme with Compensation Feature, IEEE Tran. on Energy Conversion, Vol. 22, pp. 666-673.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	ANN and fuzzy logic controller design for hybrid wind/PV system connected to MV distribution grid	Sotirios B. Skretas, Demetrios P. Papadopoulos and S.N. Singh	2008	International Journal of Energy Sector Management	2, No. 4	499-520
2.	A current and future state of art development of hybrid energy system using wind and PV-solar: A review	Pragya Nema, R.K. Nema and Saroj Rangnekar	2009	Renewable and Sustainable Energy Reviews Elsevier Science journal	13, No. 8	2096- 2103
3.	Research on the reactive power control of grid- connected inverter of distributed generation system based on genetic algorithm	Wang, R., Lin, F., You, X., Zheng, T.Q.	2008	3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008	art. no. 4582687	1096- 1099
4.	An Integrated Hybrid Power Supply for Distributed Generation Applications Fed by Non- conventional Energy Sources	Sachin Jain and Agarwal, V.	2008	IEEE Transactions on Energy Conversion	23, No. 2	622-631
5.	Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems	S. Jain and Agarwal, V.	2007	IET Electr. Power Appl.	1, No. 5	753– 762
6.	MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics	Hiren Patel and Vivek Agarwal	2008	IEEE Transactions on Energy Conversion	23, No. 1	302-310
7.	Control of a Stand-Alone Inverter-Based Distributed Generation	Hiren Patel and Vivek Agarwal	2008	IEEE Transactions on Power	23, No. 2	1113- 1120

	Source for Voltage Regulation and Harmonic Compensation			Delivery		
8.	Optimization of Operational Energy Cost in a Hybrid Distributed Generation System	Pradeep Sharma and Vivek Agarwal	2008	IEEE International Conference on Industrial and Information Systems	art. no. 4798462	1-6
9.	PV Based Distributed Generation with Compensation Feature under Unbalanced and Non-linear Load Conditions for a 3-\phi, 4 Wire System	H. Patel and V. Agarwal	2006	Proc. IEEE ICIT	art. no. 372369	322 – 327
10.	Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications	Thounthong, P., Raël, S., Davat, B.	2009	Journal of Power Sources	193, No. 1	376-385
11.	Fuel starvation	Thounthong, P., Davat, B., Raël, S., Sethakul, P.	2009	IEEE Industry Applications Magazine	15, No. 4	52-59
12.	Research on the reactive power control of distributed generation system based on genetic algorithm	Wang, R., Lin, F., You, XJ., Zheng, QL.	2009	Dianli Xitong Baohu yu Kongzhi/Powe r System Protection and Control	37, No. 2	24-27

4. Jain, S. and Agarwal, V. (2007): New, Current Control based, MPPT Technique for Single Stage Grid Connected PV Systems. Elsevier Science Journal of Energy Conversion and Management, Vol. 48, pp. 625-644.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Sliding mode control of a photovoltaic grid connected system	Y. Weslati, A. Sellami, F. Bacha, R. Andoulsi		JES		
2.	Photovoltaics Literature Survey (No. 54)	Avi Shalav	2007	Progress in Photovoltaics: Research and Applications, Wiley Interscience	15	369– 373
3.	Photovoltaics Literature Survey (No. 55)	Avi Shalav	2007	Progress in Photovoltaics: Research and Applications, Wiley Interscience	15	461– 468
4.	A Photovoltaic Grid	Y. Beck	2007	IEEE	art. no.	152-

	Connected Inverter with Current Source Characteristics and Maximum Power Tracking			International Aegean Conference on Electrical Machines and Power Electronics (ACEMP'07)	4510495	155
5.	Photovoltaic power conditioning and maximum power point tracking by means of a self commutated inverter	Beck, Y., Shmilovitz, D., Medini, D., Bishara, B.	2008	IEEE Annual Power Electronics Specialists Conference	art. no. 4592144	1476- 1479
6.	Modeling photovoltaic DC primary sources as grid connected inverter supplies considering non linear effects	González-Morán, C., Arboleya. P., Diaz G., Gómez- Aleixandre, J.	2007	IEEE Canada Electrical Power Conference	art. no. 4520305	50-55
7.	Maximum power point algorithm in PV generation: An overview	Desai, H.P., Patel, H.K.	2007	Proceedings of the International Conference on Power Electronics and Drive Systems	art. no. 4487766	624- 630
8.	MPPT scheme for a PV- fed single-phase single- stage grid-connected inverter operating in CCM with only one current sensor	Patel, H., Agarwal, V.	2009	IEEE Transactions on Energy Conversion	24, No. 1	256- 263
9.	A new design for analogue maximum power point tracking	Chenni, R., Zarour, L., Amarouayache, M., Bouzid, A.	2008	International Review of Electrical Engineering	3, No. 1	93-99
10.	Polar coordinated fuzzy controller based real-time maximum- power point control of photovoltaic system	Syafaruddin, Engin Karatepe and Takashi Hiyama	In press	Elsevier Science Journal of Renewable Energy		

5. George, S. and Agarwal, V. (2005): A Novel, DSP Based Algorithm for Optimizing the Harmonics and Reactive Power Under Non-Sinusoidal Supply Voltage Conditions, IEEE Tran. on Power Delivery, Vol. 20, pp. 2526-2534.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Control strategies for load compensation using instantaneous symmetrical component theory under different supply voltages	Koteswara Rao U., Mahesh K. Mishra and A. Ghosh	2008	IEEE Transactions on Power Delivery	23, No. 4	2310- 2317

2.	Shunt active power filters and PWM rectifiers in three-phase three wire systems: a survey	Barcenas, E., Cardenas, V., Arau, J.	2007	International Review of Electrical Engineering (IREE)	2, No. 3	337-345
3.	Service entrance multiple- function power converter for quality power supply to critical and sensitive loads	Chen, F., Wang, L., Cheung, R., Nabhani, F.	2007	Large Engineering Systems Conference on Power Engineering	art. no. 4059358	8-12
4.	Power delivery at service entrance enhanced using DSP-multiple-functions converter	Wang, L., Cheung, H., Chen, F., Cheung, R.	2007	IEEE Power Engineering Society General Meeting	art. no. 4275319	1-8
5.	Evaluarea Gradului De Afectare A Eficien Ei Re Elelor Electrice De Distributie In Regim Deformant Si Nesimetric- Assessing the degree of impairment of the efficiency of electrical distribution networks in the deforming and matchlessly	Prof. dr.ing I. Felea, conf.dr.ing.E. Dale, conf.dr.ing.N. Coroiu, cerc. st., ing.E. Barla	2007	Annual Conference of Energy Engineering, ANNALS of the Oradea University Fascicle of Energy Engineering		
6.	Control strategies for load compensation using instantaneous symmetrical component theory under different supply voltages	Koteswara Rao U., Mahesh K. Mishra	2007	International Power Engineering Conference, 2007.	art. no. 10028131	596-601
7.	An Active Compensation Strategy for the Low- voltage Network in case of Harmonic Current- Producing Loads	O.M. Elgendy, A.M.A. abass, A.M.A. Mahmoud and A.D. Alkoshery	2006	Proc. IEEE EPE PEMC	art. no. 4061914	1466 – 1471
8.	A Computationally Efficient RDFT Based Reference Signal Generator for Active Compensators	Konstantin Borisov, Herbert Ginn and Guangda Chen		IEEE Tran. on Power Delivery	In press	
9.	Research on Continuously Varying Capacitance of Power Capacitors Based on PWM	Cao Qiuyun	2007	Master's thesis, Harbin technology university, Harbin, China.		

6. George, S. and Agarwal, V. (2007): A DSP Based Control Algorithm for Series Active Filter for Optimized Compensation under Non-Sinusoidal and Unbalanced Voltage Conditions, IEEE Tran. On Power Delivery, Vol. 22, pp. 302-310.

This paper is cited by:

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	A DSP-based active power filter for low voltage distribution systems	Wajiha Shireen, Li Tao	2008	Electric Power Systems Research Elsevier	78	1561- 1567
2.	New Structure for Three- Phase, Four-Wires Shunt Active Filter	M. Lamich, J. Balcells, D. Gonzalez, J. Gago	2007	IEEE Compatibility in Power Electronics	art. No. 4296514	1-7
3.	Control of a Stand-Alone Inverter-Based Distributed Generation Source for Voltage Regulation and Harmonic Compensation	Hiren Patel and Agarwal, V.	2008	IEEE Transactions on Power Delivery	23, No. 2	1113- 1120
4.	LC Coupled Shunt Active Power Filter (APF): New topology and control method	Josep Balcells , Manel Lamich, Gabriel Capellà,	2007	IEEE 9 th International Conference on Electrical Power Quality and Utilisation	art. No. 4424195	1-6
5.	New Structure for Three- Phase, Four-Wires Shunt Active Filter	M. Lamich, J. Balcells, D. Gonzalez, J. Gago	2007	Przeglad Elektrotechniczny	83, No.10	73-77
6.	A New Adaptive Detection Algorithm for Power Quality Improvement	Lewei Qian	2007	Doctoral Dissertation The Florida State University College Of Engineering		
7.	OTA & CCII-based control system of shunt active power filter using in three-phase three-wire system	Vanichprapa, S., Prapanavarat, C., Chipipop, B.	2008	AIP Conference Proceedings	1052	30-35

7. Wekhande, S. and Agarwal, V. (2006): High Resolution Absolute Position Vernier Shaft Encoder Suitable for High Performance PMSM Servo Drives, IEEE Tran. on Instrumentation and Measurements, Vol. 55, pp. 357-364.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Structure Optimization for Brushless DC Motor in Robot's Arms Using FEM	Shang Jing, Zhu Hongwei, Lu Yongping	2007	International Conference on Electrical Machines and Systems,	art. no. 4412174	699-702

				Seoul, Korea		
2.	Application of Absolute Encoder to Motor Position Detection Systems	Cheng Xiaoli, Xie Jian- ying, Wang	2007	Chinese Periodicals, Automation and Computer Technology	14, No. 5	
3.	Research on Speed Stability of Permanent Magnet Synchronous Servo System	Dong Xu, Tianmiao Wang, Jingmeng Liu and Hongxing Wei	2007	2nd IEEE Conference on Industrial Electronics and Applications	art. no. 4318529	851-855
4.	Integrated design for permanent magnet synchronous motor servo systems based on sliding mode control	Fang, SC., Zhou, B.	2009	Zhongguo Dianji Gongcheng Xuebao/Proce edings of the Chinese Society of Electrical Engineering	29	96-101
5.	Development of Power Converters for Wind Generators	Su Grown	2007	Master's Dissertation, National Taiwan University of Science and Technology		
6.	Development of Power Converters for Wind Generators	Chang-Cheng Su	2008	Master's Dissertation, National Taiwan University of Science and Technology		

8. Kumar, M. and Agarwal, V. (2006): Power Line Filter Design for Conducted Electromagnetic Interference using Time Domain Measurements, IEEE Tran. on Electromagnetic Compatibility, Vol. 48, pp. 178-186.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	A Metric for Evaluating the EMI Spectra of Power Converters	Krishna Mainali, Ramesh Oruganti, Kanakasabai Viswanathan and Swee Peng Ng	2008	IEEE Transactions on Power Electronics	23, No. 4	2075- 2081
2.	Characterization of power-line filters and electronic equipment for prediction of conducted emissions	Pérez, A., Sánchez, A M., Regué, JR., Ribó, M., Rodríguez-Cepeda, P., Pajares, FJ.	2008	IEEE Transactions on Electromagnetic Compatibility	50, No. 3	577-585
3.	Design of a current-sense	Mainali, K., Oruganti,	2008	IEEE Annual	art. no.	1632-

	voltage-feedback common mode EMI filter for an off-line power converter	R.		Power Electronics Specialists Conference	4592174	1638
4.	Multimodal characterization of power- line filters and electronic devices	Pérez Jiménez, Antonio	2008	Doctoral Dissertation, Universitat Ramon Llull, Barcelona, Spain		
5.	ElectroMagnetic Compatibility Design of AC/DC/AC Converter Used in Wind Power Generator	Zhang Xianli	2008	Master's Dissertation, Hefei University of Technology		
6.	Conducted EMI identification in power electronics converters using the Wiener filtering method	Piotr Musznicki	2007	Doctoral Dissertation, Grenoble and the Gdansk University of Technology		

9. Patel, H. and Agarwal, V. (2008): MATLAB Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics, IEEE Tran. on Energy Conversion, Vol. 23, pp. 302-310.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Discrete-Time Ripple Correlation Control for Maximum Power Point Tracking	Kimball J. W., Krein P.T.	2008	IEEE Transactions on Power Electronics	23, No. 5	2353- 2362
2.	A Single-Stage Single- Phase Transformer-Less Doubly Grounded Grid- Connected PV Interface Source	Patel, H., Agarwal, V.	2009	IEEE Transactions on Energy Conversion	24, No. 1	93- 101
3.	Study of bypass diodes configuration on PV modules	S. Silvestre, A. Boronat and A. Chouder	2009	Elsevier Science journal of Applied Energy	86, No. 9	1632- 1640
4.	Photovoltaics literature survey (no. 62)"	Avi Shalav	2008	Progress in Photovoltaics: Research and Applications	16	361– 368
5.	A Simulation Method for Maximum Power Point Tracking against Stepped I-V characteristics	Takuya Arayashiki, and Hirotaka Koizumi	2008	IEEE International Conference on Sustainable Energy Technologies	art. no. 4747080	611 - 615
6.	Artificial neural network- polar coordinated fuzzy controller based maximum power point tracking control under partially shaded	Syafaruddin, Karatepe, E., Hiyama, T.	2009	IET Renewable Power Generation	3, No. 2	239- 253

	conditions					
7.	Optimal design of photovoltaic arrays under partial shading	Xiao, JL., Xu, Z., Lin, C., He, SQ.	2009	Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering	29, No. 11	119- 124
8.	Comprehensive approach to modeling and simulation of photovoltaic arrays	Villalva, M.G., Gazoli, J.R., Filho, E.R.	2009	IEEE Transactions on Power Electronics	24, No. 5	1198- 1208
9.	Shade Matters	Peter Hoberg	2009	Solmetric Corporation		
10.	Implementation of a Power Supply with Photovoltaic Cell Characteristics		2009	Electronic Thesis or Dissertation, National Taiwan University of Science and Technology		

10. George, S. and Agarwal, V. (2007): A DSP Based Optimal Algorithm for Shunt Active Filter under non-sinusoidal supply and unbalanced load conditions, IEEE Tran. on Power Electronics, Vol. 22, pp. 593-601.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Achieving Maximum Efficiency in Three-Phase Systems With a Shunt Active Power Compensator Based on IEEE Std. 1459	Salvador Orts, Francisco J. Gimeno-Sales, Antonio Abellán, Salvador Seguí- Chilet, Miguel Alcañiz, and Rafael Masot	2008	IEEE Transactions on Power Delivery	23, No. 2	812- 822
2.	Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control	José Matas, Luis García de Vicuña, Jaume Miret, Josep M. Guerrero and Miguel Castilla	2008	IEEE Transactions on Power Electronics	23, No. 1	116- 125
3.	Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach	S Orts-Grau, J. Gimeno- Sales, S Segui-Chilet, A Abellan-Garcia, M Alcaniz-Fillol, R Masot- Peris	2009	IEEE Trans. on Industrial Electronics	56	1-1
4.	New digital reference current generation for shunt active power filter under distorted voltage conditions	Mohamed Abdusalam, Philippe Poure, Shahram Karimi, Shahrokh Saadate	2009	Elsevier Journal of Electric Power Systems research	79	759- 765
5.	Design of Grid-tied Inverters with the Functions of Reactive and Harmonic Compensation	Wang Zhengshi, Chen Huiming	2007	Automation of Electric Power Systems Chinese Journal	31, No. 1	67-71
6.	Harmonic, reactive and neutral currents compensation and load balancing in 3P4W	Patidar, R.D., Singh, S.P.	2009	International Conference on Computer Engineering	art. no. 476965 6	512- 516

	distribution systems			and Technology, ICCET, China		
7.	An optimization-based algorithm for shunt active filter under distorted supply voltages	Uyyuru, K.R., Mishra, M.K., Ghosh, A.	2009	IEEE Transactions on Power Electronics	24, No. 5	1223- 1232
8.	Control of a cascade STATCOM with star configuration under unbalanced conditions	Song, Q., Liu, W.	2009	IEEE Transactions on Power Electronics	24, No.1	45-58
9.	Effect of supply voltage harmonics on IRP-based switching compensator control	Czarnecki, L.S.	2009	IEEE Transactions on Power Electronics	24, No. 2	483- 488
10.	Development of laboratory prototype of a 12kVA digital shunt active filter	Jayanti, N.G., Basu, M., Axente, I., Gaughan, K., Conlon, M.F.	2008	IEEE Industrial Electronics Society, IECON	art. no. 475846 1	3129- 3134
11.	Instantaneous estimation of power and its application to active power filters	Naidu, S.R., Andrade Jr., G.V., Neri, M.G.G.	2008	IEEE Industrial Electronics Society, IECON	art. no. 475832 4	2353- 2358.
12.	An optimization based algorithm for shunt active filter under unbalanced and nonsinusoidal supply voltages	Koteswara Rao, U., Mishra, M.K., Vincent, G.	2008	Industrial Electronics and Applications, ICIEA	art. no. 458276 4	1475- 1480
13.	Unified power quality conditioner for grid integration of wind generators	Jayanti Navilgone Ganesh	2008	Doctoral Dissertation, Dublin Institute of Technology, IRELAND		
14.	Developing a Voltage- Source Shunt Active Power Filter for Improving Power Quality	Mikko Routimo	2008	Doctoral Dissertation,, Tampere University of Technology, Finland		

11. Jain, S. and Agarwal, V. (2007): Comparison of the Performance of Maximum Power Point Tracking Schemes Applied to Single Stage Grid Connected PV Systems. IET Electrical Power Applications, Vol. 1, pp. 753-762.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Photovoltaics literature survey (No. 58)	Avi Shalav	2007	Progress in Photovoltaics:	15	749-754

				Research and Applications		
2.	A new maximum power point tracking method for photovoltaic arrays using golden section search algorithm	Shao, R., Chang, L.	2008	Canadian Conference on Electrical and Computer Engineering	art. no. 4564609	619-622
3.	Recherche du maximum de puissance sur les générateurs photovoltaïques	V. Boitier and P. Maussion	2008	National network of electrical resources, University of Toulouse, France		
4.	Solar Energy Car	Ricardo Jorge Ferreira de Araújo	2008	Master's Dissertation, University of Porto, Portugal		
5.	Photovoltaics literature survey (No. 62)	Avi Shalav	2008	Progress in Photovoltaics: Research and Applications	16	361-368

12. Patel, H. and Agarwal, V. (2008): Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions, IEEE Tran. on Industrial Electronics, Vol. 55, pp. 1689-1698.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	A Single-Phase Voltage Controlled Grid Connected Photovoltaic System with Power Quality Conditioner Functionality	Rosa A. Mastromauro, Marco Liserre, Tamas Kerekes, and Antonio Dell'Aquila	2009	IEEE Transactions on Industrial electronics	Accepted for future publication	
2.	A Simple Maximum Photovoltaic Power Tracking Technique Utilizing System Inherent Limit Cycle Phenomena	Matsui, M., Kitano, T., Xu, D.	2003	Conference Record - IEEE Industry Applications Society	3	2041- 2047
3.	Parallel Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions	Gao, L. Dougal, R.A. Liu, S. Iotova, A.P.	2009	IEEE Tran. on Industrial Electronics	56, No. 5,	1548- 1556
4.	Executive Yuan National Science Council Study Report	National Taiwan University of Science and Technology				
5.	Artificial neural network- polar coordinated fuzzy	Syafaruddin, Karatepe, E., Hiyama, T.	2009	IET Renewable	3, No. 2	239- 253

	controller based maximum power point tracking control under partially shaded conditions			Power Generation		
6.	Optimal design of photovoltaic arrays under partial shading	Xiao, JL., Xu, Z., Lin, C., He, SQ.	2009	Zhongguo Dianji Gongcheng Xuebao/Proce edings of the Chinese Society of Electrical Engineering	29, No. 11	119- 124
7.	Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter	Figueres, E., Garcerá, G., Sandia, J., González-Espín, F., Rubio, J.C.	2009	IEEE Transactions on Industrial Electronics	56, No. 3	706- 717

13. Jain, S. and Agarwal, V. (2008): An Integrated Hybrid Power Supply for Distributed Generation Applications Fed by Non-Conventional Energy Sources, IEEE Tran. on Energy Conversion, Vol. 23, pp. 622-631.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	A current and future state of art development of hybrid energy system using wind and PV-solar: A review	Pragya Nema, R.K. Nema and Saroj Rangnekar	2008	Renewable and Sustainable Energy Reviews Elsevier Science journal	13, No. 8	2096- 2103
2.	Low cost Distributed Solar Power Generation	Neeraj Shandilya	2008	IEEE International Conference on Industrial and Information Systems (ICIIS), Indian Institute of Technology Kharagpur		
3.	Fuel starvation	Thounthong, P., Davat, B., Raël, S., Sethakul, P.	2009	IEEE Industry Applications Magazine	15, No. 4	52-59
4.	Power Maximization of a PV-Wind HRES via DC- link Voltage Boosting	Marco Beccali, Massimiliano Luna, Marcello Pucci and Gianpaolo Vitale	2009	11Chlie, Zaragoza (IEEE & PES)		
5.	Photovoltaics literature survey (No. 64)	Avi Shalav	2008	Progress in Photovoltaics: Research and Applications	16	547-553

14. B.S. Prasad, Jain, S. and Agarwal, V. (2008): Universal Single-Stage Grid-Connected Inverter, IEEE Trans. on Energy Conversion, Vol. 23, pp. 128-137.

This paper is cited by:

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Power quality issues it's mitigation technique in wind energy generation	Mohod, S.W., Aware Dr., M.V.	2008	ICHQP 2008: 13 th International Conference on Harmonics and Quality of Power	art. no. 4668750	
2.	Systematical Controller Design For Two-Stage Grid-Connected Photovoltaic Power Conditioning System	H. S. Bae, S. J. Lee, K. S. Choi, B. H. Cho, H. H. Kang, S. M. Jung, H. J. Jung and I. Y. Suh				
3.	Current control design for a grid connected photovoltaic/Fuel cell DC-AC inverter	Bae, H.S., Lee, S.J., Choi, K.S., Cho, B.H., Jang, S.S.	2009	IEEE Applied Power Electronics Conference and Exposition – APEC	art. no. 4802939	1945- 1950
4.	Energy storage to stabilize the weak wind generating grid	Mohod, S.W., Aware, M.V.	2008	Joint Intl Conf on Power System Tech POWERCON and IEEE Power India Conference, POWERCON	art. no. 4745219	1-5
5.	MATLAB/Simulink- based modelling and analysis of a grid connected wind energy conversion	Mohod, S.W., Aware, M.V.	2009	International Journal of Agile Systems and Management	4, No. 1-2	114-129

15. Krishna, D.V.M.M. and Agarwal, V. (2005): Active Gate Control of Series Connected IGBTs using Positive Current Feedback Technique, IEEE Tran. On Circuits and Systems – II, Vol. 52, pp. 261-265.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices	Tonio Biondi, Giuseppe Greco, Maria Concetta Allia, Salvatore Fabio Liotta, Gaetano Bazzano, and Salvatore Rinaudo	2007	IEEE Transactions on Power Electronics	22, No. 5	1847- 1856

 George, S. and Agarwal, V. (2008): Optimum Control of Selective and Total Harmonic Distortion in Current and Voltage under Nonsinusoidal Conditions, IEEE Tran. On Power Delivery, Vol. 23, pp. 937-944.

This paper is cited by:

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Analysis of electromagnetic pollution produced by line frequency coreless induction furnaces	A. Iagar, G.N. Popa and I. Sora	2009	World Scientific and Engg. Acad. and Society Transactions on Systems	8 , No. 1	1 – 11
2.	A Computationally Efficient RDFT Based Reference Signal Generator for Active Compensators	Konstantin Borisov, Herbert Ginn and Guangda Chen		IEEE Tran. On Power Delivery	In press	
3.	Constrained optimal control for wheeled cars	Shiu, BM., Lin, CL.	2009	International Conference on Autonomous Robots and Agents	art. no. 4803929	490-495
4.	Assessment of power quality for line frequency coreless induction furnaces	Iagăr, A., Popa, G.N., Diniş, C.M.	2009	WSEAS Transactions on Circuits and Systems	8, No. 1	115-124

17. Agarwal, V., Sundarsingh, V. P. and Ramachandran, V. (2005): A Comparative Study of Gamma Radiation Effects on Ultra Low Input Bias Current Linear Circuits under Biased Conditions, IEEE Tran. On Nuclear Science, Vol. 52, pp. 510-518.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Comparison of gamma radiation performance of a range of CMOS a/D converters under biased conditions	Agarwal, V. and Sagar D. Birkar	2005	IEEE Transactions on Nuclear Science	52, No. 6	3059- 3067
2.	Taguchi Based Performance and Reliability Improvement of an Ion Chamber Amplifier for Enhanced Nuclear Reactor Safety	R. D. Kulkarni and Agarwal, V.	2008	IEEE Transactions on Nuclear Science	55, No. 4	2303- 2314
3.	A Comparative Study of Gamma Radiation Effects on a Logarithmic Amplifier-Based Multiplier Circuit Using Common and Precision	Agarwal, V., V.P. Sundarsingh and V. Ramachandran	2006	Australian Journal of Electrical and Electronics Engineering	3, No.1	7-15

	Devices				
4.	Irradiation effect on	A. Tataroglu, S. Altindal,	2007	Nuclear	264, No.1
	dielectric properties and	M.H. Bolukdemir, G.		Instruments &	
	electrical conductivity of	Tanir		Methods in	
	Au/SiO2/n-Si (MOS)			Physics	
	structures			Research	

 Agarwal, V., Sundarsingh, V. and Ramachandran, V. (2005): Prediction of the Performance of an Ion Chamber Amplifier under Gamma Radiation. Elsevier Science Journal of Nuclear Engineering and Design, Vol. 235, pp. 1373 -1387.

This paper is cited by:

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Taguchi Based Performance and Reliability Improvement of an Ion Chamber Amplifier for Enhanced Nuclear Reactor Safety	R. D. Kulkarni and Agarwal, V.	2008	IEEE Transactions on Nuclear Science	55, No. 4	2303- 2314

19. <u>Sreekumar C.</u>, <u>Agarwal V.</u> A hybrid control algorithm for voltage regulation in DC-DC boost converter (2008) IEEE Transactions on Industrial Electronics, 55 (6), pp. 2530-2538.

S. No.	Paper	Name of the Author who has cited	Year of his/her publication	Name of Journal	Volume	Page No.
1.	Boost converter controller design using queen-bee-assisted GA	Sundareswaran, K., Sreedevi, V.T.	2009	IEEE Transactions on Industrial Electronics	56, No. 3	778- 783
2.	A fast transient recovery module for DC-DC converters	Liu, PJ., Chiu, HJ., Lo, YK., Chen, Y J.E.	2009	IEEE Transactions on Industrial Electronics	56, No. 7	2522- 2529
3.	Design and Development of Feed-back Controller for a Boost Converter Using a Colony of Foraging Bees	Sundareswaran, K., Sreedevi, V.T.	2009	Taylor and Francis Journal of Electric Power Components and Systems	33, No. 10	465-477