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Abstract

An algorithm is developed for passivity preserving model reduction of linear time invariant systems. Implementation
schemes are described for both medium scale (dense) and large scale (sparse) applications. The algorithm is based upon
interpolation at selected spectral zeros of the original transfer function to produce a reduced transfer function that has the
specified roots as its spectral zeros. These interpolation conditions are satisfied through the computation of a basis for a
selected invariant subspace of a certain block matrix which has the spectral zeros as its spectrum. Explicit interpolation is
avoided and passivity of the reduced model is established, instead, through satisfaction of the necessary conditions of the
Positive Real Lemma. It is also shown that this procedure indirectly solves the associated controllability and observability
Riccati equations and how to select the interpolation points to give maximal or minimal solutions of these equations. From
these, a balancing transformation may be constructed to give a reduced model that is balanced as well as passive and stable.
© 2004 Published by Elsevier B.V.
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1. Introduction

This paper is concerned with linear time invariant
(LTI) systems

� : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),

whereA ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
These systems arise frequently in many branches of
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engineering. Circuit simulation is an important ex-
ample and in this application the system� is often
passive. Model reduction with a passivity constraint
is of great importance in this context and has been
studied by many researchers, including Rohrer[20],
Ober[19], Feldmann et al.,[10,11,4–6]Gugercin and
Antoulas[13] and others.
The concept of passivity is of general interest in

control theory. A system ispassiveif it does not gen-
erate energy internally, andstrictly passiveif it con-
sumes or dissipates input energy. A primary example
of a passive system is anRLC circuit consisting only of
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resistors, conductors, and capacitors. Typically, in cir-
cuit simulation, one is interested in replacing a com-
ponent described by a large linear circuit with one
of much lower order for purposes of speeding up the
simulation. Obviously, it is important to produce a re-
duced model that preserves important system proper-
ties and response characteristics such as stability and
passivity.
Projection methods construct matricesV ∈ Rn×k

andW ∈ Rn×k such thatWTV = I k that are used to
obtain a reduced model

�̂ : ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + Du(t), (1.1)

where

Â =WTAV , B̂=WTB, Ĉ= CV. (1.2)

A new projection method is developed here that
preserves both stability and passivity. This method is
quite novel because it obtains the projection matrices
V,W as a by-product of a certain eigenvalue problem.
These matrices are constructed from a basis set for
an invariant subspace associated with that problem.
The derivation is motivated by the important recent
work of Antoulas[3] characterizing passivity through
interpolation conditions.
This approach grew out of a desire to satisfy these

interpolation conditions indirectly with a computa-
tional scheme that would be suitable for large-scale
computation. This scheme, based upon calculation
of an invariant subspace, can be viewed as a means
to constructively satisfy the sufficiency conditions of
the Positive Real Lemma (generally known as the
Yakubovich–Kalman–Popov–Anderson Lemma, see
Chapter 5 of[2] or Chapter 13 of[22] and origi-
nal references therein). This derivation is given in
Section 2. In Section 3, it is shown that the scheme
also indirectly constructs solutions to the standard
Riccati equations associated with this problem and
easily satisfied conditions are given to obtain mini-
mal (or maximal) solutions of these equations. From
these, a positive real balancing transformation can
be constructed. Finally, in Section 5, algorithms for
both dense and large (sparse) problems are given.
The results of a computational example involving an

RLC “ladder circuit” are discussed in both settings.
These results indicate that the new approach is very
promising.
Generally, in this paper, upper case bold letters

(A,B,etc.) will denote matrices, lower case bold let-
ters (x, y,etc.) will denote vectors, and non-bold or
greek letters will denote scalars. Occasionally, script
letters (A,E,etc.) will be used to denote special or
structured matrices. Conjugate transpose is denoted by
A∗ and transpose byAT.

2. Model reduction of passive systems

Throughout the remainder of this discussion, it shall
be assumed thatm = p, i.e., thatB ∈ Rn×p, C ∈
Rp×n. Moreover, the matrixA is assumed to be stable
(the spectrum�(A) is contained in the open left half-
plane), and that the system� is both observable and
controllable. Finally, it is assumed that the system is
passive and thatD := D + DT is positive definite so
thatD = WT

0W0 with W0 nonsingular. The transfer
function for� is denoted byG(s)=C(sIn−A)−1B+D.
Passive systems: Informally, as mentioned previ-

ously, a system� is passive if it cannot produce energy
and strictly passive if it consumes energy. Formally,
� is Passiveif Re

∫ t

−∞ u(�)Ty(�)d��0 for all t ∈ R

and allu ∈ L2(R), Strictly passiveif there is a�>0
such thatRe

∫ t

−∞ u(�)Ty(�)d���
∫ t

−∞ u(�)Tu(�)d�
for all t ∈ R and allu ∈ L2(R).
There is an equivalent condition for LTI systems

that is more easily verified.
Positive real: The system� is passive if and only if

its transfer functionG(s) ispositive real, which means
that:

(1) G(s) is analytic forRe(s) >0,
(2) G(s̄) =G(s) for all s ∈ C,
(3) G(s) + (G(s))∗ � 0 for Re(s) >0.

Property (2) is satisfied automatically for real systems
and Property (3) implies the existence of a stable ra-
tional matrix functionW(s) (with stable inverse) such
thatG(s)+GT(−s)=W(s)WT(−s). This is thespec-
tral factorizationof G and the quantityW is a spec-
tral factor of G. The zeros ofW, i.e.,�i , i =1, . . . , n,
such that detW(�i ) = 0, are thespectral zerosof G.
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Let

A :=
[A B

−AT −CT

C BT D+ DT

]

andE :=
[ I

I
0

]
. (2.1)

Then the (finite) spectral zeros ofG are the set of all
(finite) complex numbers� such that

Rank(A − �E) <2n + p,

i.e., the finite generalized eigenvalues�(A,E). The
set of spectral zeros shall be denoted asSG. It is easily
seen that� ∈ SG ⇒ −�̄ ∈ SG sinceAq = Eq� ⇒
q̃TA=(−�̄)q̃TE, whereq∗ := [x∗, y∗, z∗], andq̃∗ :=
[y∗, −x∗, z∗].
Remark on descriptor systems: Often, systems are in

descriptor formEẋ(t)=Ax(t)+Bu(t), y(t)=Cx(t)+
Du(t), with E symmetric and positive (semi) definite.
WhenE is definite, the following derivation is valid
essentially without change ifI is replaced byE in the
definition of E. Moreover, this derivation will never
require inversion ofE and thus is at least formally
valid for the semi-definite case as well.
Now, suppose a reduced model�̂ as defined in (1.1)

has been obtained and letĜ(s) := Ĉ(sI − Â)−1B̂+D
be the reduced transfer function. It is desirable to place
conditions on this reduced system that provide for the
inheritance of passivity from the original system. The
approach taken here is entirely motivated by the fol-
lowing theorem ofAntoulas proved in[3] that is stated
here in a form that is restricted to the problem at hand.
This important result indicates that a passive reduced
model will result if certain of the spectral zeros are
preserved (interpolated) in the reduced model. For real
systems,SĜ must include conjugate pairs of spectral
zeros as well as their reflections across the real axis.

Theorem 2.1(Antoulas). SupposeSĜ ⊂ SG and

also that Ĝ(�) = G(�) for all � ∈ SĜ and that Ĝ
is a minimal degree rational interpolant of the values
of G on the setSĜ. Then the reduced system̂� with

transfer functionĜ is both stable and passive.

Instead of attempting to satisfy these interpola-
tion conditions directly, the approach taken here

is to achieve them indirectly through the construction
of a basis for a selected invariant subspace of the pair
(A,E). SupposeAQ = EQR is a partial real Schur
decomposition for the pair(A,E). Thus,QTQ = I
andR is real and quasi-upper triangular. LetQT =
[XT,YT,ZT] be partitioned in accordance with the
block structure ofA. Then[A B

−AT −CT

C BT D+ DT

] [X
Y
Z

]
=

[X
Y
0

]
R. (2.2)

In the following discussion, projections will be con-
structed fromX andY and a reduced model will be
obtained from these. The interpolation conditions of
Theorem (2.1) do not appear explicitly. In fact, the
derivation and the verification that the reduced model
is passive and stable is obtained by demonstrating
that the sufficiency conditions for the Positive Real
Lemma are satisfied by the reduced system. To begin
the derivation, it will be useful to have the following
two lemmas.

Lemma 2.1. Suppose thatR in (2.2) satisfies
Re(�) >0 for all � ∈ �(R). ThenXTY = YTX is
symmetric.

Proof. Observe thatAQ = EQR ⇒ Q̂TA =
(−RT)Q̂TE, whereQ̂T = [YT, −XT,ZT].
This gives

Q̂TEQR = Q̂TAQ = −RTQ̂TEQ.

SinceQ̂TEQ = YTX − XTY, it follows that

RT(YTX − XTY) + (YTX − XTY)R = 0.

Hence,YTX −XTY = 0 is the unique solution to this
Lyapunov equation under the assumption on�(R) and
the lemma is proved.�

The matricesX andY will be used to construct the
matricesW andV withWTV= I . In this construction,
it will be useful to know something about the ranks of
X andY.

Lemma 2.2. If X,Y,Z,R are as specified in Eq.
(2.2), thenX andY are both full rank. Moreover,

XTATY + YTAX = ZTDZ, (2.3)

CX + BTY = −DZ. (2.4)
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Proof. From (2.2), it follows that

AX + BZ = XR,

ATY + CTZ = −YR,

CX + BTY + DZ = 0.

Hence,

YTAX + YTBZ = (YTX)R,

XTATY + XTCTZ = −(XTY)R,

ZTCX + ZTBTY = −ZTDZ.

SinceYTX = XTY, it follows that

XTATY + YTAX = −(ZTCX + ZTBTY)T = ZTDZ,

to establish Eqs. (2.3) and (2.4).
Suppose now thatXq=0, with q �= 0. From (2.3), it

follows thatqTZTDZq =0 which in turn implies that
Zq=0 sinceD is positive definite. Moreover,Yq �= 0
since[0,qTYT,0]=qT[XT,YT,ZT]= (Qq)T, andQ
is full rank. Thus, Null(X) ∩ Null(Y) = {0} sinceq
was arbitrarily chosen from Null(X).
Now, Eq. (2.2) implies that

0= AXq + BZq = XRq,

ATYq = ATYq + CTZq = −YRq,

BTYq = CXq + BTYq + DZq = 0.

Therefore,Rq=Nt whereN is full rank and Null(X)=
Range(N). Moreover,

ATYq = −YRq = YN(−t) and BTYq = 0.

Applying this argument successively to each column
of N gives

RN = NT,

ATYN = YN(−T),

BTYN = 0.

If (−T)y=y�with y �= 0, putv=YNy. ThenATv=v�,
andBTv = 0, with v �= 0 since Null(X) ∩ Null(Y) =
{0}. Due to the Popov–Belevich–Hautus Lemma ([14],
Theorem 2.4.8), this contradicts the assumption that
� is controllable.
A similar argument starting withq ∈ Null(Y) will

lead to a contradiction of the assumption that� is
observable and this concludes the proof.�

With these observations in hand, consider the fol-
lowing construction ofV andW. First, find a basis for
an invariant subspace with all eigenvalues ofR in the
open right half-plane. LetQxS2QT

y =XTY be the SVD
of XTY and note thatQy =QxJ whereJ is a signature
matrix by virtue of the fact thatXTY is symmetric. If
S�0 is nonsingular, put

V = XQxS
−1, W = YQyS

−1, (2.5)

so thatWTV = I . Now, let X̂ := SQTx andŶ := SQTy
and define

V :=
[V 0 0
0 W 0
0 0 I

]
and W :=

[W 0 0
0 V 0
0 0 I

]
.

Observe thatWTV = I and that[X
Y
Z

]
=

[V 0 0
0 W 0
0 0 I

] [ X̂
Ŷ
Z

]

and

[X
Y
0

]
=

[V 0 0
0 W 0
0 0 I

] [ X̂
Ŷ
0

]
.

Therefore,

Â := WTAV =
[ Â B̂

−ÂT −ĈT

Ĉ B̂T D+ DT

]
,

and[ Â B̂
−ÂT −ĈT

Ĉ B̂T D+ DT

] [ X̂
Ŷ
Z

]
=

[ X̂
Ŷ
0

]
R. (2.6)

This shows that the spectral zerosSĜ are a subset of
the spectral zerosSG of the original system. More-
over, sinceSĜ = �(R) ∪ �(−RT) and�(R) is in the
open right half-plane, the reduced model has no spec-
tral zeros on the imaginary axis.
It turns out that this construction gives a reduced

model �̂ = (Â, B̂, Ĉ,D) that is stable and passive.
From the previous remarks, this will actually imply
that the reduced system is strictly positive real. One
could just apply Theorem 2.1 to establish this. How-
ever, it is instructive to prove passivity and stability
directly from the construction. This will be established
with the following results.
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First, it is useful to note that̂YX̂−1=SQTyQxS−1 =
J, sinceQy =QxJ. Thus,V=XX̂−1 andWJ=YX̂−1.

Lemma 2.3. The reduced model̂� satisfies

ÂT(−J) + (−J)Â = −CT
0C0,

B̂T(−J) +WT
0C0 = Ĉ,

D+ DT =WT
0W0,

whereC0 := −W0ZX̂−1.

Proof. From (2.3), it follows that

X̂−TXTATYX̂−1 + X̂−TYTAXX̂−1

= X̂−TZTDZX̂−1, (2.7)

CXX̂−1 + BTYX̂−1 = −DZX̂−1, (2.8)

and hence that

VTATWJ + JWTAV
= X̂−TZTDZX̂−1 = CT

0C0, (2.9)

CV + BTWJ = −DZX̂−1 =WT
0C0, (2.10)

whereC0=−W0ZX̂−1, sinceD+DT =D=WT
0W0.

This gives the desired result.�

Lemma 2.4. If J = −I in Lemma(2.3), then G is
positive real and the reduced order system�̂ is stable
and passive.

Proof. Assume thatJ = −I and thatÂq = q� with
q �= 0. Then

2Re(�) = qTÂTq + qTÂq = −‖C0q‖2�0. (2.11)

If 0 = ‖C0q‖ = ‖W0Z(X̂−1q)‖ then Z(X̂−1q) = 0,
sinceW0 is nonsingular.
It follows from the first block-row of (2.6) that

q� = Âq = (ÂX̂ + B̂Z)(X̂−1q) = X̂RX̂−1q. (2.12)

This would imply that� ∈ �(R), and hence that
Re(�) >0 which is a contradiction and hence the sta-
bility of Â is established. Now, all of the conditions
of the Positive Real Lemma ([2] Chapter 5, or[22],
Theorem (13.25)) are satisfied and the reduced system
must also be passive.�

It remains to show thatJ = −I . To do this, it is
sufficient to show that̂XTŶ is negative definite. Sur-
prisingly, this follows primarily from the stability of

the original system�. The passivity assumption enters
only in a very subtle way.

Lemma 2.5. The symmetric matrixXTY is negative
semi-definite and, as a consequence, the matrixX̂TŶ
in Lemma(2.3) is also symmetric and negative semi-
definite. If, in addition, G is strictly positive real then
both matrices are negative definite. In either case,
J = −I .

Proof. Assume for amoment thatG is strictly positive
real, i.e., has no spectral zeros on the imaginary axis.
Then, the spectral zerosSG must consist ofn roots
in the open right half-plane together with their reflec-
tions across the imaginary axis. LetQ̃ := [Q,Q2] and
let R̃ := [R0 R12

R22
] represent an extension of the partial

Schur decomposition defined byQ andR to include
all of the spectral zeros in the open right half-plane as
eigenvalues of̃R forming a new partial Schur decom-
position of ordern. Thus,AQ̃ = EQ̃R̃ and one can
partition

Q̃ =
[X X2
Y Y2
Z Z2

]

as before. Now apply Lemma (2.2) to this system with
X̃ := [X,X2] in place ofX, Ỹ = [Y,Y2] in place of
Y, Z̃ := [Z,Z2] in place ofZ andR̃ in place ofR.
From Eq. (2.3),

X̃TATỸ + ỸTAX̃ = Z̃TDZ̃ with X̃ nonsingular.

Thus,

AT(ỸX̃−1) + (ỸX̃−1)TA = X̃−TZ̃TWT
0W0Z̃X̃−1.

Since Lemma (2.1) impliesQ := ỸX̃−1 is symmetric,
it follows that

ATQ + QA = C̃T
0C̃0,

with C̃0 := W0Z̃X̃−1. Thus, Q is negative semi-
definite and it follows thatX̃TỸ = X̃TQX̃ is also
symmetric negative semi-definite. However, since
ỸTX̃ is nonsingular, this matrix is actually negative
definite. Moreover, sinceXTY is a leading principle
sub-matrix ofX̃TỸ, it must also be negative definite.
Thus, the desired result holds whenG is strictly

positive real. The strictly positive condition can be
relaxed to positive real using a continuity argument
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based upon consideringD� := �I+D for � decreasing
to 0. In this limit, definiteness may be lost. Thus,XTY
is only negative semi-definite in general.
Now, sinceQxS2JQT

x = X̂TŶ = X̂TVTWŶ =XTY,

it follows that the diagonal elements ofS2J are non-
positive. For every positive diagonal element ofS, the
corresponding diagonal element ofJ is negative. The
remaining diagonal elements ofJ are of arbitrary sign
and thus may be taken as negative. HenceJ=−I . �

Note that the only use of passivity in this proof was
the fact that an arbitrarily small positive perturbation
to D would move all of the spectral zeros off of the
imaginary axis. IfGT(−j�0) + G(j�0) <0 for some
�0 ∈ R, then this would be impossible and the con-
struction would fail.
Dealing with degeneracy: If S is singular then Eq.

(2.5) become invalid and the interpolation scheme will
break down. However, it is still possible to construct
a noninterpolatorypassive and stable reduced model.
Beginning withX,Y from (2.2) and with the SVD
QxS2QT

y =XTY, specify a cut off tolerance�c ∈ (0,1)
and letj be the largest positive integer such that

�j ��c�1, where �j := S(j, j).

DefineQj := Qx(:,1 : j), Sj := S(1 : j,1 : j), and
then letXI

j := QjS
−1
j . ReplaceX̂−1 by XI

j in Eqs.
(2.7) and (2.8). Then Eqs. (2.9) and (2.10) are ob-
tained withV := XX I

j ,W := −YX I
j and withC0 :=

−W0ZX I
j . From Lemma (2.5) it follows thatXTY is

negative semi-definite regardless ofS and hence that
Qy =−Qx . Therefore,WTV=−S−1

j QT
jY

TXQjS
−1
j =

−S−1
j QT

j Qx(−S)QT
xQjS

−1
j = S−1

j Sj = I .
This derivation implies that Lemma (2.3) holds true

and thus the reduced model obtained in this way must
also be passive. However, it may not be stable. Re-
lation (2.11) is still obtained but (2.12) is no longer
valid. However, sinceXI

j is full rank andW0 is non-
singular, the stability of the reduced model is obtained
if Z is full rank. In any case,̂A will have no eigenval-
ues in the right half-plane.
This discussion is valid for any indexj such thatSj

is nonsingular. The interpolation conditions are lost
but each such model is passive and also stable ifZ is
full rank.

3. Riccati equations, minimal and maximal
solutions

Another approach to model reduction of passive
systems is based upon the solution of a certain pair
of Riccati equations. There are a number of solution
methods for algebraic Riccati equations that involve
numerical computation of a stable invariant subspace
of a related Hamiltonian matrix. These include the
Schur vector method of Laub[16], the Hamiltonian
QR-algorithm of Byers[8], the HHDR-algorithm of
Bunse–Gerstner and Mehrmann[7], and the matrix
sign function method[9] and the multi-shift method
of Ammar et al.[1].
The approach just described for passive reduction

is indeed related, and in fact, the associated pair of
Riccati equations is implicitly solved when the invari-
ant subspace basis has been computed. The following
derivation of these relations is offered as an interesting
by-product of the passive reduction scheme. This con-
nection may lead to an algorithmic consequence, but
that possibility will be left to future research. To be-
gin the discussion, it shall be assumed that the transfer
functionG(s) is strictly positive real. Initially, in Eq.
(2.2) consider the invariant subspace corresponding to
then spectral zeros in the open right half-plane. Thus,
X,Y are both nonsingular andXTY is symmetric and
negative semi-definite.
From Eqs. (2.3) and (2.4) one obtains

ATQ + QA = −CT
0C0, C− BTQ = −WT

0C0,

(3.1)

AP + PAT = −B0BT0 , BT − CP = −WT
0B

T
0 ,

(3.2)

with

Q = −YX−1, C0 =W0ZX−1,

P = Q−1, BT0 =W0ZY−1.

SinceW0 nonsingular,

C0 = −W−T
0 (C− BTQ) and

BT0 = −W−T
0 (BT − CP).

Substituting these expressions forC0,B0 into
Eqs. (3.1) and (3.2) gives the following two Riccati
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equations:

ATQ + QA = −(CT − QB)D−1(C− BTQ), (3.3)

AP + PAT = −(B− PCT)D−1(BT − CP). (3.4)

SinceYX−1=X−T(XTY)X−1 andXTY is symmetric
negative definite, it follows that bothP and Q are
positive definite. These are the equations one normally
solves. It is well known that these equations do not
have unique solutions, and usually it is desirable to
have eitherQ orP be a minimal solution.

Definition. Q is a maximal solution ifQ � Q̂ for any
other solution to (3.3) andQ is a minimal solution if
Q � Q̂ for any other solution to (3.3). Likewise,P is
a maximal solution ifP � P̂ for any other solution
to (3.4) andP is a minimal solution ifP � P̂ for any
other solution to (3.4).

SinceP = Q−1, is clear thatQ is a maximal solu-
tion to (3.3) if and only ifP is minimal for (3.4). A
natural question then is to ask which solution pair is
constructed by this method?

Theorem 3.1. The solutionQ to (3.3) constructed
above is maximal and henceP is a minimal solution
to (3.4).

Proof. Let Q̂=Q+E be any other symmetric solution
to (3.3). To showQ̂ � Q it is sufficient to show thatE
is negative semi-definite. To this end, beginning with

ATQ + QA = −(CT − QB)D−1(C− BTQ),

ATQ̂ + Q̂A = −(CT − Q̂B)D−1(C− BTQ̂),

and expanding the second equation forQ̂=Q+E about
Q gives the following equation for the perturbationE.

ATE + EA = EBD−1(C− BTQ)

+ (CT − QB)D−1BTE

− EBD−1BTE.

Collecting terms yields the equation

ÃTE + EÃ + EBD−1BTE = 0

with Ã := A − BD−1(C− BTQ).

Notice that the matrix̃A is anti-stable (all eigenvalues
in the open right half-plane) since

Ã = [AX − BD−1(CX − BTQX)]X−1,

= [AX − BD−1(CX + BTY)]X−1,

= [AX − BD−1(−DZ)]X−1,

= [AX + BZ]X−1,

=XRX−1.

This shows that the eigenvalues ofÃ are, in fact, the
n spectral zeros in the open right half-plane. Since
EBD−1BTE is positive semi-definite, it follows that
E must be negative semi-definite. Hence,Q̂ � Q
as claimed. �

To get the minimal solution, instead of interpolating
the spectral zeros in the right half-plane, one should
interpolate the spectral zeros in the open left half-
plane. To see this, note that all results of the previous
section are valid when the matrixR has the spectral
zeros in the open left half-plane as its eigenvalues. The
only change needed in the proofs comes at Eq. (2.12)
in the proof of Lemma (2.4). Instead of a contradiction,
one gets� ∈ �(R) which impliesRe(�) <0 directly
whenZX̂−1q = 0. Now, an argument following the
proof of Theorem 3.1 will giveE positive semidefinite
sinceÃ =XRX−1 will show it to be stable. Thus, the
following theorem holds.

Theorem 3.2. If a solutionQ− to (3.3) is constructed
as above but withR having the spectral zeros ofG(s)

in the open left half-plane as its eigenvalues, thenQ−
is minimal and henceP+=Q−1− is a maximal solution
to (3.4).

4. Reduced order positive real balancing

Results of the previous section indicate how a pos-
itive real balanced reduction introduced by Ober[19]
can be constructed that the reduced model will be bal-
anced as well as passive. Construct a minimal solution
P− to (3.4) by interpolating the spectral zeros in the
open right half-plane and a minimal solutionQ− by
interpolating zeros in the open right half-plane. Then
compute a balancing transformation from the SVD of
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(P−)(Q−) (or better from the product of the Cholesky
factors).
However, it is also possible to produce a reduced

order approximate balancing transformation without
first balancing the full system. The alternative is to
perform the procedure just as described in Section 2 to
obtain a reduced model fromX,Y, X̂, Ŷ correspond-
ing to interpolation of a selected set of spectral zeros
in the open right half-plane (a specific selection cri-
terion is given in the next section). The conditions of
Lemma (2.3) are satisfied along with Eq. (2.6) and
with ŶX̂−1 = J = −I . Recall that the reduced model
is passive, stable and that there are no spectral zeros
on the imaginary axis. Moreover, there are two asso-
ciated reduced Riccati equations

ÂTQ̂ + Q̂Â = −(ĈT − Q̂B̂)D−1(Ĉ− B̂TQ̂), (4.1)

ÂP̂ + P̂ÂT = −(B̂− P̂ĈT)D−1(B̂T − ĈP̂). (4.2)

and Theorem 3.1 implieŝP=Q̂
−1

is minimal for (4.2)
with Q̂ := −ŶX̂−1 = I . The plan is to balance the
reduced system and to do this, it is only necessary
to compute a basis for the invariant subspace of the
reduced system corresponding to the reduced spectral
zeros in the open left half-plane. That is, compute
X̃, Ỹ, Z̃ such that[ Â B̂

−ÂT −ĈT

Ĉ B̂T D+ DT

] [ X̃
Ỹ
Z̃

]
=

[ X̃
Ỹ
0

]
R̃

is a partial real Schur decomposition of the reduced
system and the eigenvalues ofR̃ are the spectral ze-
ros of the reduced model in the open left half-plane
(consisting of�(−RT)). Now, construct the minimal
solutionQ̃ to (4.1) asQ̃= ỸX̃−1. The balancing trans-
formation for the reduced model is then constructed
from the SVD ofP̂Q̃ = Q̃.
Let Q̃ = US2UT be the SVD ofQ̃. Note that

Q̃(US−1/2) = (US1/2)S

and P̂(US1/2) = (US−1/2)S, (4.3)

and also note that singularity ofS can be dealt with
by truncation as before. Let

Â� := S1/2UTÂUS−1/2,

B̂� := S1/2UB̂, Ĉ� := ĈUS−1/2. (4.4)

Now, Q̃ is a minimal solution to Eq. (4.1) and hence

ÂTQ̃ + Q̃Â = −(ĈT − Q̃B̂)D−1(Ĉ− B̂TQ̃).

Multiplying this equation on the left byS−1/2UT and
on the right byUS−1/2 and then applying relations
(4.3) and (4.4) gives

ÂT
�S + SÂ�

= −(ĈT
� − SB̂�)D−1(Ĉ� − B̂T�S). (4.5)

On the other hand, multiplying Eq. (4.2) the left by
S1/2UT and on the right byUS1/2 and then applying
relations (4.3) and (4.4) gives

Â�S + SÂT
�

= −(B̂� − SĈT
�)D−1(B̂T� − Ĉ�S). (4.6)

Thus, the reduced model̂�� := (Â�, B̂�, Ĉ�,D) is
balanced, stable, and passive with a strictly positive
real transfer function̂G�(s). Moreover, the dimension
of this model can be further reduced by simple trunca-
tion (deleting the smallest singular values first) while
retaining these properties. Finally, note that this may
be done even when the initial reduced model is nonin-
terpolatory. Thus, a balanced reduced model may be
obtained even in the face of degeneracy.
If this procedure is carried out withk =n, i.e., with

the full system, then there is an error bound available
due to Gugercin[12,13]on theH∞ norm of the error.
However, no error bound is yet available if the system
is first reduced to sizek < n and then balanced as just
described.

5. Algorithms for passivity preserving reduced
models

The results of the previous section establish the pas-
sivity of �̂ and, in addition, they establish thatSĜ ⊂
SG corresponding to the spectral zeros appearing as
eigenvalues ofR in (2.2). This leads to the following
algorithm.
In the algorithm shown inFig. 1, it is assumed that

A andE represent the blocked matrices defined by
(2.1). For small to medium scale dense problems, these
matrices might actually be formed and then the de-
sired partial Schur decompostion would be extracted
from the full eigensystem. For large sparse problems,
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Fig. 1. Positive real model reduction.

this would be impractical and inefficient. The algo-
rithm as posed is appropriate for real matrices, and in
particular, all arithmetic stays real throughout. A par-
tial real Schur decomposition is appropriate since it
will automatically keep complex congugate pairs of
spectral zeros together. The parameterk that specifies
the order of the reduced model will perhaps need to
be adjusted by 1 to accomodate this.
For large-scale problems, an implicitly restarted

Arnoldi (IRA) [21] method would be quite suit-
able. It naturally produces a partial real Schur form
corresponding to a desired set of eigenvalues (spec-
tral zeros here). One could useeigs in Matlab or
ARPACK in Fortran [17] to find such an invariant
subspace. One choice for selecting the spectral zeros
might be to compute thek eigenvalues of largest real
part. However, there is another choice that seems quite
natural and which works well with an IRA method.
A convenient spectral transformation is obtained

with the Cayley transformation

C� := (�E − A)−1(�E + A),

where��0 is a real shift. With a proper choice of�,
this will provide for rapid convergence to an invariant
subspace corresponding tok transformed eigenvalues
of largest magnitude:

(�E − A)−1(�E + A)Q =QR̂

so that

AQ = EQR, whereR := �(R̂ − I )(R̂ + I )−1.

This gives the partial Schur decomposition as required
by the algorithm inFig. 1. The implementation will
require two sparse direct factorizations ofA − �I and

A + �I . The Cayley transformationC� may then be
applied to an arbitrary vector using a blocked matrix-
vector product followed by a blocked Gaussian elim-
ination. Interestingly enough, computing thek eigen-
values of largest magnitude for this Cayley transfor-
mation is related to computingk eigenvalues of largest
real part for the original pair(A,E) in a very special
way. A circle of radius	>1 centered at the origin
is the image of a circleD	 of radius(2�	)/(	2 − 1)
centered at�(	2 + 1)/(	2 − 1). If 	 is the radius of
the circle centered at the origin drawn through the se-
lected eigenvalue(s) of smallest magnitude, then thek
selected eigenvalues are images of the spectral zeros
interior to the circleD	 (shown inFig. 2) and this
gives the interpolation points. As	 → 1 the interior
circleD	 tends to include all of the right half-plane.

Example. The following graphs show the result of ap-
plying this scheme to an RLC circuit of order 201. The
circuit is an RLC ladder network. The state variables
are as follows:x1, the voltage acrossC1; x2, the current
throughL1; x3, the voltage acrossC2; x4, the current
throughL2; andx5, the voltage acrossC3, etc. In gen-
eral,n is odd andx2i−1 is the voltage across capacitor
Ci for i = 1,2, . . . , (n + 1)/(2), while x2i is the cur-
rent through inductorLi for i = 1,2, . . . , (n − 1)/(2).
There are two resistorsR1, R2 placed at either end of
the “ladder” as shown inFig. 3 for an ordern = 5
example.

The input is the voltageu and the output is the
currenty as shown inFig. 3. It is assumed that all the
capacitors and inductors have unit value, whileR1= 1

2,
R2 = 1

5. A minimal realization for the ordern = 5
example is:

A =




−2 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 −5


 ,

B=



0
0
0
0
2


 , C= [0 0 0 0 − 2], D= 1.

For generaln, the matrixA is simply extended with
value 1 on the super diagonal, the value−1 on the
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Fig. 2. The Cayley transformed spectral zeros (+) and interpolation points selected (o) (reduced order spectral zeros).

Fig. 3. RLC circuit of order 5.

sub-diagonal and with the values−2, and−5 in the
(1,1) and (n, n) positions. The vectorsB,C are ex-
tended in the obvious way by introducing zero entries
in the firstn − 1 positions.
The passive reduction scheme was applied to an

RLC ladder system of ordern = 201 using an IRA
method with the Cayley transformation (shift�=0.1).
A reduced model of order 20 was constructed. The
graphs inFig. 4 illustrate the effectiveness of the pro-
cedure. The distribution of the spectral zeros are sim-
ilar to those shown inFig. 2 for a smaller problem.
That figure shows the effect of the transformation and
the interpolation points. Even though there is hardly
any decay in either the Hankel or the positive real sin-
gular values, portions of the frequency response are
well approximated. This is indicated by the visual in-
spection of the frequency response of the reduced vs.
the full system. It is also verified by the error plot
which shows that the response error is below−30Db
for frequencies outside of the interval(0.1 : 10) rad/s.

To explore the balancing procedure, a dense method
was applied to attempt to interpolate all of the spec-
tral zeros in the open right half-plane. It turns out that
this resulted a degeneracy since�n =S(n, n) was very
small in magnitude relative to the firstn − 1 singular
values. The procedure described for treating degener-
acy in the previous section was used. Then the balanc-
ing scheme given by Eqs. (4.4) and (4.3) was applied
to the same RLC ladder system of ordern = 201. The
(positive real) singular valuesS did not decay at all.
Nevertheless, a balanced reduced model of order 20
was constructed by the usual truncation. The results
are remarkable even though there was very little de-
cay in the singular values. The graphs inFigs. 5and
6 illustrate the excellent approximation properties of
balanced reduction. The visual comparison and the er-
ror plot shows that the response error is small (less
than−40Db) for frequencies greater than 10 rad/s.
Moreover, the approximation appears to be very good
at values ofs in the right halfplane as indicated by the
graph on the left ofFig. 7.
Notice that the balanced approximation is quite dif-

ferent qualitatively at the low end of the frequency
spectrum when compared to the first passive approx-
imation we obtained. Clearly, the distribution of the
spectral zeros for the balanced passive reduced model
are quite different than those selected by the Cayley
transformation as one can see by comparing the spec-
tral zero distribution shown inFig. 2 and the spectral
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zero distribution for positive real balancing shown in
Fig. 7. In both of these plots, spectral zeros of the re-
duced model (o) in are shown in relation to those of
the full system (+) in the right half-plane. The plot for
the order 201 system was too cluttered to illustrate the
detail, so a smaller RLC system was used for both of
these plots. However, in both cases the distribution of
spectral zeros of the smaller system is quite similar to
the distribution for the order 201 system. Note that the

spectral zeros selected by balancing are noninterpola-
tory and are in regions that are very different from the
first passive reduction method.
The ladder circuit is difficult to reduce because nei-

ther the Hankel nor the positive real singular values
decay to any extent. The next example will demon-
strate that the approach described in this paper can
work well when such decay is present. We consider
an example from inductance extraction of an on-chip
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planar square spiral inductor suspended over a copper
plane. This example taken from[15] was studied com-
putationally in the Ph.D. thesis of Li[18]. The origi-
nal system is of order 500 and the reduced system is
of order 10.
In Fig. 8 the plots show that this system is approx-

imated extremely well with a very low rank reduced
model. The positive real singular values decay rapidly
from a value of�1=0.8 to�10=10−7 over the leading

10 singular values. The plots of the frequency response
of the two systems are indistinguishable visually and
the error plot confirms this. The error plot consists of
a Bode diagram of the error system (in decibels).
These results are encouraging, but limited. Addi-

tional research and experimentation is needed to bet-
ter understand this approach. The following questions
remain: (1) What is the best choice of interpolation
points? (2) Is it possible to derive a bound on the
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approximation error? (3) What is the best choice for
� in the Cayley transformation? Future work will in-
clude a study of these questions as well as a far more
exhaustive set of test examples.
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