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Error Bound for Reduced System Model by
Pad́e Approximation via the Lanczos Process
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Abstract—Recently, there has been a great deal of interest
in using the Pad́e Via Lanczos (PVL) technique to analyze the
transfer functions and impulse responses of large-scale linear
circuits. In this paper, a matrix-based derivation of the error
between the original circuit transfer function and the reduced-
order transfer function generated using the PVL technique is
presented. This error measure may be used for the development
of an automated termination of the Lanczos process in the PVL
technique and achieve the desired accuracy of the approximate
transfer function. PVL coupled with such an error bound will be
referred to as the PVL-WEB algorithm.

Index Terms—Asymptotic waveform evaluation (AWE), Lanc-
zos, Pad́e, Pad́e Via Lanczos (PVL), Pad́e Via Lanczos with error
bound (PVL-WEB).

I. INTRODUCTION

T HE extreme complexity and high density of printed
circuit boards and multichip module layouts continue to

drive the need for improved circuit-analysis techniques and
efficient solution algorithms. Due to the inhomogeneity of
the circuit layouts, the solution algorithms must be capable
of handling the large systems of equations necessary to model
these types of interconnect devices. In addition, the high clock
speeds coupled with subnanosecond signal transients impose
the need for wide-band solutions that can range in frequency
from dc to several gigahertz.

The need for accurate yet efficient solution algorithms
served as part of the motivation for the development of
asymptotic waveform evaluation (AWE) [18]. The AWE for-
mulation provides straightforward efficient circuit analysis in
either the time or frequency domains. AWE uses moment
matching to approximate the transfer function of a large
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system with a lower order approximate transfer function. The
response of the transfer function for a circuit depends on
the system poles and residues. AWE extracts the dominant
poles and residues using Pad´e approximations [2] and provides
an accurate estimation of the system response. AWE has
been used to solve networks with resistance–capacitance trees,
lumped elements, lossy coupled transmission lines with quasi-
transverse electromagnetic mode propagation, partial element
equivalent circuit (PEEC) networks, nonlinear terminations,
and networks with frequency-dependent parameters [3], [6],
[7], [13], [16], [18], [21].

Using the AWE formulation, the approximate transfer func-
tion will be most accurate in a neighborhood near the point
of expansion. Maclaurin series moments are generated when
expanding at . Therefore, the approximate system
response obtained using the AWE computed poles and residues
is most accurate near . Decreasing accuracy occurs for
poles located at frequencies far removed from the expansion
point. The problem is overcome by computing the poles and
residues at multiple expansion points in the complexplane.
This technique is known as complex frequency hopping (CFH)
[5], [6]. The CFH algorithm is somewhat difficult to automate
and often requires user supervision to ensure accuracy.

Recently, the Pad́e Via Lanczos (PVL) algorithm was ap-
plied to circuit-analysis problems and was shown to be capable
of producing accurate approximations of the circuit transfer
functions, impulse responses, and pole predictions over a
broad frequency range [8], [10]. In [8], the PVL algorithm
was applied to lumped-type circuit modeling including PEEC
models [19]. In [17], an adaptive block Lanczos algorithm
was applied for solution of multiconductor transmission line
(MTL) problems. In that work, a least square fitting procedure
with frequency partitioning was used to obtain high-order
approximations of the MTL parameters [17]. In a more recent
work [4], the PVL algorithm was applied to MTL problems by
using Chebyshev polynomials to represent the spatial variation
of the transmission-line voltages and currents.

In all of the above works using the Lanczos process,
the results demonstrated that the algorithms produce efficient
and accurate approximations for the transfer functions and
impulse responses of high-speed interconnect problems. The
accuracy was demonstrated by comparing various orders of
the PVL solutions with other accurate but much less efficient
solutions. However, the existing approach cannot provide an
unsupervised measure of the error for a given order of Padé
approximation and, therefore, termination of the Lanczos pro-
cedure is largely heuristic. One commonly used convergence

0278–0070/99$10.00 1999 IEEE



134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 2, FEBRUARY 1999

criteria is to test the difference between successive orders of
approximation until the difference becomes small. This does
not, however, imply a small error between the original and
approximate impulse responses.

In this paper, a matrix-based derivation of the error between
the original circuit transfer function and the reduced-order
transfer function generated using PVL is presented. Model
error estimation was also discussed in [12]. However, the
approaches used in [12] are computationally more expensive
than the approach presented below. The error measure derived
in this paper reveals the intrinsic properties of convergence
for the PVL algorithm and allows for development of an
automated termination of the Lanczos process in the PVL
technique to ensure the desired accuracy of the approximate
transfer function. The PVL coupled with this error bound will
be called the Pad́e Via Lanczos with error bound (PVL-WEB)
algorithm.

The rest of this paper is organized as follows. In Section II,
the PVL-WEB algorithm is formulated. The section begins
with a review of the quantities associated with the Lanczos
process. A new matrix-based derivation of the error between
the original transfer function and the reduced transfer function
resulting from PVL is the focus of this paper and com-
pletes Section II. The matrix-based derivation provides for
a computationally inexpensive error bound. Implementing an
automated stopping criterion in PVL using the error bound
is discussed in Section III. Numerical examples of PVL-WEB
are presented in Section IV. A summary is given in Section V.

II. PVL WITH ERROR BOUND

In this section, a new matrix-based derivation of the PVL
technique is discussed. This derivation is not only able to show
the order of the approximation of the PVL algorithm but also
gives a computable error bound for the approximation. This
error bound can be used as an automated stopping criterion
for the PVL iterations.

A. System Matrices and the PVL Model Reduction

Modified nodal analysis matrices [15] are commonly used
with the PVL algorithm. These matrices can be derived from
the state variable equations of the system [8], or from other
methods such as shown in [4]. In either case, the transfer
function is given as

where for the frequency , is an -vector that
selects the output of interest,is the excitation -vector of the
network, and and are by matrices that represent the
contribution of memory and memoryless elements. Next set

where is the point of expansion in the plane. Then the
transfer function can be rewritten as

(1)

The PVL algorithm uses the iterative Lanczos process to
reduce the matrix to a tridiagonal matrix. The poles and

residues of a Pad´e approximant of the transfer function
can be accurately and efficiently computed from an eigende-
composition of the tridiagonal matrix [8]. In [8], the governing
matrix equations are given that define the predominant version
of the Lanczos process used in the electrical engineering
community. An equivalent formulation that explicitly shows
the complex nature of the equations is now presented. These
equations are valid for , where is the final
step in the iteration. The matrix equations are

(2)

(3)

where and are the tridiagonal matrices

...
...

.. .

. ..
. . .

. ..

and are
matrices of the Lanczos vectors and , which satisfy
the biorthogonality properties

diag (4)

and have unit vector length
. Furthermore, and are related by

(5)

Using these equations, one derives the following algorithm
to compute all required quantities.

Algorithm 1: steps of the Lanczos process.

.
.

for do
.

.
.

.
.

.
.

endfor

The transfer function in (1) can be expressed in
terms of Lanczos process quantities. Use (1) and (4) and the
initial step of Algorithm 1 to obtain

and

(6)

The th-order reduced transfer function is defined to be
(following [8])

(7)
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In [8], the derivation of the approximation for PVL is
linked to the moment-matching techniques of AWE, which
are connected with Padé approximation theory. It is shown
that the order of approximation of the reduced transfer function

to the transfer function is . In the
PVL algorithm, it is straightforward to see the approximation
up to order . However, the proof for the approximation
of order is rather involved [11]. Furthermore, this order
of approximation does not indicate the exact error between the
reduced and the original system transfer functions.

B. Matrix-Based Derivation of the Order
of Approximation of

In this section, a new matrix-based derivation of the PVL
method is presented. The most important outcome, however,
is not the new derivation itself but rather an expression of
the error of the PVL method. From this expression, within
a certain frequency range, one can derive a computationally
inexpensive error bound on the approximate transfer function,
which then can be used as a stopping criterion for the Lanczos
iteration. The initial idea of the matrix-based derivation of
the PVL algorithm presented in this paper was developed at
the same time as the work of [1]. In this paper, the Lanczos
governing equations (2)–(5), which are more commonly found
in the electronic circuit simulation community, are used. The
focus here is on developing a practical error estimator and the
associated implementation details. On the other hand, the work
of [1] uses a different set of Lanczos governing equations and
focuses on the mathematical aspects of error estimation and
convergence analysis of the PVL algorithm and the extension
to the multiinput, multioutput case.

Starting with (2), assume that steps have been run, and
rearrange to obtain

and

which results in the following:

(8)

By a similar derivation, use (3) and again assume that
steps have been taken to obtain

(9)

Premultiply (9) by and then postmultiply by . From
(4), notice that , so the left-hand side of (9) is

equal to zero. Therefore, obtain

(10)

Now premultiply (8) by and postmultiply by , and
note that to obtain

(11)

Last, multiply (11) by , divide by , and use (6) and (7) to
derive the following relationship between the transfer function
and the reduced transfer function

Now substitute (10) into the above equation to give

(12)

Using (5), the term in the above equation
yields

Substitute the above expression into (12) so

Let

i.e., denotes the entry of the inverse of the
tridiagonal matrix . The above equation can now be
written as

(13)

which is an exact expression for all in the complex plane
except at the discrete points where or

is singular. When is a good approximation for ,
then these discrete points coincide. Note that if (13) is singular
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because is singular, then is also singular
for the same reason from (6). Note that

where is the classical adjoint matrix made up
of cofactors of . For a tridiagonal
matrix such as , this results in

(14)

and

(15)

Substituting these back into (13) gives

(16)

which is an exact expression that shows an order of
approximation of the reduced transfer function
to . This also characterizes the Padé approximation.

Expression (13), which gives the error between
and , is essentially valid for all frequency values
of , as indicated previously. Numerical experiments indicate
that the terms and decrease steadily as the
number of Lanczos iterations increase. In addition, the values
of the term essentially remain the
same near convergence. and are the primary
contributors to the convergence of the PVL algorithm. A
theoretical justification of this observation is given in [1].

To use (13) as an error estimation for the approximation
between and in the PVL algorithm, the
major concern is on the cost of estimating the term

because the terms and can be
computed cheaply (see the discussion in Section III). For all
such that , use the Cauchy–Schwartz inequality
to obtain

where recall . Furthermore, it is well
known that

when (17)

Then the following error bound for the approximation of the
reduced transfer function is obtained:

(18)

When , the error bound (18) is no longer
valid because of the inequality (17). However, as previously

pointed out, since the primary contributors to the convergence
of the PVL algorithm are the terms and ,
one only needs to have an estimation for the term

. In numerical experiments, it was observed that
might be used as an estimation of the

term , and the bound (18) is still a plausible
estimation for the approximation error even when

. Numerical examples in Section IV demonstrate this.
An alternate approach for estimation of the term

is discussed in [1]. The optimal estimation of the
term when remains an
open problem.

III. I MPLEMENTATION ISSUES OFPVL-WEB

In this section, implementation issues for evaluation of this
error bound are discussed.

A. Computing

To compute , one may use Hager and Higham’s norm
estimator [14], which only uses the matrix-vector multipli-
cations and . These operations are already available
because they are required for the Lanczos process (see Algo-
rithm 1).

Algorithm 2: Hager and Higham’s norm estimator.

Choose any such that
repeat

.
for do

if
if

endfor

real
if then

return
else

find such that

endif
endrepeat

The scalar returned from the above algorithm is an
estimation of . This is essentially the same algorithm used
in the functionnormest in MATLAB.

B. Choosing for the Error Bound

The error bound in (18) is a function of . The term
can be evaluated with an order of flops

for each frequency parameter. Under certain assumptions,
the bound is an increasing function of the quantity. In
general, although the bound does not strictly monotonically
increase, the error bound is still somewhat of an increasing
function of frequency. Therefore, each time the stopping
criterion is tested, the error bound only needs to be computed
at one bounding value of in the frequency range of interest.
The following is an attempt to justify this observation in detail.
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Note that in (18), the term increases over
. Now consider the term

and rename it for convenience. By (14) and (15), obtain

Let the eigenvalues of be for and let
so

From the last equation, when maximizing , the variation
of is of no importance when is small and

. In addition, by considering plots of and
in the plane, it is straightforward to see thatvaries slowly
when is large [20]. Therefore, if it is assumed thatis a
constant such that , then

It can be shown that this is an increasing function of for
where is the bounding point.

However, since in practice and in the numerical simulations
in Section IV is not a constant, the error bound does not
strictly monotonically increase with . It is explained in [20]
that although the error bound does not monotonically increase
with for all frequencies, the frequency regions where it
may decrease are small. Outside these regions the bound will
continue to increase. The maximum number of regions where
it may decrease is equal to the dimension of. Thus for all

in the range, the bound only needs to be computed at one
bounding point . It should be noted that this observation is
in agreement with Padé approximations in general. Typically,
the error in an approximation increases with the distance from
the expansion point.

C. Entries in the Matrix

The quantities and are the and
entries of the inverse of the tridiagonal matrix .
Since and is tridiagonal, these quantities
are inexpensive to compute using an decomposition. In
addition, as the order of approximationincreases, the leading
rows and columns of do not change. Therefore the
decomposition does not have to be recomputed each time but
rather can be inexpensively updated with each iteration. Using
the decomposition of , one may run forward and
backward substitution on to find and to find

. Therefore, it is not necessary to compute .
Last, note that when running the forward and backward
solver on , the quantity will also be computed. This
quantity will provide the frequency-domain response since

. Therefore, if the time-
domain response is not required, the poles and residues need
not be computed.

D. Criterion Used to Test if the Lanczos
Iterations Can be Terminated

As pointed out earlier, unlike the existing PVL algorithm,
the important advantage of the PVL-WEB algorithm is that
the number of Lanczos iterations is not prescribed and no
user supervision is required for termination of the process. An
adaptive scheme can be incorporated into Algorithm 1 that
increases the order of approximationuntil an acceptably
small error of the approximation of the reduced transfer
function is achieved. Specifically, when

, the statement in Algorithm 1

for do

can be replaced by

while (not converged) do

where the criterion used to test if the Lanczos iteration can
be terminated is

while tol do

(19)

where tol is the error tolerance the user defines on the
approximation.

It should be noted that the above criterion is only guaranteed
for . Additional work is required to obtain an
equation similar to (19) from (13) for a reliable and efficient
stopping criterion for ; see the discussion at the
end of Section II.

E. Calculating the Poles and Residues

After the Lanczos process has been terminated, the dominant
poles and residues of the system can be computed and used
to visualize the characteristics of the system. The poles and
residues can also be used to determine the time-domain
impulse response. The procedure for determining the poles
and residues is shown in the following algorithm, which is
taken from [8].

Algorithm 3: Computing poles and residues.

Compute the eigendecomposition
.

set and .
for do

if then
and

else
.

endif
endfor

Note that given above is in the shifted coordinates.
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Fig. 1. MTL circuit modeled using PEEC.

Fig. 2. Computed and PVL-WEB estimated errors. Top solid line: computed error for nine iterations; dash–dot line: estimated error for nine iterations;
solid line with pluses: computed error for 31 iterations; dot–dot line: estimated error for 31 iterations; bottom solid line: computed error for 65 iterations;
dash–dash line: estimated error for 65 iterations.

IV. NUMERICAL EXAMPLE

The numerical example presented in this section is from
a PEEC model of an electromagnetics problem. The model
consists of a set of six flat, lossy transmission lines (strips) with
discrete capacitors, inductors, and resistors arranged to give
rejection over certain narrow frequency bands (see Fig. 1). The
example is a modified version of an MTL circuit evaluated in
[4]. There are 306 capacitors, 294 inductors, and 294 resistors
used in the PEEC model of the strips. In addition, there are
11 lumped resistors, one lumped inductor, and seven lumped
capacitors used in this simulation. The size of the resulting
matrices and is . The norm of the matrix is
estimated to be 5.73 10 . The expansion point is
and for the frequency . Last, , and no
assumption is made on the angleof .

Unlike previous PVL simulations, the number of Lanczos
iterations is not prescribed for the PVL-WEB algorithm.
Instead, the user sets up a tolerance valuetol for the error

between the original transfer function and reduced transfer
function and an upper bounding value of where it is
desired to have the approximation within the tolerance value.
The PVL-WEB will terminate automatically when the desired
accuracy at the upper bounding value of is satisfied.
However, it should be noted that since the error bound
is computationally efficient, it can be calculated at each
frequency point of interest, as is shown in the following
simulations. The termination criteria could be for the error
bound across the band to be less than a prescribed value, but
in this work only one upper bounding point was checked for
convergence although the error bound was calculated for all
the points.

In the first simulation, the tolerance value is set totol
at a bounding frequency of 1 GHz. The PVL-WEB took

nine Lanczos iterations to meet this error criterion. With the
PVL-WEB technique, the error bound on the approximation is
also obtained. This is plotted in Fig. 2, where the dash–dot line
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Fig. 3. Magnitude of the frequency responses. Solid line:~H(s); dash–dot line:Hn(s) for tol = 10�4 at 1 GHz; dot–dot line:Hn(s) for tol = 10�4

at 5 GHz; dash–dash line:Hn(s) for tol = 10�4 at 10 GHz.

is the PVL-WEB estimated error between the original response
and the approximate response . Once the con-

vergence criterion was met, (which is computed
with an decomposition in finite precision arithmetic) was
calculated to illustrate the validity of the PVL-WEB. The top
solid curve in Fig. 2 is the computed error between and
the approximate response . The solid curves in Figs. 3
and 4 are the magnitude and phase of . The dash–dot
lines in these two figures are the magnitude and phase of
the reduced frequency response at convergence for the first
simulation. The reduced order model shows good agreement
out to the upper bounding and slightly beyond.

In the second simulation, the tolerance value is stilltol
, but now the error measurement is taken at a bounding

frequency of 5 GHz. With these conditions, the PVL-WEB
took 31 Lanczos iterations to converge. The dotted line in
Fig. 2 is the PVL-WEB estimated error between the original
response and the approximate response. The computed error
between and is plotted as a solid line with pluses.
The computed results of the magnitude and the phase for this
case are plotted in Figs. 3 and 4 using dot–dot lines. Again,
good agreement between and is shown to 5 GHz
and slightly beyond.

In the third simulation, the tolerance value is againtol
, but the error measurement is taken at 10 GHz. The PVL-

WEB took 65 Lanczos iterations to converge. The dash–dash
line in Fig. 2 is the PVL-WEB estimated error, and the bottom
solid line is the computed error between and .

The responses for this case are plotted in Figs. 3 and 4 using
dash–dash lines. Note that because of the scaling used in
Figs. 3 and 4, the approximate response (dash–dash
lines) is indistinguishable from the computed response
(solid line). Last, the exact response took 14 320.5 s to
compute, and the third PVL-WEB simulation took 75.59 s to
compute. This includes calculating the bound at not only the
upper bounding value of but also all frequencies of interest
as plotted.

Notice that in Fig. 2, the computed errors between and
(solid lines) are larger than the PVL-WEB estimated

errors in certain frequency regions. There are two factors
contributing to this phenomenon. The first factor is numerical
errors in computing . The condition numbers of the
matrix are as large as order 10. From standard
numerical error analysis, it is known that cannot be com-
puted with more accuracy than 10 using double machine
precision. The second factor is the simple inequality (17) that
is used to bound the approximation error (18). As discussed
in Section II, in the high-frequency region, ,
the inequality (17) is no longer valid. In general, in the
lower region, the first factor contributes to the discrepancy
between the computed and PVL-WEB estimated errors. At
the higher region, however, the second factor dominates.
Nevertheless, the PVL-WEB estimated errors essentially still
track the computed errors. A more refined and computationally
costly scheme could be developed to bound (18) without
using the inequality (17) and overcome the limitation of the
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Fig. 4. Phase of the frequency responses. Solid line:~H(s); dash–dot line:Hn(s) for tol = 10�4 at 1 GHz; dot–dot line:Hn(s) for tol = 10�4

at 5 GHz; dash–dash line:Hn(s) for tol = 10�4 at 10 GHz.

error estimate approximation. In this study, however, (18)
was shown to be efficient and useful in terminating the PVL
algorithm as shown in Fig. 3 despite violation of the inequality
in the upper frequency regions.

V. SUMMARY AND CONCLUSIONS

In this paper, a new matrix-based derivation of the error
between the original circuit transfer function and the reduced-
order transfer function generated using the PVL technique was
presented. This derivation gave rise to a computationally inex-
pensive error bound of the approximation. It was shown how
this error bound could be implemented as a stopping criterion
for the PVL algorithm. Several practical implementation issues
were discussed. Numerical simulation results were presented
to illustrate the combined PVL-WEB method.

Matrix PVL for a multiple-input, multiple-output system
was introduced in [9]. The error-estimation scheme presented
in this paper can be extended to multiple-input, multiple-output
systems. There is also a good theoretical understanding of the
convergence of the PVL approximation. In addition, by using
proper matrix balancing, it is also possible to reduce so
that the simple error bound holds for the higher frequency
regions, . For discussion of these issues, refer to
[1] and references therein.
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