Analytic Hierarchy Process using Scilab

Madhu N．Belur

Control \＆Computing group
Department of Electrical Engineering Indian Institute of Technology Bombay
Email：belur＠ee．iitb．ac．in

Outline

(2) Matrices/eigenvalues/eigenvectors
(3) Perron Frobenius theorem
(4) Quantitative attributes

AHP: what and why

- Vested interests make it difficult to analyze a case holistically
- Also, difficulty comparing technologies when many qualitative attributes involved.
- Development perspectives would rather be explicit than 'intuitive'.
- More reasons and theory for today:
- The influence of development perspectives on the choice of technology, U. Subba Raju, N. Rangaraj and A.W. Date, Technology, Forcasting and Social Change, 1995
- The Analytic Hierarchy Process, Thomas L. Saaty, Mc Graw Hill (1980)

Scilab/Matlab/Java

- Matlab program was developed by Subba Raju 10 years ago (multi-level).
- Bapuji Kanaparthy (T\&D, 2009) upgraded to current Matlab versions (multi-level, with some limitations, bugs)
- Ganesh Ramkrishnan in Java (remote server)
- Bapuji : developed in Scilab (single level): today demo and some theory
- Multi-level in Scilab: volunteers?

Overall procedure

- Fix a development perspective (just one perspective: fine) (Example: businessman, government)
- Decide very very clearly on attributes that matter (for this perspective)
- Attributes are either qualitative or quantitative. Qualitative: technologies will be compared pairwise Quantitative: technologies have numbers w.r.t. this attribute
- Important: rename qualitative attributes as beneficial attributes
- For example: pollution (if qualitative) \rightarrow eco-friendliness
- Quantitative attributes: can classify them as cost or benefit
- Cost : lower the better, benefit: higher the better
- Every pairwise comparison of n items: $n \times n$ matrix: gives one priority vector of n components.
- Compare attributes to obtain relative importances of the attributes
- Relative importances contained in a vector (priority vector)
- For each qualitative (beneficial) attribute, decide on which technology is more preferable, relatively to other technologies
- How do we compare pairwise and obtain priority vector?
- For quantitative attributes, 'priority vector' obtained directly from the numbers

Pairwise comparison

Suppose we want to compare 3 items it1, it2, it3 between each other.
Construct a matrix $X \in \mathbb{R}^{3 \times 3}$
(Matrix with entries as real numbers and 3 rows and 3 columns) " 3 choose 2" (${ }^{3} C_{2}$) comparisons: 3 comparisons

$$
X=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
a_{21} & 1 & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]
$$

How to fill entries in X

Convention: $a_{12}:=\frac{\text { Importance of it1 }}{\text { Importance of it2 }}$
$a_{12}>1$: Item 1 is more important than item 2
$a_{12}=\frac{1}{a_{21}}$ and both are positive
Only strictly upper triangular elements of X to be chosen When comparing n items pairwise, how many entries to be chosen?

How to fill entries in X

Convention: $a_{12}:=\frac{\text { Importance of it1 }}{\text { Importance of it2 }}$
$a_{12}>1$: Item 1 is more important than item 2
$a_{12}=\frac{1}{a_{21}}$ and both are positive
Only strictly upper triangular elements of X to be chosen
When comparing n items pairwise, how many entries to be chosen?
How many strictly upper triangular elements in a square matrix?

How to fill entries in X

Convention: $a_{12}:=\frac{\text { Importance of it1 }}{\text { Importance of it2 }}$
$a_{12}>1$: Item 1 is more important than item 2
$a_{12}=\frac{1}{a_{21}}$ and both are positive
Only strictly upper triangular elements of X to be chosen
When comparing n items pairwise, how many entries to be chosen?
How many strictly upper triangular elements in a square matrix?
Equal?

How to fill entries in X

Convention: $a_{12}:=\frac{\text { Importance of it1 }}{\text { Importance of it2 }}$
$a_{12}>1$: Item 1 is more important than item 2
$a_{12}=\frac{1}{a_{21}}$ and both are positive
Only strictly upper triangular elements of X to be chosen
When comparing n items pairwise, how many entries to be chosen?
How many strictly upper triangular elements in a square matrix?
Equal?
$\frac{n(n-1)}{2}$

Consistency

Consider again $X \in \mathbb{R}^{3 \times 3}$ with

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
\star & 1 & ? \\
\star & \star & 1
\end{array}\right] \\
X=\left[\begin{array}{ccc}
1 & 2 & 6 \\
\star & 1 & 3 \\
\star & \star & 1
\end{array}\right]
\end{gathered}
$$

If item 1 is 2 times more important than item 2 , and
if item 1 is 6 times more important than item 3, then
item 2 and item 3 compare in what manner ?
Item 2 is 3 times more important than item 3
Or else, 'not consistent'

Consistency

Consider again $X \in \mathbb{R}^{3 \times 3}$ with

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
\star & 1 & ? \\
\star & \star & 1
\end{array}\right] \\
X=\left[\begin{array}{ccc}
1 & 2 & 6 \\
\star & 1 & 3 \\
\star & \star & 1
\end{array}\right]
\end{gathered}
$$

If item 1 is 2 times more important than item 2 , and if item 1 is 6 times more important than item 3, then
item 2 and item 3 compare in what manner ?
Item 2 is 3 times more important than item 3 Or else, 'not consistent'

Consistency

Consider again $X \in \mathbb{R}^{3 \times 3}$ with

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
\star & 1 & ? \\
\star & \star & 1
\end{array}\right] \\
X=\left[\begin{array}{ccc}
1 & 2 & 6 \\
\star & 1 & 3 \\
\star & \star & 1
\end{array}\right]
\end{gathered}
$$

If item 1 is 2 times more important than item 2 , and if item 1 is 6 times more important than item 3, then item 2 and item 3 compare in what manner ?

Item 2 is 3 times more important than item 3 Or else, 'not consistent'

Consistency

Consider again $X \in \mathbb{R}^{3 \times 3}$ with

$$
\begin{gathered}
X=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
\star & 1 & ? \\
\star & \star & 1
\end{array}\right] \\
X=\left[\begin{array}{ccc}
1 & 2 & 6 \\
\star & 1 & 3 \\
\star & \star & 1
\end{array}\right]
\end{gathered}
$$

If item 1 is 2 times more important than item 2 , and if item 1 is 6 times more important than item 3, then item 2 and item 3 compare in what manner ?
Item 2 is 3 times more important than item 3.
Or else, 'not consistent'

Consistent positive reciprocal matrices

- Positive entries in a square matrix X
- Reciprocal: $a_{i j}$ and $a_{j i}$ are inverses
- Consistent : $a_{i j}=a_{i k} a_{k j}$
- First row decides whole matrix
- Not $\frac{n(n-1)}{2}$ but just $n-1$ entries decide X

Consistent positive reciprocal matrices

- Positive entries in a square matrix X
- Reciprocal: $a_{i j}$ and $a_{j i}$ are inverses
- Consistent : $a_{i j}=a_{i k} a_{k j}$
- First row decides whole matrix
- Not $\frac{n(n-1)}{2}$ but just $n-1$ entries decide X

Consistent positive reciprocal matrices

- $a_{i j}=a_{i k} a_{k j}$
- A is a rank one matrix (exactly one eigenvalue is nonzero)
- All diagonal entries are 1.
- Sum of eigenvalues $=$ trace (sum of diagonal elements)
- One eigenvalue $=n$ and rest are all zero

Eigenvalue/eigenvector

Let A be a matrix in $\mathbb{C}^{n \times n}$. A complex number λ is said to be an eigenvalue if there exists some nonzero vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$.
Eigenvector v gets just scaled when operated by A. (Generally, matrix A both rotates and scales.)
For an eigenvalue λ, if v is an eigenvector then so is $5 v,-100 v$ and $0.5 v$, but not $0 v$. (v is required to be a nonzero vector.)

Upto scaling, eigenvectors are unique.

(unless we have repeated eigenvalues.)

Eigenvalues can be found as those specific complex numbers λ such that
admits a nonzero solution v
These λ 's must make $A-\lambda$ I singular: solve for roots of $\operatorname{det}(s l-A)$.
For an $n \times n$ matrix A, at most n distinct eigenvalues.
Farthest amongst these from the origin: easier to compute:
spectral radius.
(The farthest distance is called spectral radius.)

Upto scaling, eigenvectors are unique. (unless we have repeated eigenvalues.)
Eigenvalues can be found as those specific complex numbers λ such that

$$
(A-\lambda I) v=0
$$

admits a nonzero solution v.
These λ 's must make $A-\lambda /$ singular: solve for roots of $\operatorname{det}(s l-A)$.
For an $n \times n$ matrix A, at most n distinct eigenvalues.
Farthest amongst these from the origin: easier to compute: spectral radius.
(The farthest distance is called spectral radius.)

Perron Frobenius theorem

Suppose A has all entries positive.

- Exactly one eigenvalue is farthest from origin, and this eigenvalue is positive
- Eigenvector corresponding to this eigenvalue has all entries nonzero and same sign
- (We can ensure all entries in eigenvector v are positive)
- Perron root, Perron Frobenius eigenvalue
- The principal eigenvector contains valuable information
- Graph theory (google/page-rank algorithm), Markov chains, demography

Consistency index (C.I.)

- Principal eigenvector information is less relevant if not consistent
- Consistency index: some careful measure about lack of consistency
- Formula accepted after wide scholarly debate C.I. $=\frac{\lambda_{\max }-n}{n-1}$
- 0.1 is 'bad' : thumbrule

Pairwise comparison

$$
X=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
a_{21} & 1 & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right]
$$

$a_{i j}$ (entry in i-th row and j-th column)
Number of times i-th property is more important than j -th property. $a_{i j}$ can be chosen less than one if j-th property should be more important
Priority vector (principal eigenvector) shows relative importances : for qualitative attributes
(Ensure components add up to one.)

Priority vector and importances

Why should priority vector contain importances?
If A is consistent, positive reciprocal matrix, then
$A=v w^{T} \quad$ (column vector v times row vector w^{T}, both nonzero)
(Any rank one matrix is like this.)
Here, w is the principal right eigenvector, and v is the principal left eigenvector.
Check this using scilab commands 'spec' to get eigenvalues and (right) eigenvectors, and use $\operatorname{spec}\left(\mathrm{A}^{\prime}\right)$ to get left eigenvectors of A. (' means transpose.)
Given that A has *relative* importances, the right eigenvector will have *absolute* importances.

Quantitative attributes

- Machine cost, material cost, waste generated : cost
- Number of employees : benefit/cost (depends on perspective)
- Calculate priority vector directly (rather than pairwise comparison)

Priority vector

Priority vector gets built for
(1) all attributes: priority vector of all attributes w
(2) for each qualitative attribute, all technologies: columns of Normalized attributes matrix P
Scilab workspace contains

- Number of components in w is number of attributes: column vector
- Number of rows in P matrix: number of technologies, and
- ranking $=$ 'score-vector' $=P w$ (Matrix times vector) :
- Higher number in ranking vector: that technology is more preferable.
- For each priority vector, check that highest priority value is as expected.
- Consistency index less than 0.1 is a thumbrule.

Example: Gas depot owner's perspective

Suppose we have two technologies for transport of cylinders to individual homes: 1: petrol-powered tempo, 2: bicycle Attributes (rename to have qualitative attributes as benefits):
Attribute name \quad Rename (if required)

Dependence-on-fuel, (qualitative)
Quickness-of-delivery, (qualitative)
Requirement of good-qualityroads for delivery, (qualitative)

Pollution (quantitative)
Fuel cost (quantitative) labour cost (quantitative)

1. Independence from fuel
2. Quickness already a benefit non-requirement good-quality roads or 3: multi-terrain-capability
3. Emmissions per delivery: cost
4. Fuel cost per delivery
5. Labour cost per delivery

Sensitivity analysis

How sensitive is ranking to a particular attribute:
Final answer's sensitivity to
(1) removal of an attribute
(2) 'small' variations in importance of that attribute
$P(i, j)$ means element in the P matrix in i-th row and j-th column.
$P\left(:,\left[\begin{array}{llll}1 & 2 & 4 & 5\end{array}\right]\right)$ means all rows, and columns coming from [1 2445$]$ only
$P(:,:$) means all rows and all columns (same as P.)
$w([1: 35: 9])$ means all entries from 1 to 9 except 4. (Check yourself first that there are 9 entries.)
First entry is indexed by 1 (and not zero).

