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Error Bound for Reduced System Model by
Padce Approximation via the Lanczos Process
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Abstract—Recently, there has been a great deal of interest system with a lower order approximate transfer function. The
in using the Pack Via Lanczos (PVL) technique to analyze the response of the transfer function for a circuit depends on
transfer functions and impulse responses of large-scale linear yo gystem poles and residues. AWE extracts the dominant
circuits. In this paper, a matrix-based derivation of the error | d id - . . . > d id
between the original circuit transfer function and the reduced- poles andresi U?S u§|ng Realproximations [2] and provides
order transfer function generated using the PVL technique is @n accurate estimation of the system response. AWE has
presented. This error measure may be used for the development been used to solve networks with resistance—capacitance trees,
of an automated termination of the Lanczos process in the PVL lumped elements, lossy coupled transmission lines with quasi-
technique and achieve the desired accuracy of the approximate v, \\erse electromagnetic mode propagation, partial element
transfer function. PVL coupled with such an error bound will be . O . L
referred to as the PVL-WEB algorithm. equivalent circuit (PEEC) networks, nonlinear terminations,

. . and networks with frequency-dependent parameters [3], [6],
Index Terms—Asymptotic waveform evaluation (AWE), Lanc- [7], [13], [16], [18], [21]

zos, Pa@, Pack Via Lanczos (PVL), Pae Via Lanczos with error . . .
bound (PVL-WEB). (PVL) Using the AWE formulation, the approximate transfer func-

tion will be most accurate in a neighborhood near the point
of expansion. Maclaurin series moments are generated when
. INTRODUCTION expanding ats = 0. Therefore, the approximate system
HE extreme complexity and high density of printedesponse obtained using the AWE computed poles and residues
circuit boards and multichip module layouts continue tss most accurate near= 0. Decreasing accuracy occurs for
drive the need for improved circuit-analysis techniques ambles located at frequencies far removed from the expansion
efficient solution algorithms. Due to the inhomogeneity gboint. The problem is overcome by computing the poles and
the circuit layouts, the solution algorithms must be capabtesidues at multiple expansion points in the compleplane.
of handling the large systems of equations necessary to modleis technique is known as complex frequency hopping (CFH)
these types of interconnect devices. In addition, the high clof¥, [6]. The CFH algorithm is somewhat difficult to automate
speeds coupled with subnanosecond signal transients impasd often requires user supervision to ensure accuracy.
the need for wide-band solutions that can range in frequencyRecently, the Pal Via Lanczos (PVL) algorithm was ap-
from dc to several gigahertz. plied to circuit-analysis problems and was shown to be capable
The need for accurate yet efficient solution algorithmsf producing accurate approximations of the circuit transfer
served as part of the motivation for the development ddinctions, impulse responses, and pole predictions over a
asymptotic waveform evaluation (AWE) [18]. The AWE for-broad frequency range [8], [10]. In [8], the PVL algorithm
mulation provides straightforward efficient circuit analysis invas applied to lumped-type circuit modeling including PEEC
either the time or frequency domains. AWE uses momenfodels [19]. In [17], an adaptive block Lanczos algorithm
matching to approximate the transfer function of a largmas applied for solution of multiconductor transmission line
(MTL) problems. In that work, a least square fitting procedure
Manuscriptt éecbeiv?: J’tjlyt_30,|129_7; revisFed J(ljur:_e 11N é9F98- Tdhis \(f;vOWith frequency partitioning was used to obtain high-order
e e e e o #bproximations o the MTL parameters [17]. In a more recent
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criteria is to test the difference between successive ordersresidues of a Padapproximant of the transfer functidi(s)
approximation until the difference becomes small. This doean be accurately and efficiently computed from an eigende-
not, however, imply a small error between the original ancbmposition of the tridiagonal matrix [8]. In [8], the governing
approximate impulse responses. matrix equations are given that define the predominant version
In this paper, a matrix-based derivation of the error betweei the Lanczos process used in the electrical engineering
the original circuit transfer function and the reduced-ordeommunity. An equivalent formulation that explicitly shows
transfer function generated using PVL is presented. Modkle complex nature of the equations is now presented. These
error estimation was also discussed in [12]. However, tleguations are valid fon = 1,2,---,q, wheregq is the final
approaches used in [12] are computationally more expensatep in the iteration. The matrix equations are
_than _the approach present_ed bel_ow. The error measure derived AV, = VT + o1 prsac? @)
in this paper reveals the intrinsic properties of convergence . . -
for the PVL algorithm and allows for development of an AW, = W T + wnt1n 4165, 3)
automated termination of thg Lanczos process in the _P\arhereTn and7,, are the tridiagonal matrices
technique to ensure the desired accuracy of the approximate

transfer function. The PVL coupled with this error bound will ar fa ar 7
be called the PaxVia Lanczos with error bound (PVL-WEB) 7o | o 7o | ol
algorithm. n SR n -
The rest of this paper is organized as follows. In Section Il, ' p ' Q" ' ' ’VZ
n n 77” an

the PVL-WEB algorithm is formulated. The section begins
with a review of the quantities associated with the Lanczd$, = [v1 ve --- w,] and W,, = [w; ws --- w,] are
process. A new matrix-based derivation of the error betweeratrices of the Lanczos vectofs; } and {w;}, which satisfy
the original transfer function and the reduced transfer functidine biorthogonality properties
resulting from PVL is the focus of this paper and com- H .
pletes Section Il. The matrix-based derivation provides for Wo' Vi = D = diag(éy, 62, -+, 6n) ()
a computationally inexpensive error bound. Implementing %+, ,; = V2w,,; = 0 and have unit vector length
automated stopping criterion in PVL using the error bounl,||» = |jw,||. = 1. FurthermoreZ;,, and 7! are related by
is discussed in Section Ill. Numerical examples of PVL-WEB FH _ D 7 D-1 (5)
are presented in Section IV. A summary is given in Section V. noToomenTn
Using these equations, one derives the following algorithm
II. PVL wWiITH ERROR BOUND to compute all required quantities.

In this section, a new matrix-based derivation of the pvL Algorithm 1: ¢ steps of the Lanczos process.
technique is discussed. This derivation is not only able to show
the order of the approximation of the PVL algorithm but alsg < II7ll2: 7 — [[{[[2; wo o 0,0 = 0,00 — 1,7 0.
gives a computable error bound for the approximation. Thig — " pr) " wn = m) ™

error bound can be used as an automated stopping criteBh” = 1,2,---, ¢ do
for the PVL iterations. [ Avy.
bp — w,?vn, Uy wr?f(én)_l-
A. System Matrices and the PVL Model Reduction Br = bnmy[On—1. Y — (6npn/bn-1)"

f — f — Up Oty — Un—lﬁna Pr41l ||f||2

Modified nodal analysis matrices [15] are commonly used Ungt — flpns1)Ls

with the PVL algorithm. These matrices can be derived from fe AMw, — waod — wal1vn, T — | f]l2-
the state variable equations of the system [8], or from other Wit — [(ns1) .

methods such as shown in [4]. In either case, the transfg{ysor

function is given as

H(s) =15(G +sC) b The transfer functiorH (so + o) in (1) can be expressed in
terms of Lanczos process quantities. Use (1) and (4) and the
wheres = j2x f for the frequencyf, [¥ is an N-vector that jnitial step of Algorithm 1 to obtain
selects the output of interestis the excitationV-vector of the
network, andC andG are N by N matrices that represent the "=up
contribution of memory and memoryless elements. Next sefnd

M =winf, My =piné,

s =509 to, A:—(G—I—SoC)_lC, 7’:(G—|—800)_1b H(30+0)21H(I—0A)_17’
where s is the point of expansion in the plane. Then the =niprwl (I —oA) "ty
transfer functionH(s) can be rewritten as = (")) wl (I — 0 A) . (6)
H(so+0) =1"(I —cA) ', (1) The nth-order reduced transfer function is defined to be

The PVL algorithm uses the iterative Lanczos process {fé)llowmg [81)

reduce the matrix4 to a tridiagonal matrix. The poles and H,(so+0) ="l (I —oT)  er. (7)
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In [8], the derivation of the approximation for PVL isequal to zero. Therefore, obtain
linked to the moment-matching techniques of AWE, which S
are connected with Padapproximation theory. It is shown —wi (I — oA vuiy =oel (I —oT) ™ enrhiwin,
that the order of approximation of the reduced transfer function (I - OA)_lvn+1- (10)
H, (so+ o) to the transfer functiol (sq+ o) is 2n— 1. In the
PVL algorithm, it is straightforward to see the approximation Now premultiply (8) byw{’ and postmultiply bye;, and
up to order2n — 2. However, the proof for the approximationnote thatw{’V;,, = ¢ to obtain
of order2n — 1 is rather involved [11]. Furthermore, this order . 1 " 1 "
of approximation does not indicate the exact error between 'L (I —oln) " er =wy (I —oA)" 01 — opnpwy
reduced and the original system transfer functions. x (I = cA)  vpqael (I = oT,) tey.

(11)

B. Matrix-Based Derivation of the Order ) o
of Approximation ofH,,(so + o) Last, multiply (11) byi*r, divide byé;, and use (6) and (7) to

In thi i trix-based derivati £ h I:’Vgerive the following relationship between the transfer function
n this section, a new matrix-based derivation of the nd the reduced transfer function

method is presented. The most important outcome, however,

is not the new derivation itself but rather an expression of H,(so+0)=H(so+0) — (lHr)aanwf

the error of the PVL method. From this expression, within x (I — 0 A)y " oD (I = 0T, er /61
a certain frequency range, one can derive a computationally " "
inexpensive error bound on the approximate transfer functia@gw substitute (10) into the above equation to give
which then can be used as a stopping criterion for the Lanczos

iteration. The initial idea of the matrix-based derivation of H(so + ¢) — H,(so + o) = ("7)o? pui1nfyy el

the PVL algorithm presented in this paper was developed at % (I _ O_TH)—le wl

the same time as the work of [1]. In this paper, the Lanczos " non
governing equations (2)—(5), which are more commonly found X (I =aA) unp

in the electronic circuit simulation community, are used. The x ¢I(I—oT) ter /6. (12)
focus here is on developing a practical error estimator and the .

associated implementation details. On the other hand, the wsl&ing (5), the terme{ (I — o7;")~'¢,, in the above equation
of [1] uses a different set of Lanczos governing equations aMi!ds

focuses on the mathematical aspects of error estimation and . —— - 1 iyl

convergence analysis of the PVL algorithm and the extension®l (1= oT)) en=el (DnDy" = o D/TDL) ey

to the multiinput, multioutput case. = (Dn(I — O—Tn)D;l)_len
Starting with (2), assume that steps have been run, and _ ClTDn(I _ aTn)_nglen

rearrange to obtain
g =6l (I —oT) e, /6.

AV, — Un+lpn+16£ =V.T,
V., —cAV, + avn+1pn+1ez =V, -V, T,

(I—oA) (Vo +opni(I - UA)ilU"-HeZ) =Voll - oT) H(so+ o) — Hu(so+ o) = (1"r) pn+2”ﬁ+1

and x o2ef (I — oT,)™?
x epwi (I — 0A) Mg

x eI —aT,) tey.

Substitute the above expression into (12) so

(Vo + 0pny1(d — 0 A) Fvpyiel ) (I — o)™t

= -oA)V,
. : . Let
which results in the following:
T —1

(o) =¢e (I —od,) "ej

Vol —oT,) ' =1 —0A)"1V, i2) ( ) e
—oppgr(I — oA Yoy 1el (1 — oT,) 7t i.e., ;;(0) denotes the(z,j) entry of the inverse of the
®) tridiagonal matrix/ — #7,,. The above equation can now be
written as

By a similar derivation, use (3) and again assume that

pn+177:,+1 2
steps have been taken to obtain

H(so +0) = Ha(so +0) = (1) P01, (o) (0)
o S H (I—-cA) ty, 13
(I-oTH ' WHE =WH(I —0A)™ —o(I — 0T X [ = o) o] (13)
X 77:,+16n,w7[1,{+1(-[ — oA (9) which is an exact expression for atl in the complex plane
except at the discrete points wherg,(o), 7,1(o), or ({ —
Premultiply (9) bye! and then postmultiply by, 1. From oA)~! is singular. Wheril;, is a good approximation for,
(4), notice thatW 7 v, ., = 0, so the left-hand side of (9) is then these discrete points coincide. Note that if (13) is singular
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becaus€l—oA)~! is singular, therH (so+0) is also singular pointed out, since the primary contributors to the convergence

for the same reason from (6). Note that of the PVL algorithm are the termB,,(o)| and |7,1(o)|,
adj(I — oT},) one only needs to have an estimation for the téuff, , (1 —

—ol,) ~ = ogA)"'v,41|. In numerical experiments, it was observe a

(I—oT) ! ALy | | exp ts, it bserved that

det(l —oTn) |(1 — |=]||A])~t| might be used as an estimation of the
whereadj(I — oT},) is the classical adjoint matrix made upterm ||(1 — ¢A)~!||, and the bound (18) is still a plausible
of (n — 1) x (n — 1) cofactors ofl — o},. For a tridiagonal estimation for the approximation error even when >

matrix such ag — o7;,, this results in 1/]|4]|. Numerical examples in Section IV demonstrate this.
~ oL (Bofs -+ B An alternate approach for estimation of the tefuf/, , (1 —
Tin(0) = ef (I —oTn) te, = det((I =T ) (14)  5A4)lv, 1] is discussed in [1]. The optimal estimation of the
" term |[w/l (I — 0 A)Lvny1| When|o| > 1/|| A remains an
and open problem.
n—1
T -1 g (p2p3 - pn)

) = enll—oln) e det(I — oT},) (15) lll. | MPLEMENTATION ISSUES OFPVL-WEB

Substituting these back into (13) gives In this section, implementation issues for evaluation of this

H(so +0) — Hy(so+ o) = (I7r) error bound are discussed.

2n
% 4 (/32/33 o Bupaps - pn) A. Computing||A||
det(I — o1;,)?

N To compute||4||, one may use Hager and Higham'’s norm

x Pnttlingl estimator [14], which only uses the matrix-vector multipli-
H6" 1 cationsAz and A z. These operations are already available

X [wn-l-l(‘[ —c4) Un+1] (16) pecause they are required for the Lanczos process (see Algo-

rithm 1).

which is an exact expression that shows an ordé&r of 4 i ,
Algorithm 2: Hager and Higham’s norm estimator.

approximation of the reduced transfer functiéh,(sq + o)
to H(so+¢). This also characterizes the Ragpproximation.
Expression (13), which gives the error betwdén(so + o)
and H(so + o), is essentially valid for all frequency values'®Peat
of o, as indicated previously. Numerical experiments indicated Az.
that the termgr,,(o)| and|7,,1(o)| decrease steadily as the fori=1,2,..-,N do
number of Lanczos iterations increase. In addition, the values ¢; « %”gi' :; gi f 8’
of the term|w (I — 0A)~tv,4| essentially remain the o gi="
same near convergende;,(o)| and|r,1(c)| are the primary 2 AH¢
contributors to the convergence of the PVL algorithm. A
theoretical justification of this observation is given in [1].

To use (13) as an error estimation for the approximation

Choose anys € RY such that|z||; = 1

z — realz).

#|lee < 2Tz then

; ! return
betweenH,, (so+0) and H(so +0) in the PVL algorithm, the ll9l2
major concern is on the cost of estimating the t¢mﬁ+1(1— find j such thatz;| = |||
2i| = 1|2]|oo

o A)tv, 41| because the termsy,(o)| and|7,1(o)| can be T — e
computed cheaply (see the discussion in Section IIl). Far all endif /
such that|s| < 1/||4||, use the Cauchy—Schwartz mequalltyendrepeat

to obtain

lwll (I = o) ] < w11 = o)™ vt The scalar||g||; returned from the above algorithm is an

o . estimation of| 4||. This is essentially the same algorithm used
where recalll|w;’, ;|| = |[vn41]| = 1. Furthermore, it is well ;4 the functionnormest in MATLAB.
known that
1 .
(I — oA)7Y| < T T when|o| < 1/]|4]. (@@7) B Choosings for the Error Bound
— |

The error bound in (18) is a function of. The term
Then the following error bound for the approximation of thés>2r,, (o)7,,(o)| can be evaluated with an order of flops
reduced transfer function is obtained: for each frequency parameter Under certain assumptions,

H | Prt1Tng1 the bound is an increasing function of the quantizy. In
o+ o) = Hnlsot o)l < 1] R general, although the bound does not strictly monotonically
2 increase, the error bound is still somewhat of an increasing
o Tln(O')Tnl(O') ¢ ! -
T [Al (18) function of frequency. Therefore, each time the stopping

criterion is tested, the error bound only needs to be computed
When |¢| > 1/||4]|, the error bound (18) is no longerat one bounding value af in the frequency range of interest.
valid because of the inequality (17). However, as previouskhe following is an attempt to justify this observation in detail.
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Note that in (18), the ternil — |o]|||A||)~! increases over D. Criterion Used to Test if the Lanczos
0 < |o| < 1/]|A||. Now consider the termo?ry,,(0)7,1(c)| Iterations Can be Terminated

and rename if (o) for convenience. By (14) and (15), obtain - aq pointed out earlier, unlike the existing PVL algorithm,

on the important advantage of the PVL-WEB algorithm is that
x(o) = o] |/32/33"'/3np2p3~~~pn|' the number of Lanczos iterations is not prescribed and no
|det(I — 0T, )?| user supervision is required for termination of the process. An
adaptive scheme can be incorporated into Algorithm 1 that
Let the eigenvalues of;, be A; for 1 < ¢ < n and let jncreases the order of approximatienuntil an acceptably

o = lo|e/® so small error of the approximation of the reduced transfer
function H,(so + o) is achieved. Specifically, whefr| <
8283+ Brp2pz - pal 1/||A||, the statement in Algorithm 1

X = o = AR [T - AP
forn=1,2,---,¢qdo

From the last equation, when maximizingo ), the variation
of 6 is of no importance whefz| is small and0 < |o| <
1/||Z,.||- In addition, by considering plots of, so, o, and §
in the s plane, it is straightforward to see thawaries slowly
when|o| is large [20]. Therefore, if it is assumed thais a

can be replaced by

while (not converged) do

constant such that/? x; = a; + 7b;, then ne—n+l
(0) 18283 Brp2ps - pnl where the criterion used to test if the Lanczos iteration can
g) = . . .
X [(|g|—1 —a1)? + b%] e [(|g|—1 —a,)? + 1,721] be terminated is
2/1H . *
It can be shown that this is an increasing function «@f for while< o=(l") ‘ M1 P Tin () 71 (0) > toI) do
0 < |o| < |oo| < 1/||T%|| whereoq is the bounding point. (1 = lolllAl) on

However, since in practice and in the numerical simulations (19)

in Section IV @ is not a constant, the error bound does not

strictly monotonically increase witfwr|. It is explained in [20] where tol is the error tolerance the user defines on the
that although the error bound does not monotonically increaagproximation.

with |o| for all frequencies, the frequency regions where it It should be noted that the above criterion is only guaranteed
may decrease are small. Outside these regions the bound feifl |o| < 1/||A||. Additional work is required to obtain an
continue to increase. The maximum number of regions whegguation similar to (19) from (13) for a reliable and efficient
it may decrease is equal to the dimensionofThus for all stopping criterion forlo| > 1/||4]|; see the discussion at the
@ in the range, the bound only needs to be computed at ogred of Section II.

bounding points. It should be noted that this observation is

in agreement with P&approximations in general. Typically,g Calculating the Poles and Residues

the error in an approximation increases with the distance from

the expansion point. After the Lanczos process has been terminated, the dominant

poles and residues of the system can be computed and used
o _ to visualize the characteristics of the system. The poles and
C. Entries in the Matrix(/ — o;,)~* residues can also be used to determine the time-domain
The quantitiesr;,,(¢) and7,1(c) are the(l,n) and(n,1) impulse response. The procedure for determining the poles

entries of the inverse of the tridiagonal matrix— o7,,. and residues is shown in the following algorithm, which is
Sincen <« N andI — oT,, is tridiagonal, these quantitiestaken from [8].
are inexpensive to compute using & decomposition. In  Algorithm 3: Computing poles and residues.
addition, as the order of approximatierincreases, the leading
rows and columns of/,, do not change. Therefore thel/ Compute the eigendecomposition
decomposition does not have to be recomputed each time but T, = S, diag(A, Az, -+, A)S
rather can be inexpensively updated with each iteration. Usisgt;, = SqTel, V= Sq—lel andk., = 0.
the LU decomposition off — ¢’;,, one may run forward and for j = 1,2,---,¢ do

-1
q -

backward substitution omr; to find 7,1(¢) and ¢, to find if A; # 0 then

m1.(c). Therefore, it is not necessary to comp(fe-o7;,) 7. p; = 1/XA; andk; = —(17r) v /A
Last, note that when running the forward and backward else

solver oney, the quantityr; (o) will also be computed. This koo = koo + (lHr)uj;/j.

quantity will provide the frequency-domain response since endif

H,(so+0) = ("r)el (I —oT,) e;. Therefore, if the time- endfor

domain response is not required, the poles and residues need

not be computed. Note thatp; given above is in the shifted coordinatas
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Fig. 1. MTL circuit modeled using PEEC.
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Error Bound
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Frequency (Hz) x 10°

Fig. 2. Computed and PVL-WEB estimated errors. Top solid line: computed error for nine iterations; dash—dot line: estimated error for nirg iteration
solid line with pluses: computed error for 31 iterations; dot—dot line: estimated error for 31 iterations; bottom solid line: computed errorefati@isjt
dash—dash line: estimated error for 65 iterations.

IV. NUMERICAL EXAMPLE between the original transfer function and reduced transfer

The numerical example presented in this section is froffnction and an upper bounding value {f| where it is
a PEEC model of an electromagnetics problem. The modigsired to have the approximation W|t[h|n the tolerance v.alue.
consists of a set of six flat, lossy transmission lines (strips) wifi'® PVL-WEB will terminate automatically when the desired
discrete capacitors, inductors, and resistors arranged to gi#uracy at the upper bounding value |of| is satisfied.
rejection over certain narrow frequency bands (see Fig. 1). THewever, it should be noted that since the error bound
example is a modified version of an MTL circuit evaluated i#§ computationally efficient, it can be calculated at each
[4]. There are 306 capacitors, 294 inductors, and 294 resistfgfuency point of interest, as is shown in the following
used in the PEEC model of the strips. In addition, there apénulations. The termination criteria could be for the error
11 lumped resistors, one lumped inductor, and seven lumpé@und across the band to be less than a prescribed value, but
capacitors used in this simulation. The size of the resulting this work only one upper bounding point was checked for
matricesC and G is N = 918. The norm of the matrix4 is convergence although the error bound was calculated for all
estimated to be 5.7% 10~!°. The expansion pointis, =0 the points.
ands = j2n f for the frequencyf. Last,oc = s — sg, and no In the first simulation, the tolerance value is sett®d =
assumption is made on the andleof o. 10—* at a bounding frequency of 1 GHz. The PVL-WEB took

Unlike previous PVL simulations, the number of Lanczosine Lanczos iterations to meet this error criterion. With the
iterations is not prescribed for the PVL-WEB algorithm. PVL-WEB technique, the error bound on the approximation is
Instead, the user sets up a tolerance vablefor the error also obtained. This is plotted in Fig. 2, where the dash—dot line
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3.5 T T T T T T T T T

25+ . s

Voltage (Volts)

Frequency (Hz) x 10°

Fig. 3. Magnitude of the frequency responses. Solid liHg¢:s); dash—dot line:H , (s) for tol = 10~* at 1 GHz; dot-dot lineH,, (s) for tol = 10—
at 5 GHz; dash—dash line,,(s) for tol = 10—* at 10 GHz.

is the PVL-WEB estimated error between the original respon$te responses for this case are plotted in Figs. 3 and 4 using
H(s) and the approximate respongg,(s). Once the con- dash—dash lines. Note that because of the scaling used in
vergence criterion was mef (s) (which is H(s) computed Figs. 3 and 4, the approximate resporiég(s) (dash—dash
with an LU decompoasition in finite precision arithmetic) wadines) is indistinguishable from the computed respoﬁé(e)
calculated to illustrate the validity of the PVL-WEB. The tofsolid line). Last, the exact response took 14320.5 s to
solid curve in Fig. 2 is the computed error betwdéﬁs) and compute, and the third PVL-WEB simulation took 75.59 s to
the approximate responggé, (s). The solid curves in Figs. 3 compute. This includes calculating the bound at not only the
and 4 are the magnitude and phasefb(fs). The dash—dot upper bounding value aof but also all frequencies of interest
lines in these two figures are the magnitude and phase a¥ plotted.
the reduced frequency response at convergence for the firdlotice thatin Fig. 2, the computed errors betwefé@) and
simulation. The reduced order model shows good agreeméhi(s) (solid lines) are larger than the PVL-WEB estimated
out to the upper boundingr| and slightly beyond. errors in certain frequency regions. There are two factors
In the second simulation, the tolerance value is &dlll= contributing to this phenomenon. The first factor is numerical
10~%, but now the error measurement is taken at a boundiegors in computingﬁl(s). The condition numbers of the
frequency of 5 GHz. With these conditions, the PVL-WEBnatrix I — 0 A are as large as order 40From standard
took 31 Lanczos iterations to converge. The dotted line mumerical error analysis, it is known thAt(s) cannot be com-
Fig. 2 is the PVL-WEB estimated error between the originguted with more accuracy than 18 using double machine
response and the approximate response. The computed eprecision. The second factor is the simple inequality (17) that
betweenH (s) and H,,(s) is plotted as a solid line with pluses.is used to bound the approximation error (18). As discussed
The computed results of the magnitude and the phase for tinisSection Il, in the high-frequency regiog| > 1/]|4]|,
case are plotted in Figs. 3 and 4 using dot—dot lines. Agathe inequality (17) is no longer valid. In general, in the
good agreement betweéfi(s) and H,,(s) is shown to 5 GHz lower |o| region, the first factor contributes to the discrepancy
and slightly beyond. between the computed and PVL-WEB estimated errors. At
In the third simulation, the tolerance value is aggsh= the higher|o| region, however, the second factor dominates.
10~%, but the error measurement is taken at 10 GHz. The PVNevertheless, the PVL-WEB estimated errors essentially still
WEB took 65 Lanczos iterations to converge. The dash—dasack the computed errors. A more refined and computationally
line in Fig. 2 is the PVL-WEB estimated error, and the bottoroostly scheme could be developed to bound (18) without
solid line is the computed error betweéfi(s) and H,(s). using the inequality (17) and overcome the limitation of the
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Fig. 4. Phase of the frequency responses. Solid IH¢és); dash—dot line:H,, (s) for tol = 10~* at 1 GHz; dot-dot line:H,,(s) for tol = 10—+
at 5 GHz; dash—dash line, (s) for tol = 10—* at 10 GHz.

error estimate approximation. In this study, however, (18)ents and partial inductances of the PEEC model. They also
was shown to be efficient and useful in terminating the PVilvould like to thank the referees for their valuable comments
algorithm as shown in Fig. 3 despite violation of the inequalitgn the manuscript. R. D. Slone would also like to thank T.

in the upper frequency regions. Kowalski for many helpful discussions.
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