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Abstract

The problem of model reduction with preservation of passivity is investigated. The approach is based on positive real
interpolation, and is inspired by the similarity between Léwner and Pick matrices. The former are important in problems of
general rational interpolation while the latter in problems of interpolation by positive real functions. It follows that interpolation
of the original set of data together with an appropriately defined mirror-image set of data yields automatically positive real
interpolants. Subsequently, we show how this result can be implemented using a Krylov projection procedure. The ensuing
model reduction method preserves stability and passivity and can be implemented efficiently for the large-scale systems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction wherex(r) € R" is the statep(r) € R™ is the input
andy(r) € R” is the output of the system at tine
InVLSI design, the verification of Chip performance and A, B, C, D are constant matrices of appropriate
involves modeling of various parts of the chip. Some dimension. The dimension of the state is defined
of the resulting models are linear, and are defined in as thecomplexityof X. Depending on the accuracy

the usual state space form requirements, this complexity can be very high~
. 10°, 108, and thus direct simulation may prove hard
L X(1) =AX(1) +Bu(®), y(r)=Cx() +Du@), to impossible. Therefore, the need for simplification
(1.1) or model reductiorof X, arises. We are thus looking
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wherex(r) € R¥, kis the complexity of, with k < n, We are looking for all rational functions
andy(r) € R™ is the output produced by the input

The original modek in this case is stable and of-  y(x) = ——=,
ten passive, and thus during this dimension reduction d(x)

both stability andpassivityhave to bepreservedThis  \yhere the polynomials, d have no common factors,
motivates the problem of reduction of a passive sys- \hich interpolatethe points of the array, i.e.
tem given in state space form with preservation of sta-

bility and passivity; and since the dimension of the ~ y(x) =y, i=1,...,N. (2.5)
may be very highnumerically efficieninethods are
y y ann y The Lagrange interpolating polynomiatiefined as
needed for this task. N 1
This problem has been studied by several re- YO = 2_j—1 YjllTi;x — 2l () —xi)l =,

searchers; for an overview of existing approaches see,?S the unique polyn.omial of degree less tm'Whi.Ch
e.q.[7,12,17,18,22] interpolates the points of the arrgg. A parametriza-

tion of all solutions to (2.4), (2.5) can be givenys)

= yo(x) + r(x)]_[fvzl(x — x;), where the parameter
r(x) is an arbitrary rational function with no poles at
thex;’s.

(2.4)

In this paper, we present a new approach to the
problem of model reduction which preserves passivity.
It combines two ingredients, namely, Krylov projec-

tion methods and a new result on positive real inter- .
polation. The first aspect is important because Krylov fhesaboveiarmuiaallows one to say very litle
methods are suitable for application to very high order 200Ut the structure of the family of solutions of the
systems. The second aspect uses rational interpolation'nt.erpc’l"".tlon prqblem (.2'4)’ (2.5). In order to be.able
as a way to achieve dimension reduction. In particu- to investigate tr_us solution set more closely, we intro-
lar a choice of interpolation points is proposed which duce the following (scalaparameter

guaranteeghat the reduced model preserves the pas- degy = max{degn, degd},

sivity property of the original high order system.

The paper is organized as follows. After a review of which is sometimes referred to as tleMillan degree
selected results on rational interpolation and the intro- of the rational functiony. The following problems
duction of the Léwner matrix, Section 3 explores the arise:
similarity between the Lowner and the Pick matrices.  (a) Find theadmissibledegrees of complexity, i.e.
This leads to a particular choice of the interpolation those positive integersfor which there exist solutions
points so that the resulting interpolant is passive (and y(x) to the interpolation problem (2.4), (2.5), with
stable). As a byproduct we also present the solution of degy = .
the positive real partial realization problem (with re- (b) Given an admissible degree constructll cor-
spect to the imaginary axis). Finally Section 4 makes responding solutions.
use of the results developed in the preceding section
together with Krylov projection to come up with the Remark 2.1. (a) Usually one seeks interpolants with
new method of model reduction which preserves pas- real coefficients. In this case if the complex pair
sivity. The section concludes with some illustrative ex- (x;, y;) € #, the associated complex conjugate pair
amples. There are also two appendices which discussmust belong to the array as welk”, y’) € 7.
the derivation of the multiple point Pick and Léwner (b) In array (2.3) the points; have been assumed
matrices. distinct In terms of the interpolation problem, this

means that only thealue of the underlying rational
function is prescribed at each If the value of succes-

2. Rational interpolation and the Léwner matrix sive derivatives at the same points is also prescribed,
we are dealing with thenultiple-pointor confluentn-
Consider the array of points terpolation problem. There is a vast amount of litera-
ture on the interpolation problem. The approach fol-
I ={Gxi,yi)ixi,yi € Ci=1..., N, lowed here has its origins in the papers of Antoulas and

xXi £ Xxj,i # jh (2.3) Anderson[2], Anderson and Antoulap}], Antoulas
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et al.[6]. Some of the results discussed below can also
be found in BelevitcH8].

2.1. A rational Lagrange-type formula and the
Léwner matrix

The idea now is to come up with a Lagrange
polynomial-type formula which would be valid for
rational functions. Before introducing this formula,
we partition the array# in two disjoint subarrays
Jc and ¢ as follows:

Feo={xi,y)i=1...,r},
Jr=1{&,y):i=1...,p},

where for simplicity of notation some of the points
have being redefined as follows: = x,1;, ¥i = ¥r+i,
i=1,..., p, p+r=N.Consider the functiop defined
through the following equation:

oy -y
Y20 a0
: X — X

i=1

i=1...,r, r<N.

Solving fory(x) we obtain

2 vicillie,; (& = xi)
216l = xi)

Clearly, the above formula, which can be regarded as
the rational equivalent of the Lagrange interpolating
polynomial, interpolates the firstpoints of the array
7, i.e. the points of the arrgy ¢. In order fory(x) to
interpolate the points of the arrggy, the coefficients

¢; must satisfy the following equation:

y(x) = . ¢j#£0.  (2.6)

Lc =0,
where
c=[c] crec
and
yi—yi Vi—yr
X1—X1 X1—Xr
L= e CP*r, 2.7)
)_’p_yl .;p_)’r
Xp—X1 Xp—Xr

The superscript:)* is used to denote complex conju-
gation followed by transposition (thus if the quantity
in question is a scalar, superscript denotes complex
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conjugation).L is called theLéwner matrixdefined
by means of theow array 7 x and thecolumn array
J ¢, and turns out to be an important tool for studying
the rational interpolation problem.

The key result in connection with the Lowner matrix
is the following.

Lemma 2.1. Consider the array of pointgZ defined
by (2.3), consisting of samples taken from a given ra-
tional functiony(x). LetL be anyp x r Léwner ma-
trix with p, r > degy. It follows thatrankL = degy.
Consequentlyany square sub-Lowner matrix bf of
sizedegy is non-singular

Given the array of pointgZ defined by (2.3), we are
now ready to tackle the interpolation problem (2.4),
(2.5), and in particular, solve the two problems (a) and
(b), posed earlier. The following definitions are needed
first. (i) Therank of the array # is

rank ¢ = mLax{rankL} =:q,

where the maximum is taken over all possible Léwner
matrices which can be formed froma. (i) We will

call a Léwner matrixalmost squargif it has at most
one more row than column or vice versa, the sum of
the number of rows and columns being equalNtA
consequence of Lemma 2.1 is the following.

Corollary 2.1. The rank of all Léwner matrices hav-
ing at least g rows and g columns is equal to g. Con-
sequently almost square Lowner matrices with at least
g rows or columns have rank g

Assume that 2 < N. For any Lowner matrix with
rankL = ¢, there exists a column vectar # O of
appropriate dimension, satisfying

Lc=0 orc'L=0. (2.8)

In this case we can attach to a rational function
denoted by

_ ()

=—" 2.9
di (x) (29)
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using formula (2.6), i.e.

r+1

nLe) =Y ¢y [ —x,
j=1 i#]
r+1

do) =Y ¢; [Jx—x. (2.10)
J=1i#j

The rational functiory (x) just defined, has the fol-
lowing properties.

Proposition 2.1. (a) degy. <r<g < N. (b) There is
a uniquey, attached to alL andc satisfying(2.8),as
long asrankL = g. (¢) The numeratgrdenominator
polynomialsn,_, d. haveg — degy. common factors
of the form(x — x;). (d) yL interpolates exactlw —
q + degy, points of the array#.

As a consequence of this and Lemma 2.1, we obtain

Corollary 2.2. y_ interpolates all given points,iind
only if, degy, = ¢ if, and only if all ¢ x ¢ Léwner
matrices which can be formed from the data arrdy
are non-singular

We are now ready to state, froff], the following
result.

Lemma 2.2. Given the array of N points#, let

rank # = ¢q. (a) If 2¢ < N, and all square Lowner
matrices of size q which can be formed fros

are non-singulay there is a unique interpolating
function of minimal degree denoted h§y""(x) and

degy™" = 4. (b) Otherwise y™"(x) is not unique
anddegy™" = N —g.

The first part of the theorem follows from the pre-
vious corollary. The second part can be justified as
follows. Part (b) of the proposition above says that as
long asL has rankq there is a unique rational func-
tion y_ attached to it. Consequently in order forto
yield a different rational functioy defined by (2.9),
(2.10), it will have toloserank. This occurs wheh
has at mos§ — 1 rows. In this case its rankis—1 and
there exists a column vectorsuch that.c =0. Since
L hasN — g + 1 columns, the degree of the attached
yL will generically (i.e. for almost alt) be N — q. It
readily follows that for almost att, y_ will interpolate
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all the points of the array’. This argument shows that
there cameverexist interpolating functions of degree
betweerg andN — ¢g. The admissible degree problem
can now be solved in terms of the rank of the argay

Corollary 2.3. Under the assumptions of the lemma
if degy™n = ¢, the admissible degrees consist of q
together with all integers which are greater than or
equal toN — g; if degy™" = N — ¢, the admissible
degrees consist of all integers which are greater than
or equal toN — g.

Remark 2.2. (i) If 2¢=N, the only solutiort of (2.8)
isc=0. Hencey, , defined by (2.9), (2.10), does not
exist, and part (b) of Lemma 2.2 applies.

(ii) In order to distinguish between case (a) and
case (b) of Lemma 2.2, wenly need to check the
non-singularity of 2 + 1 Léwner matrices. Construct
from # anyLowner matrix of sizey x (¢ + 1), with
row, column sets denoted by . #c,, and call it
L4 The Lowner matrix ; of size(q + 1) x ¢ is now
constructed; its row sef R: contains the points of the
row set ¢ g together with the last point of the column
set_7c,; moreover, its column seycg contains the
points of the column sef/¢, with the exception of
the last one. The@+ 1 Lowner matrices which need
to be checked are thex g submatrices ok ; andL 7.

3. Positive real interpolation and the Pick matrix

In several applications the rational interpolation
problem with a positive realness constraint is rele-
vant. A rational functiony(x) with real coefficients,
is calledpositive realif it is stable and it maps the
open right-half plane into the closed right-half plane.
These conditions can be expressed as follows:

(i) y(x) is analytic in the open right-hand-plane
HRe(x) >0,
(i) yx) +[y(x)]*>0 for Ze(x) > 0.

The following is a well-known consequence of this
definition.

Proposition 3.1. (a) If y(x) is analytic inZe(x) >0,
and Ze(y(x)) >0 on the imaginary axisZe(x) = 0,
theny(x) is positive real
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(b) If y(x) is analytic inZe(x) > 0,andZe(y(x)) >0
on the imaginary axisZe(x) = 0, theny(x) is pos-
itive real if, and only if it has simple poles on the
imaginary axis with positive residues

In this section, we will discuss aspects of the pos-
itive real interpolation problem. Given an array of
points (2.3), we thus seek rational interpolants which
arepositive real It is clear that this interpolation prob-
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Lemma 3.1. All minimal-degree interpolants of the
augmented array/ U #* are positive real

We will mention three ways of proving this result.
The first is an ab initio proof of the fact that inter-
polation of the original arrayogetherwith the mir-
ror image array, yields positive realneagomatically
this can be found if20] and[19]. The second is by
means of thepositive real lemmaand can be found

lem need not have a solution in general; the array in [21].

consisting of the two pairgZ, 1) and (2, —1) for in-

Finally, the third is by transforming the positive real

stance, cannot be interpolated by means of a positive interpolation problem to a bounded real interpolation

real function. According t§23] the necessary and suf-
ficient condition for the existence of a positive real in-
terpolant is that the following HermitiaRick matrix

yi+yi yiHyy
x1+x] x1+xy
= : : e RN, (3.11)
vy WYY
XN+x7 XN+xy

be positive definite or semi-definitel >0 (recall that
for any scalarz, z* denotes its complex conjugate).
Furthermore, if ranfl=k < N, a unique positive real
interpolating function of minimal degrdeexists. Oth-
erwise interpolating functions of degree at ledst 1,
always exist.

The positive real interpolation problem and the as-

problem and then applying the result [8f; this lat-

ter result provides amlgebraization of the bounded
real interpolation problemHere are a few details. It is
well known that the scalar function(x) of the com-
plex variablex, is positive real if, and only if, the
functionw(x) =[1—y(x)/1+y(x)] is bounded real
that is, it is stable and its magnitude on the imaginary
axis does not exceed one. Furthermore the function
w((1-z)/(1+z2)), wherez=(1—x)/(1+x), is bounded
real with respect to the unit circle, that is has all its
poles inside the unit disc and its magnitude on the
unit circle does not exceed one. A moment'’s reflection
shows that the positive real interpolation problem can
be transformed into a bounded real interpolation prob-
lem either with respect to the imaginary axis or the unit

sociated Pick matrix have been extensively studied in disc. If the original pairs of points for the PR problem
the literature; for system theoretic treatments of these are (x;, y;), i =1, ..., N, the interpolation points of

issues we refer to the work of Genin and coworkers

[10,11] as well as Georgiou and co-workers, see e.g.

[13,14] and references therein.
3.1. Léwner and Pick matrices: distinct points

We now compare (2.7) with (3.11). It follows that
if the row array for the former is taken as;, y;), i =
1,..., N and the column array a&-x, —y’),i =
1,..., N, then

In=L.

Given the arrayy defined by (2.3), this motivates the
definition of themirror-image array
I ={(—xf,—yH.i=1...,N}. (3.12)

Thus the Léwner matrix constructed withw array ¢
andcolumn array #* is the same as the Pick matrix.
The following is the main result of this section:

the BR problem with respect to the imaginary axis are
(w;, x;), wherew; =(1—y;)/(1+y;),i=1,..., N,and
those of the BR problem with respect to the unit circle
are(w;, z;), wherez; =(1—x;)/(1+x;),i=1,..., N.
The necessary and sufficient condition for the solv-
ability of each of these three problems, which will
be denoted by “PR”, “BR’, “BR ", is the positive
definiteness of each of the following Pick matrices,
respectively:

*
Yz+yj'

Ipr= o ;
i i<iggnN
l—wiw}f

IlgR, = e ,
! JoJdigijgn
l—wlef

IlgRr, = 1

4% iciien
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Remark 3.1. (a) The above result provides an alge- whereE is upper triangular Toeplitz with first row
braization of the positive real interpolation problem. equal to

It says, namely, that if1 >0, the minimal-degree ra-  _

tional functions which interpolatsimultaneouslythe E1:=Wo Y1 VYoti1 ¥Ys+2o+i

original arrayandits mirror image array, are automat- XY+ 33+ 3P+ Yy
ically positive realand hencestableas well. X Ys+ s+ 63+ 4+ -]
(b) It readily follows that interpolants of the aug- (3.14)
mented array constructed by means of the Léwner ma-
trix, satisfy Thus the(1, ¢) entry of E, £>2, is a linear combi-
nation ofy;,i =1, ..., ¢ — 1, whose coefficients are
Y(x) + Y(—X)|yex, = 0. equal to the coefficients of the binomial expansion of
' (x+ 2

In general the roots of(x) + y(—x) are called the
spectral zerosof the underlying linear system (see
also (4.16)). Thus the construction of positive real
interpolants using the Loéwner matrix, forces them
to have thegiven interpolation points asspectral

3.2.1. Connection with the Lowner matrix

We will now show thatIT defined by (3.13) is a
special case of the Loéwner matrix. Towards this goal,
consider the Léwner matrix, which results by hav-
ing as row array(a; y%, yi, ...} and as column array

zeros {t; ¥2, yt, ...} The (k, £)th entry is
3.2. Léwner and Pick matrices: multiple points d=1 d=1 [y(s) —y@)
bee= a1 gt '
ds dr s—t s=6.1=1

In this section, we will draw attention to the fact that
the Pick matrix and the Lowner matrix for multiple
interpolation points, although not equal, aengru- Recall definition (A.1) ofW; we also define
ent As already stated Léwner matrices have the prop-
erty that rational interpolants can be constructed by D:diag[l u M_Z M_3 ]
computing their nullspace. Consequently these prop- 23y ’
erties are inherited by Pick matrices as well. These J —=diag[1, —1,1, -1, -],
considerations lead to Theorem 3.1, Whlch_|s the v _wJ and 1
analogue of Lemma 3.1, and providesagebraiza-
tion of the multiple-point positive real interpolation It is rather straightforward but tedious to show that
problem. a Pick-like matrix which we shall denote by, is

obtained from the Léwner matrik, by means of the

Lemma 3.2(Positive real Pick matrix for a sin- following transformations:

gle repeated point Given the interpolation point P— ,V—*DJLDV -1 _.0_ .0 3.15

/. € Ry, with corresponding interpolation values —H P WEYs T (3.15)

O,y 9N, let As an example, for the case of 4 points, ie.,
(s: 9, v, y2, v and (15 v, v, 2, 37), the Lowner

k,t=1,2,...,n.

=5 —1.

@2k matrix is shown in Appendix A. The Pick matrix for
= ——y k=01 N -1 this case by means of (3.15) on the other hand, is
0 , B I .
P=
There exists a positive real function interpolating the $o — %0 yal =12 13=202+n
above multiple point iff theymmetric Toeplitz matrix 1 bo—% 1 =2
P2+ ¢1 b1 do—10 71

NXxN ; it i- ni
IHeR is positive semi-definite bst20r+d1 dat by b1 bo— 7o

d)._(s—t)" PGt
+E*>0, (3.13) TR T

1=

[
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ComparingP with the Pick matrix obtained in (3.14) We now turn our attention to the positive real par-
we conclude that they match, provided the interpo- tial realization problem. First we notice thatyifs) is
lation points satisfy the followingnirror-image con- such an interpolating function for the given data, the
straints function G(s) = y(s—1 + 1) has Markov parameters

V;. Therefore, we conclude that if the data consists
kil of Markov parameterg,, k =0, 1, 2, ..., the condi-
=01 12=—2 s 2x =Dy, tion E + E* >0, is sufficient for the existence of a
An important consequence of the correspondence be-Positive real realization. If howevey, > 0, this ma-

tween Loéwner and Pick matrices for multiple points is 11X is always positive definite for sufficiently small
summarized in the following theorem. It is the coun- #- Therefore if >0, there always exists posi-

II=P for t = —s and g = — ¢,

terpart of Lemma 3.1. tive realrational function of degree at molst which
matchesanyarbitrary set of Markov parameteys €

Theorem 3.1. Given an array of N interpolating R, k=1,..., N. This leads to the following result

points with multiplicities which provides the solution of the positive real (pr)

realization problem.
I ={(xi5 ¥i.0, Vit -5 Vikg), i =1, ..., m;

Xi #xj, i #jki+---+k, =N}, Lemma 3.3. Given is a finite sequence of real num-
. . . . _ bersyg, Y1, ... Yy If g # 0, there exists a positive
its mirror image array is defined as real rational function having the;, i =0,1,..., N
I ={(=x]5 =Y 0 Vi o (_1)ki+1ylf‘fk[)’ as Markov parameters,iand only if o > 0. In this

P=1 . mikite 4k =N case there exist positive real realizations of degree N

Let IT be the Léwner matrix constructed witi as Remark 3.3. (@) A more general statement than the
the row and #* as the column array. HI>0, any one given in the above lemma is as follows. Consider
minimal interpolant of the original array# together ~ again the sequenag;, i =0,1,..., N. There exists

with the mirror image array,#*, is positive real. a positive real realization of this sequence, if either

Vo> 0, or otherwise the sequence is of the form:
Remark 3.2. Givenc such thatllc = 0, the vectoff
o { 0, 91,0, 3, ...,0, Yoy 1, ¥, - s s
such thatLf = 0, is given byf = DV~'c. It follows ©0.91,0. v Va1V V)
that one can construct positive real interpolants by wherey,;_»,=0,¥,,_;1>0,fori=1,2,...,k, while
computing the null space of a Pick matriand by Vo, Which is assumed without loss of generality to be
using the formulae applicable to Léwner matrices. For different from zero is in fact negativg,, < 0; the rest

details on this construction using the Léwner matrix of the sequenceg,, £=2k+1,..., N, can be arbitrary.
we refer to the references cited earlier, nanj2|$,6]. The proof of this result follows by considering the
These results are summarized in Appendices A and B Markov parameters of the inverse of the rational func-
at the end of the paper. tion whose Markov parameters agg. Thus a se-
guence with two consecutive zeros has no positive real
3.3. Positive real partial realization realization. Finally, it should be mentioned that in-

sight into the problem of positive realness of a rational

If we wish to investigate the existence of positive function given all its Markov parameters is provided
real interpolants for a given set of interpolation points, in [16].
we have to check positive definiteness of the Pick ma-  (b) The positive real (pr) partial realization prob-
trix IT defined by (3.11); likewise for the case of re- lem for the discrete time case (i.e. for functions which
peated interpolation points, one needs to check the are stable with respect to the unit disc) was first stud-
Pick matrixII defined by (3.13); thereby, thg; de- ied by Carathéodory more than 80 years ago. More
pend on the interpolation point as well as the value of recently this problem has been studied by Georgiou
the corresponding derivative of the interpolating func- and co-workers; for an overview s¢&4]. The main
tion. difference between the discrete- and continuous-time
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versions of the pr partial problem is that in the former

A.C. Antoulas / Systems & Control Letters 54 (2005) 361—-374

Solving the equation 699 + 120Y1 + 45Y5 +

case solvability requires the positive definiteness of an 4Y3 =0, for y, yields the following interpolant:

associated Pick matrix (which has Toeplitz structure,
and is formed using the Markov parameters) while in
contrast, in Lemma 3.3 only the leading Markov pa-
rameten)y needs to be positive. This difference is due
to the fact that positive real partial realization with re-
spect to the imaginary axis correspondsbtaundary
interpolation

We conclude this section with an example illustrat-
ing the construction of positive real interpolants from
the Lowner matrix, in the case of tip@sitive real par-
tial realization problem.

Example 3.1(Positive real partial realization A
positive real rational function with Markov param-
eters 1-1,1, -1, is sought. We transform this re-
alization problem to an interpolation problem at the
pointt = %; the corresponding interpolating function
values arg? =1, y'=—1,y?=2, y3=—6, while the
mirror image points at = —% arey? =1, yl =1,
yi=-2,y8=-6.

First, we check whether a solution exists. The Pick
matrix (3.13)

2 -1 0 ©

1 2 -1 o0
=19 1 2 1]70
0 0 -1 2

is positive definite; a corresponding solution is com-
puted by means of the Lowner matrix (see Appendix
B):

2 -3 8 =30
L= |:3 -6 20 —90] ;
8 —20 80 —-420

its null space is spanned loy=[60 120 45 4*, (that

is Lc =0). We are now ready to construct a minimal
interpolant. Again from Appendix B, we need the fol-
lowing expressions:

-1 1 -1
X—z X—z (X—z)
v -2 2 2(y — 1)
S O N )
6 6 6 6(y — 1)
Y3= — + .
x-z =32 @-3° -

1 8x34+60x2+22x+5
2 40x3 4202 +10x +1°

yx) =

It is readily checked that at = % the value ofy and

of its first three derivatives is,}+1, 2, —6, while at
xz—% the corresponding values ard, —1, —2, —36
(the third derivative in this case does not match, as
expected). Furthermore the function is positive real
since it is stable and positive on the imaginary axis.
Finally it is easily verified that the function

1 1
Gl =y (— + —)
x 2
AP I+ 9+ 1
 4x3 4 15¢2 + 20x + 10°
solves the positive real partial realization problem

since it is positive real and has Markov parameters
1,-1,1, -1

4. Model reduction of passive systems in state
space form

Passive systemsConsider a linear systerl de-
scribed as in (1.1)

X X(t) = Ax(r) + Bu(r), y()=Cx(t) + Du(r).

We will assume thatA, B) is reachable andC, A)
observable. This systempsssivéf it is stable (i.e. the
eigenvalues oA have non-positive real party; = p,
the real part offioo u*(1)y(z) dr is non-negative for
all timet, and for all input—output pairs of functions
(u, y) which satisfy the system equations; this defini-
tion can be found in many papers and texts, see e.qg.
[1]. In the sequel only the case = p = 1 will be
considered.

A classical result asserts that passivitgaf equiv-
alent to thepositive realnessf the associated transfer
function

G(s) =D + C(sl —A)"1B.

In other wordsG must satisfy the conditions listed at
the beginning of Section 3. In the sequel we will make
use of thespectral zero®f passive systems. They are



A.C. Antoulas / Systems & Control Letters 54 (2005) 361—-374

defined as the zeros of the quantiys) +G*(—s). In

the scalar case B(s) = “8 G*(—s) = G(—s) and

nes) | n(=s)
dis)  d(—s)
_ n(s)d(=s) +d(s)n(—s)
N d(s)d(—s)
_r(s)r(—s)
T d(s)d(—s)’
The polynomialr has roots in the (closed) left-half
plane and due to the positive realness@fits co-

G(s) +G(—s) =

(4.16)

efficients are real; this means that the spectral zeros

cannot be purely imaginary. Tretable spectral zeros
are defined as the roots ofs). In terms of the state

space realization of the transfer function the spectral

zeros are all such that

A O B I 0O
(O —-A*  —C* > — A (O I O) , (4.17)
C B* D+D* 0 0O

has rank less thann2+ 1. If D + D* is invertible,

369

words, we will seekV € R andW e R"*¥ such
thatVW™ is a projection (i.eW*V = 1) and

A=w*Av, B=w*B, C=CV. (4.18)
Given % distinct pointssy, ..., s, let
V =[(s1ln —A) B (sxln — A)'B], (4.19)

(s2x1, — A¥)~LCH].
(4.20)

The initial idea of the result below is due [8] and
later developments are due[tib].

W = [(seraln — A ICH -

Proposition 4.1. Assuming thadet W*V = 0, the

projected systerE defined by4.18)whereV =V and

W =W (V*W)~ 1 interpolates the transfer function of
X at the pointss;:

GGi)=G(sy), i=12, ..., 2.

Model reduction and preservation of passivitye
will now combine this method of interpolation by pro-

these numbers are the eigenvalues of the following jection with the positive real interpolation result stated

Hamiltonianmatrix:

A 0 B o1 i
(3 %)-(2)ororic o

Model reduction by projectianAs already men-

in Lemma 3.1. If a reduced order model of degree
k is sought, the interpolation points, ..., s; and
Sk+1, - - - » S2¢ must be chosen. Because of (4.19) and
(4.20) these points have to be samplesgf). This
leads to the choice of the interpolation pointsspec-

tioned in the introduction, we seek reduced systems tral zerosof the original systenk. Here is the main

of form (1.2), i.e.

= AX(t) + Bu(1),
CK(t) + Du(r),

Y R(@)
y(@t) =

where the complexiti of X is (much) less than that of
X: k <n. This reduction must preserve batability
andpassivityand it must be numerically efficient.

It is well known that model reduction by means of

rational interpolation methods can be implemented ef-

ficiently (iteratively) using th&anczosand/orArnoldi
procedures.

. A B
Suppose that we are given a systé&m= (c D
as above, and we wish to find a lower dlmenS|onaI
modelX = (c g) whereA € R¥*K k <n, such that

)3 preserves some properties of the original system,
like stability and passivity. We will study this prob-

result of this section.

Lemma 4.1. If the interpolation pointss; in (4.19),
(4.20), are chosen as spectral zeros of the original
passive syster defined by(1.1),the reduced system
% defined by(4.18)is both stable and passive

Remark 4.1. (a) The projector matricég, W can ac-
tually be obtained without the explicit computation of
the spectral zeros. This is achieved through the com-
putation of certain structured invariant subspaces of
a generalized eigenvalue problem associated with the
structured matrix (4.17). This idea is due to Sorensen
and is developed if21].

(b) If the transfer function of the original systeth
is strictly proper (i.eD = 0), the reduced order model
% obtained using the proposed method where the in-
terpolation points arénite spectral zeros, iBssless

lem through appropriate projection methods. In other In other words, the transfer function is positive real
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with poles and zeros on the imaginary axis. For aproof  (b) The second system is defined by the transfer

of this fact sed19]; an illustration is provided in the
examples that follow.

We conclude this section with some examples.

Example 4.1. We will now illustrate the above ideas
by reducing three systems involving RLC ladder
circuits.

(a) The first one has the transfer function

s24+25+3 1

s(s2+2s+5)=s+3+2%

G(s) =

’

which is positive real. A minimal realization is

0 —v2 o0 1
S b AL

0 V3 0 0
C=[1 0 O.

The spectral zeros of the system are the zeros of

8
(s24 25 +5)(s2— 25 +5)’

G(s) +G(—s) =

therefore this system has 4 infinite and no finite spec-
tral zeros. In this case according [tth], expressions
(4.19) and (4.20) are modified as follows

1 0
V:[BAB]=|:O \/‘2},
0 0
wr=| © W* = (W*V) W™
=lea|7W =W

1 0 o0

“lo £ o

_wray | O V2
A_WAV_[ﬁ Y
B=W*B=[é] C=cv=[1 O

AL A AN—1A s+2
= G(s) =C(sl — A) B_—52+2s+2

8

= G(s) + G(—s) =

(2425 +2(2 =254+ 2)°

function

24543 1
GCl)=73-753 = 2 _°
§9+ 25+ 65 +5 g4 14+ 44
S+m

a minimal realization of5 is

-1 —v/2 0
[f 0 f]
0 V3 -1

1
B=|:O:|, C=[100.
0

The spectral zerog; are the zeros of the expression

G(s) + G(—s)
B 2(s* + 552 + 15)
T (s34 2524+ 654+ 5)(—s3+252—6s+5)’

that is

A1 =.8285+ 1.785%
A2 = .8285— 1.785%
A3 = —.8285+ 1.7851
Ao = —.8285— 1.7851
45,6 = OQ.

>

Thus, choosing the first four spectral zeros we obtain

Vo=[(ll —A) 1B (Jl —A)!B],

IVE C()V3I_A)_1 x __ A\NJE —1L\py*
3017 .140
= Vo= [ 1402 1998/,
—.0266 .1633
e afrey i | 1.6571 26758 —4.6954
Wa=(W2Va) "Wo= [o 9429 49710}'

The corresponding reduced order system is given by

«  em,  [—8285 —17851
Az=WrAV2= [ 17851 .8285} :
By =W;}B = [(1)-6571] ’

C,=CV,=[.3017 .1400Q

N s
G = .
= Ga(s) 25245
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Fig. 1. Original RLC circuitX (above) and reduced-order RLC
circuit Xo (below).

Furthermore to obtain a first-order model we need to
use the two infinite spectral zeros. THig = C and
V1 =B (notice thatW1V =1). ThusA; = WAV =
—1,B; =WiB =1, C; = CV; = 1; this implies that
Gi(s) =1/(s + 1).

(c) Finally, we consider the RLC ladder network
shown inFig. 1 (top). The state variables arei,
the voltage acros€’1; x2, the current through.q;
x3, the voltage acros€’,; x4, the current through
L»; and x5, the voltage acros€’s. The input is the
voltage u and the output is the curregtas shown
in the figure below. We assume that all the capaci-
tors and inductors have the valyg, while R; = 3,

Ro = 5. The transfer function turns out to I&(s) =

2554454 +80053+1200:24-60000+40000
55+225%+-44053+6600:2+38000 +220000
realization is:

r—20 -10 0 0

10 0 -10 0 0
A= 0 10 0 —-10 0],
0 0 10 0 -10
L 0 0 0 10 -2
20

0

while a minimal

, C=[-2 0 0 0 Qq D=2

0
0
L O

By earlier formulas the zeros of the stable spectral
factor are:iq 2 =—0.536+ 17.367, /34 =—1.593+
10.073, and As = —2.113; thus the zeros of the

anti-stable spectral factor atks 7 = —11.2, 189 =
—A3.4, M10= —/5.

We will construct approximants of dimensiag:=3.
Notice that in order to end up with real reduced ma-
tricesA, B, C, whenever a complex spectral zero is
selected, its complex conjugate has to be selected as
well. Recall formulas (4.19), (4.20). There are two
possible choices of spectral zeros, which give rise to
distinct systems, namely (&) = A1, s2 = 42, s3= 45,

S4 = /16: §5 = /17, S = )le and (b)Sl = )vg, S = /14,
s3 =715, 54 = A7, 55 = /8, s = A10. We will denote the
resulting systems b, X», respectively.

In addition, we will compute two further reduced
order systems of the same complexity. The first de-
noted byXyy is obtained by balanced truncation, while
the seconpha is obtained by positive real balanced
truncation. For details see chapter 7.5 of the bdgk

In addition the systers is as follows

—-1740 -779 O
Ar = |: 779 —-0.38 —6.34:| ,
0 6.34 —-0.76

5.82
Bzz|:0 :|, C,=[-582 0 Q,
0

A

D=2

; 25343.1752+20338s+12852
The transferfunctloGZ(s)zS3+18_54j2+1211m+75130.

Furthermore a realization in terms of RLC elements
is shown in the lower part ofig. 1, their values
are:R; = 0.5, C1 = 0.118, Ry = 19.432, L. = 0.140,

R =0.053,C, =0.178, R, = 7.360.

The frequency responses of the four approximants
are plotted together with that of the original system
in Fig. 2 Finally, the frequency responses of the four
error systems are plotted kig. 3.

5. Conclusions

Inspired by the relationship between the Léwner
matrix and the Pick matrix, a new method for positive
real rational interpolation is proposed. This method
yields rational functions, which interpolate the origi-
nal set of points together with an associatador im-
ageset of points. If the associated Pick matrix is pos-
itive (semi) definite the minimal degree interpolants
are positive real. This result is extended to the case
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o

KR
o

Singular Values (dB)
&

KR
(2]

Singular Values (dB)

Frequency (rad/sec) Frequency (rad/sec)

Fig. 2. Frequency response curves. In all four panes, the dash—dot curve is that of the original system, while the continuous curves are
those of the systerk; (upper left-hand pane}=, (upper right-hand panelpa (lower left-hand pane), anlprpal (lower right-hand
pane), respectively.

Singular Values of interpolation with multiplicities (confluent case),
5 ‘ namely to the case where besides the value a number of
ol 1 Y] derivatives of the function at the given points are spec-
I I N, A . S ified. In particular, the problem of positive real par-

tial realization (all interpolation information consists
of Markov parameters) is addressed and it is shown
/ Fa\ } """""""""" that in contrast to its discrete-time counterpart, if the
leading Markov parameter is honzero, its positivity is
the only condition needed for solvability.
Subsequently, this result is combined with the ra-

Singular Values (dB)
N
L
—

(1=l tional Krylov projection procedure to obtain a model
IE:%”“ reduction method, which preserves stability and pas-
||z-z§f;a||| sivity and can be applied to large-scale systems.
-50 i T
107 10° 10t 10?

Frequency (rad/sec)

Appendix A

Fig. 3. Frequency response curves of the four error systems, namely
Y —3¥, XX, X —Xpg, andX — Eprpal

Consider the linear system described by the transfer
function G(s). Then (ug, yx) is an input—output pair
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for this system, where

tk
OESTEA
k
GO
Vi) =3 = e (),

=0
d‘G(s)
dst

k=0,1,...

» 1,

whereG® =

s=2

Now, if u(n)=>"7"_yo; u; (1), % € C, the output will be
y(t) =Y "_o0iYi(r). The positive realness condition
is obtained by requiring tha#e fioo u(t)*y(t) dr >0,
forallr € Rand ally; € C. LetU,, =[ug Uy --- U,]
andY, =[Yo Y1 --- Yu]. ThenY, =U,X, where

cO® c® G
o] 1! n!
GO G(nfl)
X — o T =D
GO
0!
Thus [ u*y=[lof of -+ o JUEY oy of -+ of]*

Therefore, we need to compute the integl=
J U:U,, and consequently the following matrix must
be positive semi-definitdvl = ¢ X + X* @*>0.

373
1 -1 1 -1
o 1 -2 3
w=|0 0 1 -3 (A1)
0 0

Furthermore, noticing that upper triangular Toeplitz
matrices commute, that iEX = XT we have

OX = [\/% T*AW*} [WAT \/%] X

1 1
=T* [—AW*] [WAX—} T
V24 V24
1 -, 1
=T*A—— [W*WX| —AT,
V24 [ ] V24
whereXA = AX. Thus®X + X*®* > 0 iff W*WX +
X*W*W >0 iff WXW 1 4 W—*X*W* > 0; this lat-
ter matrixE = WXW 1, is a Toeplitz matrix which
depends on the values of the function and the particu-
lar interpolation point. The main conclusion is stated
in Lemma 3.2.

Appendix B

Below is the 4x 3 Léwner matrix constructed from
the two multiple interpolation pointsis; y, yZ, y2)
and(1; yP. y* y2. y2)

1 2 3 2
w _y_, i o 2)’, Zw ) 6): Gw
. m ) + m ) —I— m > +
_ Yo ow Yi i +yt 2w >, 2y;+4y; +4y 6w 6y2 | 6yl+18y! +18y Zﬂ
L= woop? 2 u3 2t s H4 + TEE u IS ’
2 1 2 2 1 1 1
Yo 25 2w Yy 2y +4y3 6w 2y 2), 12 +12y, 24w Z)t 18\), A8y +72y | 120w
R S BT A BT e @ Ts + .
whereu =s —t andw = y9 — y9. Furthermore, if
c € R*is such thatLc = 0, following the theory
. . outlined in Section 2, a minimal degree interpolatin
Proposition A.1. The following holds® = [-L T* S . 9 polating
V22 function is recovered by solving for(x) the equation

AW*[WAT f] where
T= ' = e,
)
1 1 1
A= dlag[ > (ZA)Z’“.W]’

c1Yo+tc2Y1+ce3Yo+cea Y3=0, where

Yo:y(X)—yP’ Yie Vi y(X)—27
X —t xX—t (x—1)
2 1 _ 0
Vo o Vo Wi , 5Y) ys,’
x—r  (x-1 (x—1)
N P PO N 160 b s
3=~ - 2- 3 4
Y—r  (x-0° (-1 (x—1)
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