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Plan for conjugate gradients

Steepest descent method: current search direction is not
necessarily independent from past ones.

@ One search direction per iteration: when not necessarily
steepest descent

@ Minimizing over multiple search directions : choose px
and minimize over both y, o (y € R*"! and o € R)

o If directions are A-orthogonal: minimization problem
‘decouples’. (‘Conjugate gradients’)
e y found so far (upto (k — 1)*® step) is already optimal.

@ There exists such a new search direction (with
A-orthogonal to past search directions and p/ r,_1 # 0).
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Steepest descent

Recall that ¢(x) := 2x"Ax — xTb
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Steepest descent

Recall that ¢(x) := 2x"Ax — xTb
Choose xp € R®. Residue ry := b — Axp.
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Steepest descent

Recall that ¢(x) := 2x"Ax — xTb
Choose xp € R®. Residue ry := b — Axp.
Then, direction of steepest descent: —V(xx_1) = rc_1
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Steepest descent

Recall that ¢(x) := 2x"Ax — xTb

Choose xp € R®. Residue ry := b — Axp.

Then, direction of steepest descent: —V(xx_1) = rc_1
Can define: py := —V@(xk_1) (steepest descent method)
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Steepest descent

Recall that ¢(x) := 2x"Ax — xTb

Choose xp € R®. Residue ry := b — Axp.

Then, direction of steepest descent: —V(xx_1) = rc_1
Can define: py := —V@(xk_1) (steepest descent method)
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How much along px

A direction p, will help decrease of ¢ iff p/ r,_; # 0.
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How much along px

A direction p, will help decrease of ¢ iff p/ r,_; # 0.
Optimal « along py can then be found.
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How much along px

A direction p, will help decrease of ¢ iff p/ r,_; # 0.

Optimal « along py can then be found.
P;Z—rk—l

Update x by xx := xx_1 + apk : best a := LT

(also when

Pk not steepest descent)
Can show that

T 2
6(x6) = Hx1) — (’2’;;—2;2
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Optimize over all k directions

Choose py, to have totally k directions now.
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Optimize over all k directions

Choose py, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.
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Optimize over all k directions

Choose py, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.

min X
xexp+SPan{pi,....px} ¢( )

X = Xo + Pi_1y + apx (with y € R and a € R).
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Optimize over all k directions

Choose py, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.

min X
xexp+SPan{pi,....px} ¢( )

X = Xo + Pi_1y + apx (with y € R and a € R).
Open brackets of ¢(x) to get
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Optimize over all k directions

Choose py, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.

min X
xexp+SPan{pi,....px} ¢( )

X = Xo + Pi_1y + apx (with y € R and a € R).
Open brackets of ¢(x) to get

O(xk) = d(x0 + Prery) + ap APi_1y + o®p] Apk — ap| ro

Choose py to be A—orthogonal to py, ..., pxk_1
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Optimize over all k directions

Choose py, to have totally k directions now.
Re-optimize over all k independent directions in k-th step.

min X
xexp+SPan{pi,....px} ¢( )

X = Xo + Pi_1y + apx (with y € R and a € R).
Open brackets of ¢(x) to get

O(xk) = d(x0 + Prery) + ap APi_1y + o®p] Apk — ap| ro

Choose py to be A—orthogonal to py, ..., pxk_1
(|e P/Z—APk—l = 0)
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2

. : e
min¢(xc) = min ¢(xx_1) + min(—p/ Apx — ap/ ro)
y,x yERk*l @ 2

y already solves minimization problem in previous step (and py
is ‘decoupled’ from previous y).
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2

. : e
min¢(xc) = min ¢(xx_1) + min(—p/ Apx — ap/ ro)
Y, yERk*l o 2

y already solves minimization problem in previous step (and py
is ‘decoupled’ from previous y).
Best

_ Pkao
P APk

Note: p/ ro = pJ ri_1 (shown before)
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Choose py such that it is A—orthogonal to all past p; and such
that p/ .1 # 0.
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Choose py such that it is A—orthogonal to all past p; and such
that p/ .1 # 0.

Lemma in Golub & van Loan :

ry—1 7 0 = there exists such a py.
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Optimal choice of py

@ Which new search direction (amongst various
A-orthogonal directions)

@ Best direction (direction that minimizes, and still is
A-orthogonal) is, in fact, easy to implement.
If best search direction didn't have to be A-orthogonal,
then steepest descent (—V¢@(xx—1) is best direction to
choose for py. )

@ The A—orthogonal and best direction p, happens to least
norm residual for a related minization problem.

e Further, py is linearly dependent on only px_1 and r,_;.

@ In fact, rp, ..., r,_1 are Lanczos vectors and they
‘tridiagonalize’ A. (Eigenvalues of A can also be
estimated.)
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Three key results (Golub & van Loan, TRIM 3rd edition)

Lemma 10.2.2
For k > 2, the vectors p, generated by the best A-orthogonal
direction algorithm satisfy

Pk = rk—1 — APr_1zx4
where z,_; solves

min ||I’/<_1 — A'Dk—IZH2~
zeRk-1

(We used fact that for a tall, f.c.r. matrix B, the matrices
BB* and (I — BB™) are orthogonal projections onto range B
and (range B)= respectively.)
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Theorem 10.2.3

The sequence of r, and py satisfy
Q ri =1 — akApx
Q@ r/P.=0
@ span {p1,...,p} =span {ry,...,rk_1} = K(ro, A, k)
@ residuals ry, ..., r, are mutually orthogonal.
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Corollary 10.2.4

Residuals and search directions satisfy

px € span{px_1, rk—1}

for k > 2.
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Lanczos connection

© Krylov subspace generated from a vector and a symmetric
matrix A.
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Lanczos connection

© Krylov subspace generated from a vector and a symmetric
matrix A.

@ Convergence in at most n steps.

© If the number of distinct eigenvalues of A is n,, then
convergence in at most k steps.
(Steepest descent for identity matrix: one step.)

@ The largest and smallest eigenvalue of A get estimated
accurately much before n.
(Use of Chebyshev polynomials.)
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