Analytic Hierarchy Process using Scilab

Madhu N. Belur

Control & Computing group Department of Electrical Engineering Indian Institute of Technology Bombay Email: belur@ee.iitb.ac.in

《曰》 《聞》 《理》 《理》 三世

A 10

Outline

2 Matrices/eigenvalues/eigenvectors

- 3 Perron Frobenius theorem
- Quantitative attributes

AHP: what and why

- Vested interests make it difficult to analyze a case holistically
- Also, difficulty comparing technologies when many qualitative attributes involved.
- Development perspectives would rather be explicit than 'intuitive'.
- More reasons and theory for today:
 - The influence of development perspectives on the choice of technology, U. Subba Raju, N. Rangaraj and A.W. Date, Technology, Forcasting and Social Change, 1995
 - The Analytic Hierarchy Process, Thomas L. Saaty, Mc Graw Hill (1980)

Scilab/Matlab/Java

- Matlab program was developed by Subba Raju 10 years ago (multi-level).
- Bapuji Kanaparthy (T&D, 2009) upgraded to current Matlab versions (multi-level, with some limitations, bugs)
- Ganesh Ramkrishnan in Java (remote server)
- Bapuji : developed in Scilab (single level): today demo and some theory
- Multi-level in Scilab: volunteers?

Overall procedure

- Fix a development perspective (just one perspective: fine) (Example: businessman, government)
- Decide very very clearly on attributes that matter (for this perspective)
- Attributes are either qualitative or quantitative. Qualitative: technologies will be compared pairwise Quantitative: technologies have numbers w.r.t. this attribute
- Important: rename qualitative attributes as beneficial attributes
- For example: pollution (if qualitative) \rightarrow eco-friendliness
- Quantitative attributes: can classify them as cost or benefit
- Cost : lower the better, benefit: higher the better

- Every pairwise comparison of *n* items: *n* × *n* matrix: gives one priority vector of *n* components.
- Compare attributes to obtain relative importances of the attributes
- Relative importances contained in a vector (priority vector)
- For each qualitative (beneficial) attribute, decide on which technology is more preferable, relatively to other technologies
- How do we compare pairwise and obtain priority vector?
- For quantitative attributes, 'priority vector' obtained directly from the numbers

Pairwise comparison

Suppose we want to compare 3 items it1, it2, it3 between each other.

Construct a matrix $X \in \mathbb{R}^{3 \times 3}$

(Matrix with entries as real numbers and 3 rows and 3 columns) "3 choose 2" $({}^{3}C_{2})$ comparisons: 3 comparisons

$$X = \begin{bmatrix} 1 & a_{12} & a_{13} \\ a_{21} & 1 & a_{23} \\ a_{31} & a_{32} & 1 \end{bmatrix}$$

Consider again $X \in \mathbb{R}^{3 imes 3}$ with

$$X = \begin{bmatrix} 1 & a_{12} & a_{13} \\ \star & 1 & ? \\ \star & \star & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 1 & 2 & 6 \\ \star & 1 & 3 \\ \star & \star & 1 \end{bmatrix}$$

Consider again $X \in \mathbb{R}^{3 imes 3}$ with

$$X = \begin{bmatrix} 1 & a_{12} & a_{13} \\ \star & 1 & ? \\ \star & \star & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 1 & 2 & 6 \\ \star & 1 & 3 \\ \star & \star & 1 \end{bmatrix}$$

Consider again $X \in \mathbb{R}^{3 imes 3}$ with

$$X = \begin{bmatrix} 1 & a_{12} & a_{13} \\ \star & 1 & ? \\ \star & \star & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 1 & 2 & 6 \\ \star & 1 & 3 \\ \star & \star & 1 \end{bmatrix}$$

Consider again $X \in \mathbb{R}^{3 imes 3}$ with

$$X = \begin{bmatrix} 1 & a_{12} & a_{13} \\ \star & 1 & ? \\ \star & \star & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 1 & 2 & 6 \\ \star & 1 & 3 \\ \star & \star & 1 \end{bmatrix}$$

Consistent positive reciprocal matrices

- <u>Positive</u> entries in a square matrix X
- Reciprocal: *a_{ij}* and *a_{ji}* are inverses
- Consistent : $a_{ij} = a_{ik}a_{kj}$
- First row decides whole matrix
- Not $\frac{n(n-1)}{2}$ but just n-1 entries decide X

Consistent positive reciprocal matrices

- <u>Positive</u> entries in a square matrix X
- Reciprocal: *a_{ij}* and *a_{ji}* are inverses
- Consistent : $a_{ij} = a_{ik}a_{kj}$
- First row decides whole matrix
- Not $\frac{n(n-1)}{2}$ but just n-1 entries decide X

Consistent positive reciprocal matrices

- a_{ij} = a_{ik}a_{kj}
- A is a <u>rank one</u> matrix (exactly one eigenvalue is nonzero)
- All diagonal entries are 1.
- Sum of eigenvalues = trace (sum of diagonal elements)
- One eigenvalue = n and rest are all zero

Eigenvalue/eigenvector

Let A be a matrix in $\mathbb{C}^{n \times n}$. A complex number λ is said to be an eigenvalue if there exists some nonzero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

Eigenvector v gets just scaled when operated by A.

(Generally, matrix A both rotates and scales.)

For an eigenvalue λ , if v is an eigenvector then so is 5v, -100v and 0.5v, but not 0v. (v is required to be a <u>nonzero</u> vector.)

Upto scaling, eigenvectors are unique.

(unless we have repeated eigenvalues.) Eigenvalues can be found as those specific complex numbers λ such that

 $(A - \lambda I)v = 0$

admits a nonzero solution v.

These λ 's must make $A - \lambda I$ singular: solve for roots of det(sI - A).

For an $n \times n$ matrix A, at most n distinct eigenvalues.

Farthest amongst these from the origin: easier to compute: spectral radius.

(The farthest distance is called spectral radius.)

Upto scaling, eigenvectors are unique. (unless we have repeated eigenvalues.) Eigenvalues can be found as those specific complex numbers λ such that

$$(A - \lambda I)v = 0$$

admits a nonzero solution v.

These λ 's must make $A - \lambda I$ singular: solve for roots of det(sI - A).

For an $n \times n$ matrix A, at most n distinct eigenvalues.

Farthest amongst these from the origin: easier to compute: spectral radius.

(The farthest distance is called spectral radius.)

Perron Frobenius theorem

Suppose A has all entries positive.

- Exactly one eigenvalue is farthest from origin, and this eigenvalue is positive
- Eigenvector corresponding to this eigenvalue has all entries nonzero and same sign
- (We can ensure all entries in eigenvector v are positive)
- Perron root, Perron Frobenius eigenvalue
- The principal eigenvector contains valuable information
- Graph theory (google/page-rank algorithm), Markov chains, demography

Consistency index (C.I.)

- Principal eigenvector information is less relevant if not consistent
- Consistency index: some careful measure about lack of consistency
- Formula accepted after wide scholarly debate $C.I. = \frac{\lambda_{max} n}{n-1}$
- 0.1 is 'bad' : thumbrule

Pairwise comparison

$$X = \left[egin{array}{cccc} 1 & a_{12} & a_{13} \ a_{21} & 1 & a_{23} \ a_{31} & a_{32} & 1 \end{array}
ight]$$

a_{ij} (entry in i-th row and j-th column)

Number of times i-th property is more important than j-th property. a_{ij} can be chosen less than one if j-th property should be more important

Priority vector (principal eigenvector) shows relative importances :

for qualitative attributes

(Ensure components add up to one.)

Priority vector and importances

Why should priority vector contain importances? If *A* is <u>consistent</u>, positive reciprocal matrix, then

$$A = vw^T$$
 (column vector v times row vector w^T , both nonzero)

(Any rank one matrix is like this.)

Here, w is the principal right eigenvector, and v is the principal left eigenvector.

Check this using scilab commands 'spec' to get eigenvalues and (right) eigenvectors, and use spec(A') to get <u>left</u> eigenvectors of A. (' means transpose.)

Given that A has *relative* importances, the right eigenvector will have *absolute* importances.

Quantitative attributes

- Machine cost, material cost, waste generated : cost
- Number of employees : benefit/cost (depends on perspective)
- Calculate priority vector directly (rather than pairwise comparison)

Priority vector

Priority vector gets built for

- ① all attributes: priority vector of all attributes w
- If or each qualitative attribute, all technologies : columns of Normalized attributes matrix P

Scilab workspace contains

- Number of components in *w* is number of attributes: column vector
- Number of rows in P matrix: number of technologies, and
- ranking= 'score-vector' = Pw (Matrix times vector) :
- Higher number in ranking vector: that technology is more preferable.
- For each priority vector, check that highest priority value is as expected.
- Consistency index less than 0.1 is a thumbrule.

Example: Gas depot owner's perspective

Suppose we have two technologies for transport of cylinders to	
individual homes: 1: petrol-powe	red tempo, 2: bicycle
Attributes (rename to have qualitative attributes as benefits):	
Attribute name	Rename (if required)
Dependence-on-fuel, (qualita-	1. Independence from fuel
tive)	
Quickness-of-delivery, (quali-	2. Quickness already a benefit
tative)	
Requirement of good-quality-	non-requirement of
roads for delivery, (qualitative)	good-quality roads or
	3: multi-terrain-capability
Pollution (quantitative)	4. Emmissions per delivery:
	cost
Fuel cost (quantitative)	5. Fuel cost per delivery
labour cost (quantitative)	6. Labour cost per delivery
Madhu Belur, CC group, EE, IITB	AHP & Scilab

Sensitivity analysis

How sensitive is ranking to a particular attribute: Final answer's sensitivity to

- removal of an attribute
- 2 'small' variations in importance of that attribute

P(i,j) means element in the P matrix in *i*-th row and *j*-th column. $P(:, [1 \ 2 \ 4 \ 5])$ means all rows, and columns coming from $[1 \ 2 \ 4 \ 5]$ only

P(:,:) means all rows and all columns (same as P.)

w([1:35:9]) means all entries from 1 to 9 except 4. (Check yourself first that there are 9 entries.)

First entry is indexed by 1 (and not zero).