Passivity Preserving Model Reduction for Large-Scale Systems

Peter Benner

Mathematik in Industrie und Technik
Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT CHEMNITZ

Sonderforschungsbereich 393

benner@mathematik.tu-chemnitz.de
joint work with Heike Faßbender, Enrique S. Quintana-Ortí
Model Order Reduction, Coupled Problems and Optimization
Lorentz Center, Leiden, September 19-23, 2005

Outline

- Linear systems in circuit simulation
- Model reduction
- Positive-real balanced truncation
- Implementation of PRBT
- Newton's method for algebraic Riccati equations
- Implementation based on matrix sign function
- Implementation based on ADI method
- Passive reduced-order models by interpolating spectral zeros
- Conclusions

Linear Systems

Linear time-invariant systems in generalized state-space form:

$$
\begin{aligned}
E \dot{x}(t) & =A x(t)+B u(t), \quad t>0, \quad x(0)=x_{0} \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

- n generalized states, i.e., $x(t) \in \mathbb{R}^{n}$ (n is the order of the system);
- m inputs, i.e., $u(t) \in \mathbb{R}^{m}$;
- m outputs, i.e., $y(t) \in \mathbb{R}^{m}$;
- $A-\lambda E$ stable, i.e., $\lambda(A, E) \subset \mathbb{C}^{-} \cup\{\infty\} \Rightarrow$ system is stable,

Corresponding transfer function: $G(s)=C(s E-A)^{-1} B+D$.
In frequency domain, $y(s)=G(s) u(s)$.

Linear Systems in Circuit Simulation

In circuit simulation, linear systems arise from

- a modified nodal analysis (MNA) using Kirchhoff's laws for linear RLC circuits, resulting from, e.g.,
- decoupling large sub-circuits of a given layout/network,
- modeling interconnect (transmission lines),
- modeling the pin package of VLSI circuits;
- linearization of nonlinear circuits around a DC operating point (e.g.,in small-signal analysis).

Model Reduction

Often, order n is too large to allow simulation in an adequate time or to even tackle the model using available solvers.

Idea: replace order- n original system

$$
E \dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

by reduced-order system

$$
\tilde{E} \dot{\tilde{x}}(t)=\tilde{A} \tilde{x}(t)+\tilde{B} u(t), \quad \tilde{y}(t)=\tilde{C} \tilde{x}(t)+\tilde{D} u(t)
$$

of order $\ell \ll n$ with $\tilde{y}(t) \in \mathbb{R}^{p}$ such that the output error

$$
\|y-\tilde{y}\|=\|G u-\tilde{G} u\| \leq\|G-\tilde{G}\|\|u\|
$$

is small.

Passive Systems

Important property of circuits to be preserved in reduced-order model: passivity.

> Definition:
> A linear system is passive if $\int_{-\infty}^{t} u(\tau)^{T} y(\tau) d \tau \geq 0 \forall t \in \mathbb{R}, \forall u \in L_{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)$.
"The system cannot generate energy."
system is passive \Longleftrightarrow its transfer function is positive real

Definition:

A real, rational matrix-valued function $G: \mathbb{C} \rightarrow \overline{\mathbb{C}}^{m \times m}$ is positive real if

1. G is analytic in $\mathbb{C}^{+}:=\{s \in \mathbb{C} \mid \operatorname{Re}(s)>0\}$,
2. $G(s)+G^{T}(\bar{s}) \geq 0$ for all $s \in \mathbb{C}^{+}$.

Goal

For passive linear system, compute passive reduced-order system with computable global error bound.

- Padé-type methods in general do not preserve passivity, post-processing necessary [Bai/(Feldmann)/Freund '98,'01].
- PRIMA [Odabasioglu et al.'96,'97] preserves passivity for interconnect models, basically Arnoldi process.
- SyPVL preserves passivity for RLC circuits [Feldmann/Freund '96,'97].
- LR-ADI/dominant subspace approximation can preserve passivity [LI/White '01].
- No computable error bounds available for Krylov-type methods.

Here: alternative approach for general passive systems based on positive-real balancing.

Positive-Real Balancing

Set

$$
\begin{aligned}
R & :=D+D^{T} \quad(\text { positive real } \Rightarrow R \geq 0, \quad \text { here assume } R>0) \\
\hat{A} & :=A-B R^{-1} C,
\end{aligned}
$$

and consider the two dual positive-real algebraic Riccati equations (PAREs)

$$
\begin{aligned}
& 0=\hat{A} P E^{T}+E P \hat{A}^{T}+E P C^{T} R^{-1} C P E^{T}+B R^{-1} B^{T}, \\
& 0=\hat{A}^{T} Q E+E^{T} Q \hat{A}+E Q B R^{-1} B^{T} Q E+C^{T} R^{-1} C .
\end{aligned}
$$

Let $P_{\min }, Q_{\min }>0$ be the minimal solutions, then the system is positive real balanced iff

$$
P_{\min }=E^{T} Q_{\min } E=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

$P_{\min }, E^{T} Q_{\min } E$ are called positive-real Gramians.
Note: $P_{\min }, Q_{\min }>0$ are the stabilizing solutions of the PAREs.

Positive-Real Balanced Truncation I

1. Find positive-real balancing equivalence transformation

$$
\begin{aligned}
&(E, A, B, C, D) \rightarrow\left(T E S^{-1}, T A S^{-1}, T B, C S^{-1}, D\right)=:(\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}), \\
& P_{\min }=E^{T} Q_{\min } E=\left[\begin{array}{c}
\Sigma_{1} \\
\\
\Sigma_{2}
\end{array}\right], \begin{aligned}
\Sigma_{1} & =\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \\
\Sigma_{2} & =\operatorname{diag}\left(\sigma_{r+1}, \ldots, \sigma_{n}\right)
\end{aligned} \\
& \sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>\sigma_{r+1} \geq \sigma_{r+2} \geq \ldots \geq \sigma_{n}>0
\end{aligned}
$$

2. Truncate the states $\tilde{x}_{r+1}, \ldots, \tilde{x}_{n}$ of the balanced system

$$
(\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(\left[\begin{array}{ll}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{array}\right],\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D\right)
$$

i.e., the reduced-order model and transfer function are

$$
\begin{aligned}
\left(E_{r}, A_{r}, B_{r}, C_{r}, D_{r}\right) & :=\left(E_{11}, A_{11}, B_{11}, C_{11}, D\right) \\
G_{r}(s) & =C_{r}\left(s E_{r}-A_{r}\right)^{-1} B_{r}+D_{r}
\end{aligned}
$$

Positive-Real Balanced Truncation II

Properties:

- Reduced-order model is passive (\Rightarrow stable),
- relative error "bound" if $\|G\|_{H_{\infty}} \gg\|D\|_{2}$:

$$
\frac{\left\|G-G_{r}\right\|_{H_{\infty}}}{\|G\|_{H_{\infty}}} \approx \frac{\left\|G-G_{r}\right\|_{H_{\infty}}}{\left\|G+D^{T}\right\|_{H_{\infty}}} \leq 2\|R\|_{2}^{2}\left\|G_{r}+D^{T}\right\|_{H_{\infty}} \sum_{k=r+1}^{n} \sigma_{k}
$$

Computation:

- Analogous to balanced truncation: let $P_{\min }=S^{T} S, E^{T} Q_{\min } E=R^{T} R$, transformation matrices and reduced-order model are computed from SVD of $S R^{T}$.
- Often, $P_{\min }, Q_{\text {min }}$ have low numerical rank
\Longrightarrow use (numerical) full-rank factors rather than Cholesky factors
\Longrightarrow cheap SVD, cost $\sim \mathcal{O}(n)$ instead of $\mathcal{O}\left(n^{3}\right)$
\Longrightarrow need method to compute factored solutions of PAREs.

Newton's Method for AREs

Consider algebraic Riccati equation (ARE)

$$
0=\mathcal{R}(Q)=C^{T} C+A^{T} Q+Q A-Q B B^{T} Q
$$

Frechét derivative of \mathcal{R} at Q :

$$
\mathcal{R}_{Q}^{\prime}: Z \rightarrow\left(A-B B^{T} Q\right)^{T} Z+Z\left(A-B B^{T} Q\right)
$$

Newton-Kantorovich method:

$$
Q_{j+1}=Q_{j}-\left(\mathcal{R}_{Q_{j}}^{\prime}\right)^{-1} \mathcal{R}\left(Q_{j}\right), \quad j=0,1,2, \ldots
$$

```
FOR \(j=0,1,2\),
    \(A_{j} \leftarrow A-B B^{T} Q_{j}=: A-B K_{j}\).
    Solve Lyapunov equation \(\quad A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right)\).
    \(Q_{j+1} \leftarrow Q_{j}+N_{j}\).
END FOR \(j\)
```

- Convergence:
- A_{j} is stable $\forall j \geq 0$.
$-0 \leq Q_{\infty} \leq \ldots \leq Q_{j+1} \leq Q_{j} \leq \ldots \leq Q_{1}$.
$-\lim _{j \rightarrow \infty}\left\|\mathcal{R}\left(Q_{j}\right)\right\|_{F}=0$,
- $\lim _{j \rightarrow \infty} Q_{j}=Q_{\infty} \geq 0$ (quadratically),
- acceleration of (initially slow) convergence possible using line searches.

Need efficient Lyapunov solver, depending on data structures and computing full-numerical-rank factors.

Factored Newton Iteration

Rewrite Newton's method for AREs
[Kleinman '68]

$$
\begin{gathered}
A_{j}^{T} N_{j}+N_{j} A_{j}=-\mathcal{R}\left(Q_{j}\right) \\
\Uparrow \\
A_{j}^{T} \underbrace{\left(Q_{j}+N_{j}\right)}_{=Q_{j+1}}+\underbrace{\left(Q_{j}+N_{j}\right)}_{=Q_{j+1}} A_{j}=\underbrace{-C^{T} C-Q_{j} B B^{T} Q_{j}}_{=:-W_{j} W_{j}^{T}}
\end{gathered}
$$

Let $Q_{j}=Y_{j} Y_{j}^{T}$ for $\operatorname{rank}\left(Y_{j}\right) \ll n$:

$$
A_{j}^{T}\left(Y_{j+1} Y_{j+1}^{T}\right)+\left(Y_{j+1} Y_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}
$$

Method based on Matrix Sign Function

Want method for solving Lyapunov equations which computes full-rank factor Y_{j+1} directly (without ever forming Q_{j+1}).

Consider

$$
F^{T} X+X F+E=0
$$

Newton's method for the matrix sign function yields [Roberts '71]:

$$
\begin{aligned}
& F_{0} \leftarrow F, \quad E_{0} \leftarrow E, \\
& \text { for } j=0,1,2, \ldots
\end{aligned}
$$

$$
F_{k+1} \leftarrow \frac{1}{2 c_{k}}\left(F_{k}+c_{k}^{2} F_{k}^{-1}\right), \quad \Longrightarrow \quad X_{*}=\frac{1}{2} \lim _{j \rightarrow \infty} E_{k}
$$

Here: $E=B^{T} B$ or $C^{T} C, F=A^{T}$ or A, want factor R of solution.

Solving Lyapunov Equations for Full-Rank Factor

Consider now

$$
A^{T} X+X A+C^{T} C=0
$$

For $E_{0}=C_{0}^{T} C_{0}:=C^{T} C, C \in \mathbb{R}^{p \times n}$ obtain

$$
E_{k+1}=\frac{1}{2 c_{k}}\left(E_{k}+c_{k}^{2} A_{k}^{-T} E_{k} A_{k}^{-1}\right)=\frac{1}{2 c_{k}}\left[\begin{array}{c}
C_{k} \\
c_{k} C_{k} A_{k}^{-1}
\end{array}\right]^{T}\left[\begin{array}{c}
C_{k} \\
c_{k} C_{k} A_{k}^{-1}
\end{array}\right] .
$$

\Longrightarrow Re-write E_{k}-iteration:

$$
C_{0}:=C, \quad C_{k+1}:=\frac{1}{\sqrt{2 c_{k}}}\left[\begin{array}{c}
C_{k} \\
c_{k} C_{k} A_{k}^{-1}
\end{array}\right], \quad \Longrightarrow \quad \frac{1}{\sqrt{2}} \lim _{k \rightarrow \infty} C_{k}=R_{*}
$$

Problem: $C_{k} \in \mathbb{R}^{p_{k} \times n} \quad \Longrightarrow \quad C_{k+1} \in \mathbb{R}^{2 p_{k} \times n}$
Cure: limit work space by computing rank-revealing QR factorization in each step.

Application to Positive-Real Balancing I

Factored Newton method not directly applicable to PAREs!

Need modification: right-hand side of Lyapunov equation $\neq-W_{j} W_{j}^{T}$.

$$
\mathrm{RHS}=-C^{T} R^{-1} C+Q_{j} B R^{-1} B^{T} Q_{j}=:-\tilde{C} \tilde{C}^{T}+\tilde{B}_{j} \tilde{B}_{j}^{T}
$$

with $R>0$.

Lyapunov equation is non-singular linear system of equations \Longrightarrow write

$$
A_{j}^{T} Q_{j+1}+Q_{j+1} A_{j}=-\tilde{C}^{T} \tilde{C}+\tilde{B}_{j}^{T} \tilde{B}_{j}
$$

as

$$
A_{j}^{T}\left(Q_{j+1}-Q_{j+1}\right)+\left(Q_{j+1}-Q_{j+1}\right) A_{j}=-W_{j} W_{j}^{T}-\left(-W_{j} W_{j}^{T}\right)
$$

\Longrightarrow Solve two Lyapunov equations per step with equal Lyapunov operator.

Application to Positive-Real Balancing II

To get factored Newton iterates need factor of

$$
Q:=Q_{j_{\max }}-Q_{j_{\max }}=Z_{j_{\max }} Z_{j_{\max }}^{T}-Z_{j_{\max }} Z_{j_{\max }}^{T} \geq 0
$$

Solution: similar to stochastic balanced truncation [Varga/Fasol '93, Varga '00]
Get full-rank factor from stable, nonnegative Lyapunov equation

$$
A^{T}\left(Z^{T} Z\right)+\left(Z^{T} Z\right) A+C^{T} C=0
$$

where

$$
C=R^{-\frac{1}{2}} C-R^{-\frac{1}{2}} B\left[Z_{j_{\max }}, Z_{j_{\max }}\right]\left[\begin{array}{c}
Z_{j_{\text {max }}}^{T} \\
-Z_{j_{\text {max }}}^{T}
\end{array}\right] .
$$

Sparse Implementation

Need method for solving Lyapunov equations

$$
A_{j}^{T}\left(Y_{j+1} Y_{j+1}^{T}\right)+\left(Y_{j+1} Y_{j+1}^{T}\right) A_{j}=-W_{j} W_{j}^{T}, \quad \text { where } \quad W_{j}=\left[C^{T}, Y_{j}\left(Y_{j}^{T} B\right)\right]
$$

- which computes Y_{j+1} directly (without ever forming X_{j+1}), and
- uses the structure of A_{j},

$$
\begin{aligned}
& A_{j}=A-B K_{j}=A \quad-\quad B \quad\left(B^{T} Y_{j}\right) \cdot \\
& Y_{j}^{T} \\
&=\square \text { sparse } \\
& \hline m \cdot \square \cdot \square
\end{aligned}
$$

Note: as $m \ll n$, we can efficiently apply Sherman-Morrison-Woodbury formula

$$
\begin{aligned}
\left(A-B K_{j}\right)^{-1} & =(I_{n}+A^{-1} B(\underbrace{I_{m}-K_{j} A^{-1} B}_{m \times m})^{-1} K_{j}) A^{-1} \\
& =\left(I_{n}+\hat{B}\left(I_{m}-K_{j} \hat{B}\right)^{-1} K_{j}\right) A^{-1}
\end{aligned}
$$

ADI Method for Lyapunov Equations

- For $A \in \mathbb{R}^{n \times n}$ stable, $W \in \mathbb{R}^{n \times w}(w \ll n)$, consider Lyapunov equation

$$
A^{T} X+X A=-W W^{T}
$$

- ADI Iteration:
[Wachspress '88]

$$
\begin{aligned}
\left(A^{T}+p_{k} I\right) X_{(j-1) / 2} & =-W W^{T}-X_{k-1}\left(A-p_{k} I\right) \\
\left(A^{T}+\overline{p_{k}} I\right) X_{k}^{T} & =-W W^{T}-X_{(j-1) / 2}\left(A-\overline{p_{k}} I\right)
\end{aligned}
$$

with parameters $p_{k} \in \mathbb{C}^{-}$and $p_{k+1}=\overline{p_{k}}$ if $p_{k} \notin \mathbb{R}$.

- For $X_{0}=0$ and proper choice of $p_{k}: \lim _{k \rightarrow \infty} X_{k}=X$ superlinear.
- Re-formulation using $X_{k}=Z_{k} Z_{k}^{T}$ yields iteration for $Z_{k} \ldots$

Factored ADI Iteration

[Penzl '97, Li/Wang/White '99, B./Li/Penzl]
Set $X_{k}=Z_{k} Z_{k}^{T}$, some algebraic manipulations \Longrightarrow

$$
V_{1} \leftarrow \sqrt{-2 \operatorname{Re}\left(p_{1}\right)}\left(A^{T}+p_{1} I\right)^{-1} W, \quad Z_{1} \leftarrow V_{1}
$$

$$
\text { FOR } j=2,3, \ldots
$$

$$
V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}\left(p_{k}\right)}{\operatorname{Re}\left(p_{k-1}\right)}}\left(I-\left(p_{k}+\overline{p_{k-1}}\right)\left(A^{T}+p_{k} I\right)^{-1}\right) V_{k-1}, \quad Z_{k} \leftarrow\left[\begin{array}{ll}
Z_{k-1} & V_{k}
\end{array}\right]
$$

$$
\begin{gathered}
\Downarrow \\
Z_{k_{\max }}=\left[\begin{array}{lll}
V_{1} & \ldots & V_{k_{\max }}
\end{array}\right]
\end{gathered}
$$

where

$$
V_{k}=\rrbracket \in \mathbb{C}^{n \times w}
$$

and

$$
Z_{k_{\max }} Z_{k_{\max }}^{T} \approx X
$$

Note: Implementation in real arithmetic possible by combining two steps.

Newton-ADI for ARE

[B./Li/Penz]]

Solve Lyapunov equation

$$
\left(A-B K_{j}\right)^{T} Y_{j+1} Y_{j+1}^{T}+Y_{j+1} Y_{j+1}^{T}\left(A-B K_{j}\right)=-W_{j} W_{j}^{T}
$$

with factored ADI iteration.

$$
\Downarrow
$$

Obtain low-rank approximations $Z_{0}, Z_{1}, \ldots, Z_{k_{\max }}$ to Lyapunov solution.

Newton's method with factored iterates $Q_{j+1}=Y_{j+1} Y_{j+1}^{T}=Z_{k_{\max }} Z_{k_{\max }}^{T}$.

$$
\begin{gathered}
\Downarrow \\
\text { Factored solution of ARE: } Q \approx Y_{j_{\max }} Y_{j_{\max }^{T}} .
\end{gathered}
$$

Numerical Examples

1. Transmission line based on RLC loops used as interconnect model [Infineon 2002]

- Partitioning into nseg segments $\Longrightarrow n=3 n s e g+1$.
- 2 inputs, 2 outputs.
- E nonsingular, but ill-conditioned.

2. RLC ladder network, also used for interconnect modeling
[Gugercin/Antoulas 2003]

- Cascadic interconnection of nsec sections, each section consisting of an RLC loop in parallel with an additional resistance $\Longrightarrow n=2 n s e c$.
- 1 input, 1 output.
- $E=I_{n}$.

Hardware:

- Xeon cluster with 30 nodes ($2.4 \mathrm{GHz}, 1 \mathrm{GByte}$ RAM each) $\rightsquigarrow 3,800$ Mflops for matrix product.
- Interconnection network uses Myrinet switch $\rightsquigarrow 10 \mu \mathrm{sec}$ latency, 1.9 Gbit/sec bandwidth.

Example 1: Accuracy

Here, $n=199, m=p=2, r=20$.
Difficulty: catch falling edge of output signal around 100 Hz .

Example 2: Accuracy

- $n=1000, m=p=1$.
- Numerical ranks of Gramians are 90, 75.
- Reduced-order selection:
$r=\max \left\{j \mid \sigma_{j} / \sigma_{1} \geq 10^{-4}\right\}$
$\Longrightarrow r=8$.
- 6 Newton iterations, 9 sign iterations each.

Parallel Performance

Mflop rate of the numerical kernels $\max n \approx 10,000$

Execution times

$$
n=2002 \text { (Ex. 1), } n=2000 \text { (Ex. 2) }
$$

Speed-up	4	3.74	2.93
	\#Nodes $\left(n_{p}\right)$	Ex.	Ex. 2
	8	6.69	4.84
	12	9.69	6.20
	16	12.06	7.37

Passive Reduced-Order Models by Interpolating Spectral Zeros

Definition:

- Spectral factorization of a positive real transfer function:

$$
G(s)+G^{T}(-s)=W(s) W^{T}(-s), \quad W(s) \text { stable, rational. }
$$

- Spectral zeros of $G: \quad \mathcal{S}_{G}:=\{\lambda \in \mathbb{C} \mid \operatorname{det} W(\lambda)=0\}$.

Theorem: (Antoulas 2002/05)
Let $\mathcal{S}_{\tilde{G}}$ be the spectral zeros of a reduced-order model. If

$$
\mathcal{S}_{\tilde{G}} \subset \mathcal{S}_{G}, \quad \tilde{G}(\lambda)=G(\lambda) \forall \lambda \in \mathcal{S}_{\tilde{G}}
$$

\tilde{G} is a minimal degree rational interpolant of the values of G on the set $\mathcal{S}_{\tilde{G}}$, then the reduced-order model corresponding to \tilde{G} is both stable and passive.

Computing an Interpolatory Reduced-Order Model I

Choose 2ℓ distinct points $s_{1}, \ldots, s_{2 \ell} \in \mathcal{S}_{G}$. Let

$$
\begin{aligned}
\widetilde{V} & =\left[\left(s_{1} I-A\right)^{-1} B \ldots\left(s_{k} I-A\right)^{-1} B\right] \\
\widetilde{W} & =\left[\left(s_{k+1} I-A^{T}\right)^{-1} C^{T} \ldots\left(s_{2 k} I-A^{T}\right)^{-1} C^{T}\right] .
\end{aligned}
$$

Assume $\operatorname{det} \widetilde{W}^{T} \tilde{V} \neq 0$, let

$$
V=\widetilde{V} \quad W=\widetilde{W}\left(\widetilde{V}^{T} \widetilde{W}\right)^{-1}
$$

and compute the projected system

$$
\tilde{A}=W^{T} A V, \quad \tilde{B}=W^{T} B, \quad \tilde{C}=C V, \quad \tilde{D}=D
$$

Then

$$
\tilde{G}\left(s_{i}\right)=G\left(s_{i}\right), \quad i=1,2, \ldots, 2 \ell
$$

and the projected system is stable and passive.
[Antoulas 2002/05]

Computing an Interpolatory Reduced-Order Model II

Theorem: (Antoulas 2002/05)

The (finite) spectal zeros are the (finite) eigenvalues of

$$
M-\lambda L=\left[\begin{array}{ccc}
A & & B \\
& -A^{T} & -C^{T} \\
C & B^{T} & D+D^{T}
\end{array}\right]-\lambda\left[\begin{array}{ccc}
I & & \\
& I & \\
& & 0
\end{array}\right]
$$

Method: (Sorensen 2003/05)

- Compute partial Schur reduction $M Q=L Q T$ where $\operatorname{Re}(\lambda)>0$ for all $\lambda \in \lambda(T)$ using a Cayley transformation $(\mu L-M)^{-1}(\mu L+M), \mu \in \mathbb{R}$.
- Let $Q^{T}=\left[X^{T}, Y^{T}, Z^{T}\right]$. and compute SVD $X^{T} Y=Q_{x} S^{2} Q_{y}^{T}$.
- Let $V=X Q_{x} S^{-1}$ and $W=Y Q_{y} S^{-1}$.
- Then $\tilde{A}=W^{T} A V, \quad \tilde{B}=W^{T} B, \quad \tilde{C}=C V$ is stable and passive.

Computing an Interpolatory Reduced－Order Model III

For $R:=D+D^{T}>0$ ，the finite spectral zeros（eigenvalues of $M-\lambda L$ ）are the eigenvalues of the Hamiltonian matrix

$$
\left[\begin{array}{cc}
A-B R^{-1} C & -B R^{-1} B^{T} \\
C^{T} R^{-1} C & -\left(A-B R^{-1} C\right)^{T}
\end{array}\right] .
$$

Instead of partial Schur decomposition，compute

$$
H Q=Q T \quad \text { where } \operatorname{Re}(\lambda)>0 \quad \forall \lambda \in \lambda(T)
$$

using the Hamiltonian Lanczos process．

Advantages：

－Hamiltonian spectral symmetry is preserved．
－Faster convergence if complex shifts are used．
－Slightly cheaper iterations．

Numerical Example

Example 2, again: (RLC ladder network [Gugercin/Antoulas 2003], here $n=400, r=10$.

Numerical Example: Accuracy

Conclusions

- Guaranteed passive reduced-order models.
- PRBT reduced-order models more accurate than models computed via moment matching/PVL for same order.
- Global (though conservative) error bound.
- PRBT applicable to fairly large models using parallelization.
- New variant of method based on interpolation of spectral zeros using structure-preserving method.
- Descriptor case for sparse systems not treatable yet.
- Parallel implementation based on sign function for software library PLiCMR available.

$\operatorname{Ad}(e ́)$

Thank you for your attention!

