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Abstract

The problem of model reduction with preservation of passivity is investigated. The approach is based on positive real
interpolation, and is inspired by the similarity between Löwner and Pick matrices. The former are important in problems of
general rational interpolation while the latter in problems of interpolation by positive real functions. It follows that interpolation
of the original set of data together with an appropriately defined mirror-image set of data yields automatically positive real
interpolants. Subsequently, we show how this result can be implemented using a Krylov projection procedure. The ensuing
model reduction method preserves stability and passivity and can be implemented efficiently for the large-scale systems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

InVLSI design, the verification of chip performance
involves modeling of various parts of the chip. Some
of the resulting models are linear, and are defined in
the usual state space form

� : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),
(1.1)
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wherex(t) ∈ Rn is the state,u(t) ∈ Rm is the input
andy(t) ∈ Rp is the output of the system at timet,
andA,B,C,D are constant matrices of appropriate
dimension. The dimensionn of the state is defined
as thecomplexityof �. Depending on the accuracy
requirements, this complexity can be very highn ∼
105,106, and thus direct simulation may prove hard
to impossible. Therefore, the need for simplification
or model reductionof �, arises. We are thus looking
for a system of the form

�̂ : ˙̂x(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t) + D̂u(t),
(1.2)
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wherex̂(t) ∈ Rk, k is the complexity of�̂, with k < n,
and ŷ(t) ∈ Rm is the output produced by the inputu.
The original model� in this case is stable and of-

ten passive, and thus during this dimension reduction
bothstabilityandpassivityhave to bepreserved. This
motivates the problem of reduction of a passive sys-
tem given in state space form with preservation of sta-
bility and passivity; and since the dimension of the�
may be very high,numerically efficientmethods are
needed for this task.
This problem has been studied by several re-

searchers; for an overview of existing approaches see,
e.g.[7,12,17,18,22].
In this paper, we present a new approach to the

problem of model reduction which preserves passivity.
It combines two ingredients, namely, Krylov projec-
tion methods and a new result on positive real inter-
polation. The first aspect is important because Krylov
methods are suitable for application to very high order
systems. The second aspect uses rational interpolation
as a way to achieve dimension reduction. In particu-
lar a choice of interpolation points is proposed which
guaranteesthat the reduced model preserves the pas-
sivity property of the original high order system.
The paper is organized as follows. After a review of

selected results on rational interpolation and the intro-
duction of the Löwner matrix, Section 3 explores the
similarity between the Löwner and the Pick matrices.
This leads to a particular choice of the interpolation
points so that the resulting interpolant is passive (and
stable). As a byproduct we also present the solution of
the positive real partial realization problem (with re-
spect to the imaginary axis). Finally Section 4 makes
use of the results developed in the preceding section
together with Krylov projection to come up with the
new method of model reduction which preserves pas-
sivity. The section concludes with some illustrative ex-
amples. There are also two appendices which discuss
the derivation of the multiple point Pick and Löwner
matrices.

2. Rational interpolation and the Löwner matrix

Consider the array of points

J = {(xi, yi) : xi, yi ∈ C, i = 1, . . . , N,

xi 
= xj , i 
= j}. (2.3)

We are looking for all rational functions

y(x) = n(x)

d(x)
, (2.4)

where the polynomialsn, d have no common factors,
which interpolatethe points of the arrayJ, i.e.

y(xi) = yi, i = 1, . . . , N. (2.5)

The Lagrange interpolating polynomialdefined as
y0(x) = ∑N

j=1 yj [∏i 
=j (x − xi)][∏i 
=j (xj − xi)]−1,
is the unique polynomial of degree less thanN which
interpolates the points of the arrayJ. A parametriza-
tion of all solutions to (2.4), (2.5) can be given asy(x)

= y0(x) + r (x)
∏N

i=1(x − xi), where the parameter
r (x) is an arbitrary rational function with no poles at
thexi ’s.
The above formula allows one to say very little

about the structure of the family of solutions of the
interpolation problem (2.4), (2.5). In order to be able
to investigate this solution set more closely, we intro-
duce the following (scalar)parameter

degy=max{degn,degd},
which is sometimes referred to as theMcMillan degree
of the rational functiony. The following problems
arise:
(a) Find theadmissibledegrees of complexity, i.e.

those positive integers� for which there exist solutions
y(x) to the interpolation problem (2.4), (2.5), with
degy= �.
(b) Given an admissible degree�, constructall cor-

responding solutions.

Remark 2.1. (a) Usually one seeks interpolants with
real coefficients. In this case if the complex pair
(xi, yi) ∈ J, the associated complex conjugate pair
must belong to the array as well:(x∗

i , y∗
i ) ∈ J.

(b) In array (2.3) the pointsxi have been assumed
distinct. In terms of the interpolation problem, this
means that only thevalueof the underlying rational
function is prescribed at eachxi . If the value of succes-
sive derivatives at the same points is also prescribed,
we are dealing with themultiple-pointor confluentin-
terpolation problem. There is a vast amount of litera-
ture on the interpolation problem. The approach fol-
lowed here has its origins in the papers ofAntoulas and
Anderson[2], Anderson and Antoulas[4], Antoulas
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et al.[6]. Some of the results discussed below can also
be found in Belevitch[8].

2.1. A rational Lagrange-type formula and the
Löwner matrix

The idea now is to come up with a Lagrange
polynomial-type formula which would be valid for
rational functions. Before introducing this formula,
we partition the arrayJ in two disjoint subarrays
JC andJR as follows:

JC = {(xi, yi) : i = 1, . . . , r},
JR = {(x̄i , ȳi ) : i = 1, . . . , p},
where for simplicity of notation some of the points
have being redefined as follows:x̄i = xr+i , ȳi = yr+i ,
i=1, . . . , p,p+r=N . Consider the functiony defined
through the following equation:

r∑
i=1

ci

y(x) − yi

x − xi

= 0, ci 
= 0,

i = 1, . . . , r, r �N.

Solving fory(x) we obtain

y(x) =
∑r

j=1 yj cj

∏
i 
=j (x − xi)∑r

j=1 cj

∏
i 
=j (x − xi)

, cj 
= 0. (2.6)

Clearly, the above formula, which can be regarded as
the rational equivalent of the Lagrange interpolating
polynomial, interpolates the firstr points of the array
J, i.e. the points of the arrayJC . In order fory(x) to
interpolate the points of the arrayJR, the coefficients
ci must satisfy the following equation:

L c = 0,

where

c= [c∗
1 · · · c∗

r ]∗ ∈ Cr

and

L =



ȳ1−y1
x̄1−x1

· · · ȳ1−yr

x̄1−xr

...
...

ȳp−y1
x̄p−x1

· · · ȳp−yr

x̄p−xr


 ∈ Cp×r . (2.7)

The superscript(·)∗ is used to denote complex conju-
gation followed by transposition (thus if the quantity
in question is a scalar, superscript denotes complex

conjugation).L is called theLöwner matrixdefined
by means of therow arrayJR and thecolumn array
JC , and turns out to be an important tool for studying
the rational interpolation problem.
The key result in connection with the Löwner matrix

is the following.

Lemma 2.1. Consider the array of pointsJ defined
by (2.3),consisting of samples taken from a given ra-
tional functiony(x). Let L be anyp × r Löwner ma-
trix with p, r � degy. It follows thatrankL = degy.
Consequently, any square sub-Löwner matrix ofL of
sizedegy is non-singular.

Given the array of pointsJ defined by (2.3), we are
now ready to tackle the interpolation problem (2.4),
(2.5), and in particular, solve the two problems (a) and
(b), posed earlier. The following definitions are needed
first. (i) The rank of the arrayJ is

rankJ =max
L

{rankL } =: q,

where the maximum is taken over all possible Löwner
matrices which can be formed fromJ. (ii) We will
call a Löwner matrixalmost square, if it has at most
one more row than column or vice versa, the sum of
the number of rows and columns being equal toN. A
consequence of Lemma 2.1 is the following.

Corollary 2.1. The rank of all Löwner matrices hav-
ing at least q rows and q columns is equal to q. Con-
sequently almost square Löwner matrices with at least
q rows or columns have rank q.

Assume that 2q < N . For any Löwner matrix with
rankL = q, there exists a column vectorc 
= 0 of
appropriate dimension, satisfying

L c = 0 or c∗L = 0. (2.8)

In this case we can attach toL a rational function
denoted by

yL (x) = nL (x)

dL (x)
, (2.9)
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using formula (2.6), i.e.

nL (x) =
r+1∑
j=1

cj yj

∏
i 
=j

(x − xi),

dL (x) =
r+1∑
j=1

cj

∏
i 
=j

(x − xi). (2.10)

The rational functionyL (x) just defined, has the fol-
lowing properties.

Proposition 2.1. (a) degyL �r �q < N. (b) There is
a uniqueyL attached to allL andc satisfying(2.8),as
long asrankL = q. (c) The numerator, denominator
polynomialsnL , dL haveq − degyL common factors
of the form(x − xi). (d) yL interpolates exactlyN −
q + degyL points of the arrayJ.

As a consequence of this and Lemma 2.1, we obtain

Corollary 2.2. yL interpolates all given points if, and
only if, degyL = q if, and only if, all q × q Löwner
matrices which can be formed from the data arrayJ
are non-singular.

We are now ready to state, from[2], the following
result.

Lemma 2.2. Given the array of N pointsJ, let
rankJ = q. (a) If 2q < N , and all square Löwner
matrices of size q which can be formed fromJ
are non-singular, there is a unique interpolating
function of minimal degree denoted byymin(x) and
degymin = q. (b) Otherwise, ymin(x) is not unique
anddegymin = N − q.

The first part of the theorem follows from the pre-
vious corollary. The second part can be justified as
follows. Part (b) of the proposition above says that as
long asL has rankq there is a unique rational func-
tion yL attached to it. Consequently in order forL to
yield a different rational functionyL defined by (2.9),
(2.10), it will have tolose rank. This occurs whenL
has at mostq−1 rows. In this case its rank isq−1 and
there exists a column vectorc such thatLc=0. Since
L hasN − q + 1 columns, the degree of the attached
yL will generically (i.e. for almost allc) beN − q. It
readily follows that for almost allc, yL will interpolate

all the points of the arrayJ. This argument shows that
there canneverexist interpolating functions of degree
betweenq andN −q. The admissible degree problem
can now be solved in terms of the rank of the arrayJ.

Corollary 2.3. Under the assumptions of the lemma,
if degymin = q, the admissible degrees consist of q
together with all integers which are greater than or
equal toN − q; if degymin = N − q, the admissible
degrees consist of all integers which are greater than
or equal toN − q.

Remark 2.2. (i) If 2q=N , the only solutionc of (2.8)
is c= 0. Hence,yL , defined by (2.9), (2.10), does not
exist, and part (b) of Lemma 2.2 applies.
(ii) In order to distinguish between case (a) and

case (b) of Lemma 2.2, weonly need to check the
non-singularity of 2q + 1 Löwner matrices. Construct
fromJ anyLöwner matrix of sizeq × (q + 1), with
row, column sets denoted byJRq

,JCq
, and call it

Lq . The Löwner matrixL∗
q of size(q + 1) × q is now

constructed; its row setJR∗
q
contains the points of the

row setJRq
together with the last point of the column

setJCq
; moreover, its column setJC∗

q
contains the

points of the column setJCq
with the exception of

the last one. The 2q + 1 Löwner matrices which need
to be checked are theq ×q submatrices ofLq andL∗

q .

3. Positive real interpolation and the Pick matrix

In several applications the rational interpolation
problem with a positive realness constraint is rele-
vant. A rational functiony(x) with real coefficients,
is calledpositive realif it is stable and it maps the
open right-half plane into the closed right-half plane.
These conditions can be expressed as follows:

(i) y(x) is analytic in the open right-hand-plane
Re(x) >0,

(ii) y(x) + [y(x)]∗ �0 forRe(x) >0.

The following is a well-known consequence of this
definition.

Proposition 3.1. (a) If y(x) is analytic inRe(x)�0,
andRe(y(x))�0 on the imaginary axisRe(x) = 0,
theny(x) is positive real.
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(b) If y(x) is analytic inRe(x) >0,andRe(y(x))�0
on the imaginary axisRe(x) = 0, then y(x) is pos-
itive real if, and only if, it has simple poles on the
imaginary axis with positive residues.

In this section, we will discuss aspects of the pos-
itive real interpolation problem. Given an array of
points (2.3), we thus seek rational interpolants which
arepositive real. It is clear that this interpolation prob-
lem need not have a solution in general; the array
consisting of the two pairs:(1,1) and(2, −1) for in-
stance, cannot be interpolated by means of a positive
real function. According to[23] the necessary and suf-
ficient condition for the existence of a positive real in-
terpolant is that the following HermitianPick matrix:

� =




y1+y∗
1

x1+x∗
1

· · · y1+y∗
N

x1+x∗
N

...
...

yN+y∗
1

xN+x∗
1

· · · yN+y∗
N

xN+x∗
N


 ∈ RN×N, (3.11)

be positive definite or semi-definite:��0 (recall that
for any scalarz, z∗ denotes its complex conjugate).
Furthermore, if rank�=k < N , a unique positive real
interpolating function of minimal degreekexists. Oth-
erwise interpolating functions of degree at leastN −1,
always exist.
The positive real interpolation problem and the as-

sociated Pick matrix have been extensively studied in
the literature; for system theoretic treatments of these
issues we refer to the work of Genin and coworkers
[10,11], as well as Georgiou and co-workers, see e.g.
[13,14], and references therein.

3.1. Löwner and Pick matrices: distinct points

We now compare (2.7) with (3.11). It follows that
if the row array for the former is taken as(xi, yi), i =
1, . . . , N and the column array as(−x∗

i , −y∗
i ), i =

1, . . . , N , then

� = L .

Given the arrayJ defined by (2.3), this motivates the
definition of themirror-image array:

J∗ = {(−x∗
i , −y∗

i ), i = 1, . . . , N}. (3.12)

Thus the Löwner matrix constructed withrow arrayJ
andcolumn arrayJ∗ is the same as the Pick matrix.
The following is the main result of this section:

Lemma 3.1. All minimal-degree interpolants of the
augmented arrayJ ∪ J∗ are positive real.

We will mention three ways of proving this result.
The first is an ab initio proof of the fact that inter-
polation of the original arraytogetherwith the mir-
ror image array, yields positive realnessautomatically;
this can be found in[20] and[19]. The second is by
means of thepositive real lemmaand can be found
in [21].
Finally, the third is by transforming the positive real

interpolation problem to a bounded real interpolation
problem and then applying the result of[3]; this lat-
ter result provides analgebraization of the bounded
real interpolation problem. Here are a few details. It is
well known that the scalar functiony(x) of the com-
plex variablex, is positive real if, and only if, the
functionw(x) = [1− y(x)/1+ y(x)] is bounded real,
that is, it is stable and its magnitude on the imaginary
axis does not exceed one. Furthermore the function
w((1−z)/(1+z)), wherez=(1−x)/(1+x), is bounded
real with respect to the unit circle, that is has all its
poles inside the unit disc and its magnitude on the
unit circle does not exceed one. A moment’s reflection
shows that the positive real interpolation problem can
be transformed into a bounded real interpolation prob-
lem either with respect to the imaginary axis or the unit
disc. If the original pairs of points for the PR problem
are (xi, yi), i = 1, . . . , N , the interpolation points of
the BR problem with respect to the imaginary axis are
(wi, xi), wherewi=(1−yi)/(1+yi), i=1, . . . , N , and
those of the BR problem with respect to the unit circle
are(wi, zi), wherezi =(1−xi)/(1+xi), i=1, . . . , N .
The necessary and sufficient condition for the solv-
ability of each of these three problems, which will
be denoted by “PR”, “BR1”, “BR 2”, is the positive
definiteness of each of the following Pick matrices,
respectively:

�PR=
[

yi + y∗
j

xi + x∗
j

]
1� i,j �N

,

�BR1 =
[
1− wiw

∗
j

xi + x∗
j

]
1� i,j �N

,

�BR2 =
[
1− wiw

∗
j

1− ziz
∗
j

]
1� i,j �N

.
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Remark 3.1. (a) The above result provides an alge-
braization of the positive real interpolation problem.
It says, namely, that if��0, the minimal-degree ra-
tional functions which interpolatesimultaneouslythe
original arrayand its mirror image array, are automat-
ically positive realand hencestableas well.
(b) It readily follows that interpolants of the aug-

mented array constructed by means of the Löwner ma-
trix, satisfy

y(x) + y(−x)|x=xi
= 0.

In general the roots ofy(x) + y(−x) are called the
spectral zerosof the underlying linear system (see
also (4.16)). Thus the construction of positive real
interpolants using the Löwner matrix, forces them
to have thegiven interpolation points asspectral
zeros.

3.2. Löwner and Pick matrices: multiple points

In this section, we will draw attention to the fact that
the Pick matrix and the Löwner matrix for multiple
interpolation points, although not equal, arecongru-
ent. As already stated Löwner matrices have the prop-
erty that rational interpolants can be constructed by
computing their nullspace. Consequently these prop-
erties are inherited by Pick matrices as well. These
considerations lead to Theorem 3.1, which is the
analogue of Lemma 3.1, and provides analgebraiza-
tion of the multiple-point positive real interpolation
problem.

Lemma 3.2 (Positive real Pick matrix for a sin-
gle repeated point). Given the interpolation point
� ∈ R+, with corresponding interpolation values
(y0, y1, . . . , yN−1), let

�k = (2�)k

k! yk, k = 0,1, . . . , N − 1.

There exists a positive real function interpolating the
above multiple point iff thesymmetric Toeplitz matrix
� ∈ RN×N is positive semi-definite

� = � + �∗ �0, (3.13)

where� is upper triangular, Toeplitz, with first row
equal to

�1,: = [�0 �1 �2 + �1 �3 + 2�2 + �1
× �4 + 3�3 + 3�2 + �1
× �5 + 4�4 + 6�3 + 4�2 + �1 · · ·].

(3.14)

Thus the(1, �) entry of�, ��2, is a linear combi-
nation of�i , i = 1, . . . , � − 1, whose coefficients are
equal to the coefficients of the binomial expansion of
(x + y)�−2.

3.2.1. Connection with the Löwner matrix
We will now show that� defined by (3.13) is a

special case of the Löwner matrix. Towards this goal,
consider the Löwner matrix, which results by hav-
ing as row array{�; y0s , y1s , . . .} and as column array
{�; y0t , y1t , . . .}. The(k, �)th entry is

L k,� = dk−1

dsk−1
d�−1

dt�−1

[
y(s) − y(t)

s − t

]
s=�,t=�

,

k, � = 1,2, . . . , n.

Recall definition (A.1) ofW; we also define

D= diag

[
1,�,

�2

2! ,
�3

3! , · · ·
]

,

J= diag[1, −1,1, −1, · · ·],
V =WJ and � = s − t.

It is rather straightforward but tedious to show that
a Pick-like matrix which we shall denote byP, is
obtained from the Löwner matrixL , by means of the
following transformations:

P= �V−∗DJLDV−1, w = y0s − y0t . (3.15)

As an example, for the case of 4 points, i.e.,
(s; y0s , y1s , y2s , y3s ) and(t; y0t , y1t , y2t , y3t ), the Löwner
matrix is shown in Appendix A. The Pick matrix for
this case by means of (3.15) on the other hand, is

P=


�0 − 	0 	1 	1 − 	2 	3 − 2	2 + 	1
�1 �0 − 	0 	1 	1 − 	2

�2 + �1 �1 �0 − 	0 	1
�3 + 2�2 + �1 �2 + �1 �1 �0 − 	0


 ,

�i = (s − t)i

i! yi
s , 	i = (s − t)i

i! yi
t .
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ComparingP with the Pick matrix obtained in (3.14)
we conclude that they match, provided the interpo-
lation points satisfy the followingmirror-image con-
straints:

� = P for t = −s and	0 = −�0,

	1 = �1, 	2 = −�2, . . . , 	k = (−1)k+1�k, . . . .

An important consequence of the correspondence be-
tween Löwner and Pick matrices for multiple points is
summarized in the following theorem. It is the coun-
terpart of Lemma 3.1.

Theorem 3.1.Given an array of N interpolating
points with multiplicities

J = {(xi; yi,0, yi,1, . . . , yi,ki
), i = 1, . . . , n;

xi 
= xj , i 
= j, k1 + · · · + kn = N},
its mirror image array is defined as

J∗ = {(−x∗
i ; −y∗

i,0, y
∗
i,1, . . . , (−1)ki+1y∗

i,ki
),

i = 1, . . . , n; k1 + · · · + kn = N}.
Let � be the Löwner matrix constructed withJ as
the row andJ∗ as the column array. If��0, any
minimal interpolant of the original arrayJ together
with the mirror image arrayJ∗, is positive real.

Remark 3.2. Givenc such that� c= 0, the vectorf
such thatL f = 0, is given byf = DV−1c. It follows
that one can construct positive real interpolants by
computing the null space of a Pick matrix, and by
using the formulae applicable to Löwner matrices. For
details on this construction using the Löwner matrix
we refer to the references cited earlier, namely[2,5,6].
These results are summarized in Appendices A and B
at the end of the paper.

3.3. Positive real partial realization

If we wish to investigate the existence of positive
real interpolants for a given set of interpolation points,
we have to check positive definiteness of the Pick ma-
trix � defined by (3.11); likewise for the case of re-
peated interpolation points, one needs to check the
Pick matrix� defined by (3.13); thereby, the�i de-
pend on the interpolation point as well as the value of
the corresponding derivative of the interpolating func-
tion.

We now turn our attention to the positive real par-
tial realization problem. First we notice that ify(s) is
such an interpolating function for the given data, the
functionG(s) = y(s−1 + �) has Markov parameters
�i . Therefore, we conclude that if the data consists
of Markov parameters�k, k = 0,1,2, . . ., the condi-
tion � + �∗ �0, is sufficient for the existence of a
positive real realization. If however,�0>0, this ma-
trix is always positive definite for sufficiently small
�. Therefore if�0>0, there always exists aposi-
tive real rational function of degree at mostN, which
matchesanyarbitrary set of Markov parameters�k ∈
R, k = 1, . . . , N . This leads to the following result
which provides the solution of the positive real (pr)
realization problem.

Lemma 3.3. Given is a finite sequence of real num-
bers�0,�1, . . . ,�N . If �0 
= 0, there exists a positive
real rational function having the�i , i = 0,1, . . . , N
as Markov parameters if, and only if, �0>0. In this
case there exist positive real realizations of degree N.

Remark 3.3. (a) A more general statement than the
one given in the above lemma is as follows. Consider
again the sequence�i , i = 0,1, . . . , N . There exists
a positive real realization of this sequence, if either
�0>0, or otherwise the sequence is of the form:

(0,�1,0,�3, . . . ,0,�2k−1,�2k, . . . ,�N),

where�2i−2=0,�2i−1>0, for i =1,2, . . . , k, while
�2k which is assumed without loss of generality to be
different from zero is in fact negative�2k <0; the rest
of the sequence��, �=2k+1, . . . , N , can be arbitrary.
The proof of this result follows by considering the

Markov parameters of the inverse of the rational func-
tion whose Markov parameters are�i . Thus a se-
quence with two consecutive zeros has no positive real
realization. Finally, it should be mentioned that in-
sight into the problem of positive realness of a rational
function given all its Markov parameters is provided
in [16].
(b) The positive real (pr) partial realization prob-

lem for the discrete time case (i.e. for functions which
are stable with respect to the unit disc) was first stud-
ied by Carathéodory more than 80 years ago. More
recently this problem has been studied by Georgiou
and co-workers; for an overview see[14]. The main
difference between the discrete- and continuous-time
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versions of the pr partial problem is that in the former
case solvability requires the positive definiteness of an
associated Pick matrix (which has Toeplitz structure,
and is formed using the Markov parameters) while in
contrast, in Lemma 3.3 only the leading Markov pa-
rameter�0 needs to be positive. This difference is due
to the fact that positive real partial realization with re-
spect to the imaginary axis corresponds toboundary
interpolation.

We conclude this section with an example illustrat-
ing the construction of positive real interpolants from
the Löwner matrix, in the case of thepositive real par-
tial realizationproblem.

Example 3.1(Positive real partial realization). A
positive real rational function with Markov param-
eters 1, −1,1, −1, is sought. We transform this re-
alization problem to an interpolation problem at the
point t = 1

2; the corresponding interpolating function
values arey0t =1, y1t =−1, y2t =2, y3t =−6, while the
mirror image points ats = −1

2 arey0s = −1, y1s = −1,
y2s = −2, y3s = −6.
First, we check whether a solution exists. The Pick

matrix (3.13)

� =



2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


>0,

is positive definite; a corresponding solution is com-
puted by means of the Löwner matrix (see Appendix
B):

L =
[2 −3 8 −30
3 −6 20 −90
8 −20 80 −420

]
;

its null space is spanned byc= [60 120 45 4]∗, (that
is Lc = 0). We are now ready to construct a minimal
interpolant. Again from Appendix B, we need the fol-
lowing expressions:

Y0 = y− 1

x − 1
2

, Y1 = 1

x − 1
2

+ y− 1

(x − 1
2)
2
,

Y2 = −2
x − 1

2

+ 2

(x − 1
2)
2

+ 2(y− 1)

(x − 1
2)
3
,

Y3 = 6

x − 1
2

− 6

(x − 1
2)
2

+ 6

(x − 1
2)
3

+ 6(y− 1)

(x − 1
2)
4
.

Solving the equation 60Y0 + 120Y1 + 45Y2 +
4Y3 = 0, for y, yields the following interpolant:

y(x) = 1

2
· 8x

3 + 60x2 + 22x + 5

40x3 + 20x2 + 10x + 1
.

It is readily checked that atx = 1
2 the value ofy and

of its first three derivatives is 1, −1,2, −6, while at
x=−1

2 the corresponding values are−1, −1, −2, −36
(the third derivative in this case does not match, as
expected). Furthermore the function is positive real
since it is stable and positive on the imaginary axis.
Finally it is easily verified that the function

G(x) = y
(
1

x
+ 1

2

)

= 4x3 + 11x2 + 9x + 1

4x3 + 15x2 + 20x + 10
,

solves the positive real partial realization problem
since it is positive real and has Markov parameters
1, −1,1, −1.

4. Model reduction of passive systems in state
space form

Passive systems. Consider a linear system� de-
scribed as in (1.1)

� : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

We will assume that(A,B) is reachable and(C,A)

observable. This system ispassiveif it is stable (i.e. the
eigenvalues ofA have non-positive real part),m = p,
the real part of

∫ t

−∞ u∗(�)y(�)d� is non-negative for
all time t, and for all input–output pairs of functions
(u, y) which satisfy the system equations; this defini-
tion can be found in many papers and texts, see e.g.
[1]. In the sequel only the casem = p = 1 will be
considered.
A classical result asserts that passivity of� is equiv-

alent to thepositive realnessof the associated transfer
function

G(s) = D+ C(sI − A)−1B.

In other wordsG must satisfy the conditions listed at
the beginning of Section 3. In the sequel we will make
use of thespectral zerosof passive systems. They are
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defined as the zeros of the quantityG(s)+G∗(−s). In
the scalar case ifG(s) = n(s)

d(s) , G
∗(−s) =G(−s) and

G(s) +G(−s) = n(s)
d(s)

+ n(−s)

d(−s)

= n(s)d(−s) + d(s)n(−s)

d(s)d(−s)

= r (s)r (−s)

d(s)d(−s)
. (4.16)

The polynomialr has roots in the (closed) left-half
plane and due to the positive realness ofG, its co-
efficients are real; this means that the spectral zeros
cannot be purely imaginary. Thestable spectral zeros
are defined as the roots ofr (s). In terms of the state
space realization of the transfer function the spectral
zeros are all� such that(A 0 B
0 −A∗ −C∗
C B∗ D+ D∗

)
− �

( I 0 0
0 I 0
0 0 0

)
, (4.17)

has rank less than 2n + 1. If D + D∗ is invertible,
these numbers are the eigenvalues of the following
Hamiltonianmatrix:(
A 0
0 −A∗

)
−
(

B
−C∗

)
(D+ D∗)−1(C B∗ ).

Model reduction by projection. As already men-
tioned in the introduction, we seek reduced systems
of form (1.2), i.e.

�̂ : ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),

where the complexitykof �̂ is (much) less than that of
�: k < n. This reduction must preserve bothstability
andpassivityand it must be numerically efficient.
It is well known that model reduction by means of

rational interpolation methods can be implemented ef-
ficiently (iteratively) using theLanczosand/orArnoldi
procedures.

Suppose that we are given a system� =
(
A
C
B
D

)
,

as above, and we wish to find a lower dimensional

model�̂ =
(
Â
Ĉ
B̂
D̂

)
, whereÂ ∈ Rk×k, k < n, such that

�̂ preserves some properties of the original system,
like stability and passivity. We will study this prob-
lem through appropriate projection methods. In other

words, we will seekV ∈ Rn×k andW ∈ Rn×k such
thatVW ∗ is a projection (i.e.W∗V = I k) and

Â =W∗AV , B̂=W∗B, Ĉ= CV. (4.18)

Given 2k distinct pointss1, . . . , s2k, let

Ṽ = [(s1In − A)−1B · · · (skIn − A)−1B], (4.19)

W̃ = [(sk+1In − A∗)−1C∗ · · · (s2kIn − A∗)−1C∗].
(4.20)

The initial idea of the result below is due to[9] and
later developments are due to[15].

Proposition 4.1. Assuming thatdet W̃∗Ṽ 
= 0, the
projected system̂� defined by(4.18)whereV= Ṽ and
W= W̃(Ṽ∗W̃)−1 interpolates the transfer function of
� at the pointssi :

Ĝ(si) =G(si), i = 1,2, . . . ,2k.

Model reduction and preservation of passivity. We
will now combine this method of interpolation by pro-
jection with the positive real interpolation result stated
in Lemma 3.1. If a reduced order model of degree
k is sought, the interpolation pointss1, . . . , sk and
sk+1, . . . , s2k must be chosen. Because of (4.19) and
(4.20) these points have to be samples ofG(s). This
leads to the choice of the interpolation points asspec-
tral zerosof the original system�. Here is the main
result of this section.

Lemma 4.1. If the interpolation pointssj in (4.19),
(4.20), are chosen as spectral zeros of the original
passive system� defined by(1.1), the reduced system
�̂ defined by(4.18) is both stable and passive.

Remark 4.1. (a) The projector matrices̃V, W̃ can ac-
tually be obtained without the explicit computation of
the spectral zeros. This is achieved through the com-
putation of certain structured invariant subspaces of
a generalized eigenvalue problem associated with the
structured matrix (4.17). This idea is due to Sorensen
and is developed in[21].
(b) If the transfer function of the original system�

is strictly proper (i.e.D=0), the reduced order model
�̂ obtained using the proposed method where the in-
terpolation points arefinite spectral zeros, islossless.
In other words, the transfer function is positive real
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with poles and zeros on the imaginary axis. For a proof
of this fact see[19]; an illustration is provided in the
examples that follow.

We conclude this section with some examples.

Example 4.1.We will now illustrate the above ideas
by reducing three systems involving RLC ladder
circuits.
(a) The first one has the transfer function

G(s) = s2 + 2s + 3

s(s2 + 2s + 5)
= 1

s + 2
s+2+ 3

s

,

which is positive real. A minimal realization is

A =
[ 0 −√

2 0√
2 −2 −√

3
0

√
3 0

]
, B=

[1
0
0

]
,

C= [1 0 0].

The spectral zeros of the system are the zeros of

G(s) +G(−s) = 8

(s2 + 2s + 5)(s2 − 2s + 5)
;

therefore this system has 4 infinite and no finite spec-
tral zeros. In this case according to[15], expressions
(4.19) and (4.20) are modified as follows

V = [B AB] =
[1 0
0

√
2

0 0

]
,

W̃∗ =
[
C
CA

]
⇒ W∗ = (W̃∗V)−1W̃∗

=
[
1 0 0
0

√
2
2 0

]

Â =W∗AV =
[
0 −√

2√
2 −2

]
,

B̂=W∗B=
[
1
0

]
, Ĉ= CV = [1 0]

⇒ Ĝ(s) = Ĉ(sI − Â)−1B̂= s + 2

s2 + 2s + 2

⇒ Ĝ(s) + Ĝ(−s) = 8

(s2 + 2s + 2)(s2 − 2s + 2)
.

(b) The second system is defined by the transfer
function

G(s) = s2 + s + 3

s3 + 2s2 + 6s + 5
= 1

s + 1+ 2
s+ 3

s+1

;

a minimal realization ofG is

A =
[−1 −√

2 0√
2 0 −√

3
0

√
3 −1

]
,

B=
[1
0
0

]
, C= [1 0 0].

The spectral zeros�i are the zeros of the expression

G(s) +G(−s)

= 2(s4 + 5s2 + 15)

(s3 + 2s2 + 6s + 5)(−s3 + 2s2 − 6s + 5)
,

that is

�1 = .8285+ 1.7851i
�2 = .8285− 1.7851i
�3 = −.8285+ 1.7851i
�4 = −.8285− 1.7851i
�5,6 = ∞.

Thus, choosing the first four spectral zeros we obtain

V2 = [ (�1I − A)−1B (�2I − A)−1B ],
W̃∗
2 =

[
C(�3I − A)−1
C(�4I − A)−1

]
⇒ W∗

2 = (W̃∗
2V2)

−1W̃∗
2.

⇒ V2 =
[

.3017 .1400

.1402 .1998
−.0266 .1633

]
,

W∗
2=(W̃∗

2V2)
−1W̃∗

2=
[
1.6571 2.6758 −4.6954
0 .9429 4.9710

]
.

The corresponding reduced order system is given by

Â2 =W∗
2AV2 =

[−.8285 −1.7851
1.7851 .8285

]
,

B̂2 =W∗
2B=

[
1.6571
0

]
,

Ĉ2 = CV2 = [.3017 .1400]
⇒ Ĝ2(s) = s

2s2 + 5
.
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Fig. 1. Original RLC circuit� (above) and reduced-order RLC
circuit �2 (below).

Furthermore to obtain a first-order model we need to
use the two infinite spectral zeros. ThusW∗

1 = C and
V1=B (notice thatW∗

1V1=1). ThusÂ1=W∗
1AV1=

−1, B̂1 =W∗
1B= 1, Ĉ1 = CV1 = 1; this implies that

Ĝ1(s) = 1/(s + 1).
(c) Finally, we consider the RLC ladder network

shown in Fig. 1 (top). The state variables are:x1,
the voltage acrossC1; x2, the current throughL1;
x3, the voltage acrossC2; x4, the current through
L2; and x5, the voltage acrossC3. The input is the
voltageu and the output is the currenty as shown
in the figure below. We assume that all the capaci-
tors and inductors have the value110, while Ri = 1

2,
Ro = 5. The transfer function turns out to beG(s) =
2s5+4s4+800s3+1200s2+60000s+40000
s5+22s4+440s3+6600s2+38000s+220000, while a minimal

realization is:

A =




−20 −10 0 0 0
10 0 −10 0 0
0 10 0 −10 0
0 0 10 0 −10
0 0 0 10 −2


 ,

B=



20
0
0
0
0


 , C= [−2 0 0 0 0], D= 2.

By earlier formulas the zeros of the stable spectral
factor are:�1,2= −0.536± 17.367i, �3,4= −1.593±
10.073i, and �5 = −2.113; thus the zeros of the

anti-stable spectral factor are�6,7 = −�1,2, �8,9 =
−�3,4, �10= −�5.
We will construct approximants of dimensionk=3.

Notice that in order to end up with real reduced ma-
trices Â, B̂, Ĉ, whenever a complex spectral zero is
selected, its complex conjugate has to be selected as
well. Recall formulas (4.19), (4.20). There are two
possible choices of spectral zeros, which give rise to
distinct systems, namely (a)s1= �1, s2= �2, s3= �5,
s4 = �6, s5 = �7, s6 = �10 and (b)s1 = �3, s2 = �4,
s3= �5, s4= �7, s5= �8, s6= �10. We will denote the
resulting systems by�1, �2, respectively.
In addition, we will compute two further reduced

order systems of the same complexity. The first de-
noted by�bal is obtained by balanced truncation, while
the second�prbal is obtained by positive real balanced
truncation. For details see chapter 7.5 of the book[1].
In addition the system�2 is as follows

A2 =
[−17.40 −7.79 0

7.79 −0.38 −6.34
0 6.34 −0.76

]
,

B2 =
[5.82
0
0

]
, C2 = [−5.82 0 0],

D̂= 2.

The transfer functionG2(s)=2s3+3.17s2+203.38s+128.52
s3+18.54s2+121.10s+751.30.

Furthermore a realization in terms of RLC elements
is shown in the lower part ofFig. 1; their values
are: R̂i = 0.5, Ĉ1 = 0.118, R̂1 = 19.432, L̂ = 0.140,
R̂ = 0.053, Ĉ2 = 0.178,R̂2 = 7.360.
The frequency responses of the four approximants

are plotted together with that of the original system
in Fig. 2. Finally, the frequency responses of the four
error systems are plotted inFig. 3.

5. Conclusions

Inspired by the relationship between the Löwner
matrix and the Pick matrix, a new method for positive
real rational interpolation is proposed. This method
yields rational functions, which interpolate the origi-
nal set of points together with an associatedmirror im-
ageset of points. If the associated Pick matrix is pos-
itive (semi) definite the minimal degree interpolants
are positive real. This result is extended to the case
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of interpolation with multiplicities (confluent case),
namely to the casewhere besides the value a number of
derivatives of the function at the given points are spec-
ified. In particular, the problem of positive real par-
tial realization (all interpolation information consists
of Markov parameters) is addressed and it is shown
that in contrast to its discrete-time counterpart, if the
leading Markov parameter is nonzero, its positivity is
the only condition needed for solvability.
Subsequently, this result is combined with the ra-

tional Krylov projection procedure to obtain a model
reduction method, which preserves stability and pas-
sivity and can be applied to large-scale systems.

Appendix A

Consider the linear system described by the transfer
functionG(s). Then (uk, yk) is an input–output pair
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for this system, where

uk(t) = tk

k!e
�t ,

yk(t) =
k∑

�=0

G(�)

�! uk−�(t), k = 0,1, . . . , n,

whereG(�) = d�G(s)

ds�

∣∣∣∣
s=�

.

Now, if u(t)=∑n
i=0 
i ui (t), 
i ∈ C, the output will be

y(t) =∑n
i=0 
i yi (t). The positive realness condition

is obtained by requiring thatRe
∫ t

−∞ u(�)∗y(�)d��0,
for all t ∈ R and all
i ∈ C. LetUn = [u0 u1 · · · un]
andYn = [y0 y1 · · · yn]. ThenYn = UnX, where

X =



G(0)

0!
G(1)

1! · · · G(n)

n!
G0
0! · · · G(n−1)

(n−1)!
. . .

G(0)

0!


 .

Thus
∫
u∗y=∫ [
∗

0 
∗
1 · · · 
∗

n]U∗
n Yn[
∗

0 
∗
1 · · · 
∗

n]∗.
Therefore, we need to compute the integral� =∫
U∗

nUn, and consequently the following matrix must
be positive semi-definite:M = �X + X∗ �∗ �0.

Proposition A.1. The following holds� = [ 1√
2�
T∗

�W∗][W�T 1√
2�

], where

T =



1 t

1! · · · tn

n!
1 · · · tn−1

(n−1)!
. . .

...

1


e�t ,

� = diag

[
1,

1

2�
,

1

(2�)2
, · · · 1

(2�)n

]
,

W =



1 −1 1 −1 · · ·
0 1 −2 3
0 0 1 −3 · · ·
0 0 0 1
...

...
...


 . (A.1)

Furthermore, noticing that upper triangular Toeplitz
matrices commute, that isTX = XT we have

�X =
[

1√
2�
T∗�W∗

] [
W�T

1√
2�

]
X

= T∗
[

1√
2�

�W∗
] [
W�X

1√
2�

]
T

= T∗� 1√
2�

[
W∗WX̄

] 1√
2�

�T,

whereX̄�=�X. Thus�X+X∗�∗ �0 iff W∗WX̄+
X̄∗W∗W�0 iff WX̄W−1 +W−∗X̄∗W∗ �0; this lat-
ter matrix� = WX̄W−1, is a Toeplitz matrix which
depends on the values of the function and the particu-
lar interpolation point. The main conclusion is stated
in Lemma 3.2.

Appendix B

Below is the 4×3 Löwner matrix constructed from
the two multiple interpolation points:(s; y0s , y1s , y2s )

and(t; y0t , y1t , y2t , y3t )

L =




w
� − y1t

� + w
�2 − y2t

� − 2y1t
�2 +2w

�3 − y3t
� − 3y2t

�2 − 6y1t
�3 +6w

�4

y1s
� − w

�2
y1s +y1t

�2 − 2w
�3

y2t
�2+

2y1s +4y1t
�3 − 6w

�4
y3t
�2+

6y2t
�3 +6y1s +18y1t

�4 − 24w
�5

y2s
� − 2y1s

�2 +2w
�3

y2s
�2 − 2y1t +4y1s

�3 +6w
�4

2y2s −2y2t
�3 − 12y1s +12y1t

�4 +24w
�5

−2y3t
�3 +6y2s −18y2t

�4 − 48y1s +72y1t
�5

+120w
�6


 ,

where� = s − t andw = y0s − y0t . Furthermore, if
c ∈ R4 is such thatLc = 0, following the theory
outlined in Section 2, a minimal degree interpolating
function is recovered by solving fory(x) the equation
c1Y0+c2Y1+c3Y2+c4Y3 = 0, where

Y0 = y(x) − y0t

x − t
, Y1 = − y1t

x − t
+y(x) − y0t

(x − t)2
,

Y2 = − y2t

x − t
− 2

y1t

(x − t)2
+2y(x) − y0t

(x − t)3
,

Y3 = − y3t

x − t
−3 y2t

(x−t)2
−6 y1t

(x−t)3
+6y(x)−y0t

(x−t)4
.
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