Conjugate gradients

Madhu Belur, CC, EE, IITB

15th April, 2011

Plan for conjugate gradients

- Steepest descent method: current search direction is not necessarily independent from past ones.
- One search direction per iteration: when not necessarily steepest descent
- Minimizing over multiple search directions : choose p_{k} and minimize over both $y, \alpha\left(y \in \mathbb{R}^{k-1}\right.$ and $\left.\alpha \in \mathbb{R}\right)$
- If directions are A-orthogonal: minimization problem 'decouples'. ('Conjugate gradients')
- y found so far (upto $(k-1)^{\text {th }}$ step) is already optimal.
- There exists such a new search direction (with A-orthogonal to past search directions and $p_{k}^{\top} r_{k-1} \neq 0$).

Steepest descent

Recall that $\phi(x):=\frac{1}{2} x^{\top} A x-x^{\top} b$

Steepest descent

Recall that $\phi(x):=\frac{1}{2} x^{T} A x-x^{\top} b$
Choose $x_{0} \in \mathbb{R}^{\mathrm{n}}$. Residue $r_{0}:=b-A x_{0}$.

Steepest descent

Recall that $\phi(x):=\frac{1}{2} x^{\top} A x-x^{\top} b$
Choose $x_{0} \in \mathbb{R}^{n}$. Residue $r_{0}:=b-A x_{0}$.
Then, direction of steepest descent: $-\nabla \phi\left(x_{k-1}\right)=r_{k-1}$

Steepest descent

Recall that $\phi(x):=\frac{1}{2} x^{\top} A x-x^{\top} b$
Choose $x_{0} \in \mathbb{R}^{\mathrm{n}}$. Residue $r_{0}:=b-A x_{0}$.
Then, direction of steepest descent: $-\nabla \phi\left(x_{k-1}\right)=r_{k-1}$
Can define: $p_{k}:=-\nabla \phi\left(x_{k-1}\right)$ (steepest descent method)

Steepest descent

Recall that $\phi(x):=\frac{1}{2} x^{\top} A x-x^{\top} b$
Choose $x_{0} \in \mathbb{R}^{\mathrm{n}}$. Residue $r_{0}:=b-A x_{0}$.
Then, direction of steepest descent: $-\nabla \phi\left(x_{k-1}\right)=r_{k-1}$
Can define: $p_{k}:=-\nabla \phi\left(x_{k-1}\right)$ (steepest descent method)

How much along p_{k}

A direction p_{k} will help decrease of ϕ iff $p_{k}^{T} r_{k-1} \neq 0$.

How much along p_{k}

A direction p_{k} will help decrease of ϕ iff $p_{k}^{T} r_{k-1} \neq 0$.
Optimal α along p_{k} can then be found.

How much along p_{k}

A direction p_{k} will help decrease of ϕ iff $p_{k}^{T} r_{k-1} \neq 0$.
Optimal α along p_{k} can then be found.
Update x by $x_{k}:=x_{k-1}+\alpha p_{k}$: best $\alpha:=\frac{p_{k}^{T} r_{k-1}}{p_{k}^{T} A p_{k}}$ (also when p_{k} not steepest descent)
Can show that

$$
\phi\left(x_{k}\right)=\phi\left(x_{k-1}\right)-\frac{\left(p_{k}^{T} r_{k-1}\right)^{2}}{2 p_{k}^{T} A p_{k}}
$$

Optimize over all k directions

Choose p_{k}, to have totally k directions now.

Optimize over all k directions

Choose p_{k}, to have totally k directions now. Re-optimize over all k independent directions in k-th step.

Optimize over all k directions

Choose p_{k}, to have totally k directions now. Re-optimize over all k independent directions in k-th step.

$$
\begin{gathered}
\min _{x \in x_{0}+\operatorname{span}\left\{p_{1}, \ldots, p_{k}\right\}} \phi(x) \\
x=x_{0}+P_{k-1} y+\alpha p_{k}\left(\text { with } y \in \mathbb{R}^{k-1} \text { and } \alpha \in \mathbb{R}\right) .
\end{gathered}
$$

Optimize over all k directions

Choose p_{k}, to have totally k directions now. Re-optimize over all k independent directions in k-th step.

$$
\min _{x \in x_{0}+\operatorname{Span}\left\{p_{1}, \ldots, p_{k}\right\}} \phi(x)
$$

$x=x_{0}+P_{k-1} y+\alpha p_{k}$ (with $y \in \mathbb{R}^{k-1}$ and $\alpha \in \mathbb{R}$).
Open brackets of $\phi\left(x_{k}\right)$ to get

Optimize over all k directions

Choose p_{k}, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.

$$
\min _{x \in x_{0}+\operatorname{span}\left\{p_{1}, \ldots, p_{k}\right\}} \phi(x)
$$

$x=x_{0}+P_{k-1} y+\alpha p_{k}$ (with $y \in \mathbb{R}^{k-1}$ and $\alpha \in \mathbb{R}$).
Open brackets of $\phi\left(x_{k}\right)$ to get

$$
\phi\left(x_{k}\right)=\phi\left(x_{0}+P_{k-1} y\right)+\underline{\alpha p_{k}^{T} A P_{k-1} y}+\alpha^{2} p_{k}^{T} A p_{k}-\alpha p_{k}^{T} r_{0}
$$

Choose p_{k} to be A-orthogonal to p_{1}, \ldots, p_{k-1}

Optimize over all k directions

Choose p_{k}, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.

$$
\min _{x \in x_{0}+\operatorname{span}\left\{p_{1}, \ldots, p_{k}\right\}} \phi(x)
$$

$x=x_{0}+P_{k-1} y+\alpha p_{k}$ (with $y \in \mathbb{R}^{k-1}$ and $\alpha \in \mathbb{R}$).
Open brackets of $\phi\left(x_{k}\right)$ to get

$$
\phi\left(x_{k}\right)=\phi\left(x_{0}+P_{k-1} y\right)+\underline{\alpha p_{k}^{T} A P_{k-1} y}+\alpha^{2} p_{k}^{T} A p_{k}-\alpha p_{k}^{T} r_{0}
$$

Choose p_{k} to be A-orthogonal to p_{1}, \ldots, p_{k-1}
(i.e. $p_{k}^{T} A P_{k-1}=0$)

$$
\min _{y, \alpha} \phi\left(x_{k}\right)=\min _{y \in \mathbb{R}^{k-1}} \phi\left(x_{k-1}\right)+\min _{\alpha}\left(\frac{\alpha^{2}}{2} p_{k}^{T} A p_{k}-\alpha p_{k}^{T} r_{0}\right)
$$

y already solves minimization problem in previous step (and p_{k} is 'decoupled' from previous y).

$$
\min _{y, \alpha} \phi\left(x_{k}\right)=\min _{y \in \mathbb{R}^{k-1}} \phi\left(x_{k-1}\right)+\min _{\alpha}\left(\frac{\alpha^{2}}{2} p_{k}^{T} A p_{k}-\alpha p_{k}^{T} r_{0}\right)
$$

y already solves minimization problem in previous step (and p_{k} is 'decoupled' from previous y).
Best

$$
\alpha=\frac{p_{k}^{T} r_{0}}{p_{k}^{T} A p_{k}}
$$

Note: $p_{k}^{T} r_{0}=p_{k}^{T} r_{k-1}$ (shown before)

Algorithm

Choose p_{k} such that it is A-orthogonal to all past p_{i} and such that $p_{k}^{T} r_{k-1} \neq 0$.

Algorithm

Choose p_{k} such that it is A-orthogonal to all past p_{i} and such that $p_{k}^{T} r_{k-1} \neq 0$.
Lemma in Golub \& van Loan :
$r_{k-1} \neq 0 \Rightarrow$ there exists such a p_{k}.

Optimal choice of p_{k}

- Which new search direction (amongst various A-orthogonal directions)
- Best direction (direction that minimizes, and still is A-orthogonal) is, in fact, easy to implement. If best search direction didn't have to be A-orthogonal, then steepest descent $\left(-\nabla \phi\left(x_{k-1}\right)\right.$ is best direction to choose for p_{k}.)
- The A-orthogonal and best direction p_{k} happens to least norm residual for a related minization problem.
- Further, p_{k} is linearly dependent on only p_{k-1} and r_{k-1}.
- In fact, r_{0}, \ldots, r_{n-1} are Lanczos vectors and they 'tridiagonalize' A. (Eigenvalues of A can also be estimated.)

Three key results (Golub \& van Loan, TRIM 3rd edition)

Lemma 10.2.2
For $k \geqslant 2$, the vectors p_{k} generated by the best A-orthogonal direction algorithm satisfy

$$
p_{k}=r_{k-1}-A P_{k-1} z_{k-1}
$$

where z_{k-1} solves

$$
\min _{z \in \mathbb{R}^{k-1}}\left\|r_{k-1}-A P_{k-1} z\right\|_{2}
$$

(We used fact that for a tall, f.c.r. matrix B, the matrices $B B^{+}$and $\left(I-B B^{+}\right)$are orthogonal projections onto range B and (range $B)^{\perp}$ respectively.)

Theorem 10.2.3

The sequence of r_{k} and p_{k} satisfy
(1) $r_{k}=r_{k-1}-\alpha_{k} A p_{k}$
(2) $r_{k}^{T} P_{k}=0$
($\operatorname{span}\left\{p_{1}, \ldots, p_{k}\right\}=\operatorname{span}\left\{r_{0}, \ldots, r_{k-1}\right\}=K\left(r_{0}, A, k\right)$
(-) residuals r_{0}, \ldots, r_{k} are mutually orthogonal.

Corollary 10.2.4

Residuals and search directions satisfy

$$
p_{k} \in \operatorname{span}\left\{p_{k-1}, r_{k-1}\right\}
$$

for $k \geqslant 2$.

Lanczos connection

(1) Krylov subspace generated from a vector and a symmetric matrix A.

Lanczos connection

(1) Krylov subspace generated from a vector and a symmetric matrix A.
(2) Convergence in at most n steps.
(3) If the number of distinct eigenvalues of A is n_{a}, then convergence in at most k steps. (Steepest descent for identity matrix: one step.)
(4) The largest and smallest eigenvalue of A get estimated accurately much before n.
(Use of Chebyshev polynomials.)

