2-D Simulation of Laminating Stresses and Strains in MEMS Structures

Prakash R. Apte

Solid State Electronics Group Tata Institute of Fundamental Research Homi Bhabha Road, Colaba BOMBAY - 400 005, India e-mail : apte@tifr.res.in

Web-page http://www.tifr.res.in/~apte/LAMINA.htm

OUTLINE

- Laminated Structures in MEMS
- > 2-D Stress-Strain Analysis for Laminae
- > Equilibrium and Compatibility Equations
- ➢ 4th Order Derivatives and 13-Point Finite Differences
- Boundary Conditions : Fixed, Simply-Supported
- Program LAMINA
- Simulation of Laminated Diaphragms : having Si, SiO₂ and Si₃N₄ Layers
- Conclusions

Deficition at center W 101 later at loads						
able 1 Deflection at center `w ' for lateral loads `q' (Reference for known results is Timoshenko [1])						
serial	Boundary conditions	known results	LAMINA			
no.	I		simulation			
1	X-edges fixed	0.260E-2	0.261E-2			
1	Y-edges free	(TIM pp 202)				
2	 X-edges simply supp.	0.130E-1	 0.130E-1			
i i	Y-edges free	(TIM pp 120)				
3	All edges fixed	0.126E-2	 0.126E-2			
		(TIM pp 202)	i i			
4	All edges simply	0.406E-2	 0.406E-2			
	supported	(TIM pp 120)				

	Si, SiO ₂	and	Si ₃ N ₄	layers
able 4	Diaphragm con:	sisting of S	i, SiO ₂ and	Si ₃ N ₄ layers
serial	lamina	Deflection	In-plane	stress
no.	layers	at center	resultant	couple
(a)	SiO ₂ + Si+ SiO ₂	0	-0.216E+2	I 0
(b)	Si + SiO ₂	 -0.583E-2	 -0.381E+1	 -0.628E-1
(c)	SiO ₂ + Si	+0.583E-2	 -0.381E+1	 +0.628E-1
(d)	Si+SiO ₂ + Si ₃ N ₄	+0.583E-3	 +0.191E+2	 +0.168E-1
(e)	∣ SiO₂+ Si+ SiO₂	+0.515E-2	 +0.643E+0	 +0.727E-1

