
Conjugate gradients

Madhu Belur, CC, EE, IITB

15th April, 2011

1 / 26



Plan for conjugate gradients

Steepest descent method: current search direction is not
necessarily independent from past ones.

One search direction per iteration: when not necessarily
steepest descent

Minimizing over multiple search directions : choose pk
and minimize over both y , α (y ∈ Rk−1 and α ∈ R)

If directions are A-orthogonal: minimization problem
‘decouples’. (‘Conjugate gradients’)

y found so far (upto (k − 1)th step) is already optimal.

There exists such a new search direction (with
A-orthogonal to past search directions and pTk rk−1 6= 0).
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Steepest descent

Recall that φ(x) := 1
2
xTAx − xTb

Choose x0 ∈ Rn. Residue r0 := b − Ax0.
Then, direction of steepest descent: −∇φ(xk−1) = rk−1
Can define: pk := −∇φ(xk−1) (steepest descent method)
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How much along pk

A direction pk will help decrease of φ iff pTk rk−1 6= 0.

Optimal α along pk can then be found.

Update x by xk := xk−1 + αpk : best α :=
pTk rk−1

pTk Apk
(also when

pk not steepest descent)
Can show that

φ(xk) = φ(xk−1)− (pTk rk−1)2

2pTk Apk
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Optimize over all k directions

Choose pk , to have totally k directions now.

Re-optimize over all k independent directions in k-th step.

min
x∈x0+span{p1,...,pk}

φ(x)

x = x0 + Pk−1y + αpk (with y ∈ Rk−1 and α ∈ R).
Open brackets of φ(xk) to get

φ(xk) = φ(x0 + Pk−1y) + αpTk APk−1y + α2pTk Apk − αpTk r0

Choose pk to be A−orthogonal to p1, . . . , pk−1
(i.e. pTk APk−1 = 0)
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min
y ,α

φ(xk) = min
y∈Rk−1

φ(xk−1) + min
α

(
α2

2
pTk Apk − αpTk r0)

y already solves minimization problem in previous step (and pk
is ‘decoupled’ from previous y).

Best

α =
pTk r0
pTk Apk

Note: pTk r0 = pTk rk−1 (shown before)
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Algorithm

Choose pk such that it is A−orthogonal to all past pi and such
that pTk rk−1 6= 0.

Lemma in Golub & van Loan :
rk−1 6= 0 ⇒ there exists such a pk .
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Optimal choice of pk

Which new search direction (amongst various
A-orthogonal directions)

Best direction (direction that minimizes, and still is
A-orthogonal) is, in fact, easy to implement.
If best search direction didn’t have to be A-orthogonal,
then steepest descent (−∇φ(xk−1) is best direction to
choose for pk . )

The A−orthogonal and best direction pk happens to least
norm residual for a related minization problem.

Further, pk is linearly dependent on only pk−1 and rk−1.

In fact, r0, . . . , rn−1 are Lanczos vectors and they
‘tridiagonalize’ A. (Eigenvalues of A can also be
estimated.)
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Three key results (Golub & van Loan, TRIM 3rd edition)

Lemma 10.2.2
For k > 2, the vectors pk generated by the best A-orthogonal
direction algorithm satisfy

pk = rk−1 − APk−1zk−1

where zk−1 solves

min
z∈Rk−1

‖rk−1 − APk−1z‖2.

(We used fact that for a tall, f.c.r. matrix B , the matrices
BB+ and (I − BB+) are orthogonal projections onto range B
and (range B)⊥ respectively.)
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Theorem 10.2.3

The sequence of rk and pk satisfy

1 rk = rk−1 − αkApk
2 rTk Pk = 0

3 span {p1, . . . , pk} = span {r0, . . . , rk−1} = K (r0,A, k)

4 residuals r0, . . . , rk are mutually orthogonal.
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Corollary 10.2.4

Residuals and search directions satisfy

pk ∈ span{pk−1, rk−1}

for k > 2.
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Lanczos connection

1 Krylov subspace generated from a vector and a symmetric
matrix A.

2 Convergence in at most n steps.

3 If the number of distinct eigenvalues of A is na, then
convergence in at most k steps.
(Steepest descent for identity matrix: one step.)

4 The largest and smallest eigenvalue of A get estimated
accurately much before n.
(Use of Chebyshev polynomials.)
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