
Behaviors: more kinds of representations,
controllability and elimination theorem

Notes for lecture 10 (May 12th, 2014)

In this lecture we will see some more kinds of representations: latent variable repre-

sentations, image representations, state space systems and we will see the definition of

controllability of a behavior.

Recall that
m: number of inputs, p: number of outputs

w: number of ‘manifest’ variables: typically m + p

n: (minimum) number of states (McMillan degree)

1 More on polynomial matrices

In the previous lecture, we studied the Smith canonical form

U(ξ)R(ξ)V (ξ) =

[
D(ξ) 0

0 0

]
, (1)

with D(ξ) ∈ Rr×r[ξ] being diagonal with all nonzero and monic polynomials: r is the (nor-

mal) rank of the polynomial matrix of R(ξ). We motivated U as elementary row operations

that do not change the set of solutions to R( d
dt

)w = 0. We will not delve on significance of

V : we just note here that V is a ‘coordinate transformation’ that involves not just linear

combinations of various components of variable w, but also derivatives of these components.

Unimodularity of V ensures this transformation is one-to-one and onto, and hence is a

coordinate transformation.

Please verify following facts (no need to submit these).

Fact 1.1 Most of the following can be solved by partitioning U and V of equation (1)

conforming to that of the RHS. Also consider partitioning U−1 and V −1.

• For any polynomial matrix R, there exists a unimodular U such that U(ξ)R(ξ) =[
R1

0

]
, with R1 having full row rank.

• Suppose R is full row rank. Then R can be factored into R(ξ) = F (ξ)Rc(ξ) with F

square and nonsingular and Rc(ξ) being left-prime1. Then,

1A full row rank polynomial matrix Rc(ξ) is called left-prime if its Smith form equals [I 0], for an

identity matrix I of suitable size.
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– det F is equal to a constant multiple of the diagonal matrix D that arises in the

Smith form of R.

– F and Rc are, in general, not unique.

– Any polynomial vector p ∈ Rw[ξ] such that R(ξ)p(ξ) = 0 satisfies Rc(ξ)p(ξ) = 0

• If Rc(ξ) is left-prime, then Rc(ξ) is full row rank.

• Suppose Rc is full row rank. Then, the following are equivalent.

– Rc(ξ) is left-prime,

– Rc(λ) is full row rank for every complex number λ ∈ C,

– Whenever2 Rc(ξ) can be factored into Rc(ξ) = F (ξ)R2(ξ) with F nonsingular,

then F is unimodular,

– There exists a polynomial right inverse Q ∈ R•×•[ξ], i.e. Rc(ξ)Q(ξ) = I.

In view of the first fact above, we might as well assume any kernel representation we

begin with R( d
dt

)w = 0 has R(ξ) of full row rank. We call such a representation minimal

kernel representation: this is without loss of generality.

The following exercise relates Jordan canonical form of A, its algebraic/geometric eigen-

values to the Smith canonical form of ξI − A. Of course, determinant of D in the Smith

form is the characteristic polynomial of A. Further, the sizes are same and the degrees of

the polynomials in D have to add up to size of A.

Exercise 1.2 Suppose A ∈ Rn×n and B ∈ Rn×m. Let na(λi) and ng(λi) denote the algebraic

and geometric multiplicity of an eigenvalue λi.

• Suppose every eigenvalue has geometric multiplicity one, then show that dn in the

Smith form of ξI − A equals the characteristic polynomial of A.

• Consider the Smith canonical form of ξI − A. Show that the number of ‘ones’ along

the diagonal in the Smith canonical form equals n−maxλi ng(λi).

• Show that the number of polynomials di that have (ξ−λi) as a factor is the geometric

multiplicity of λi.

• Find3 the Jordan canonical form of A, where A is such that ξI − A has the two

polynomials 1 and (ξ − 2)2 along the diagonal.

2This statement motivates the use of ‘left-prime’.
3More generally, the Smith form of ξI −A contains all the information about the Jordan canonical form

of A, and conversely, given the Jordan canonical form of A, the Smith form of ξI −A can be found.
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• Use PBH test to show that (A,B) is controllable if and only if [ξI−A B] is left-prime.

• Show that the roots of the polynomials in the Smith form of [ξI − A B] are the

uncontrollable eigenvalues of A.

2 Controllability

The set of LTI behaviors described by differential equations in w number of variables is

denoted by Lw. Equivalently, B ∈ Lw if B is the set of solutions to R( d
dt

)w = 0, for a

polynomial matrix R ∈ R•×w[ξ].
A system B ∈ Lw is called controllable if for any w1 and w2 ∈ B, there exist w3 ∈ B

and T > 0 such that

w3(t) =

{
w1(t) for t 6 0 ,

w2(t) for t > T .

Theorem 2.1 Let B ∈ Lw and suppose R( d
dt

)w = 0 is a minimal kernel representation.

Then, the following are equivalent.

1. B is controllable,

2. R(ξ) is left-prime, i.e. R(λ) is full row rank for every complex number λ ∈ C.

3. B has an image representation: there exists M(ξ) ∈ R•×•[ξ] such that

B = {w ∈ C∞(R,Rw) | there exists ` such that w = M(
d

dt
)`}.

3 Elimination of ‘latent variables’

Consider again:

B = {w ∈ C∞(R,Rw) | there exists ` such that w = M(
d

dt
)`}.

Often, additional variables (like `) than the ones of interest (here: w).

Call all auxiliary variables: latent variables.

Sometimes latent variables inevitable when modeling systems from first principles.

In general,

B = {w ∈ C∞(R,Rw) | there exists ` such that

R( d
dt

)w +M( d
dt

)` = 0}.
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Project (w, `) behavior to just w-variables.

Does B have a kernel representation?

Always possible for C∞(R,Rw), but not for all function-spaces.

Theorem 3.1 Consider Bfull described by R( d
dt

)w + M( d
dt

)` = 0 (for polynomial matrices

R and M).

Then, there exists a kernel representation (R2(
d
dt

)w = 0) for B defined by

B = {w ∈ C∞(R,Rw) | there exists ` such that

R( d
dt

)w +M( d
dt

)` = 0}.

Obtain R2 as follows. Find a unimodular U such that U(ξ)M(ξ) =

[
M1

0

]
. Partition

U conformably into

[
U1

U2

]
. Define R2(ξ) := U2(ξ)R(ξ). Then, B = {w ∈ C∞(R,Rw) |

R2(
d
dt

)w = 0}. In general ker R( d
dt

) ⊇ B: equality for C∞.

Note that the equality is not true for D: the set of compactly supported C∞ functions.

Note: U2 used above is a so-called Maximal Left Annihilator of M . For a polynomial

matrix M(ξ) ∈ Rw×m[ξ], define a Maximal Left Annihilator (MLA) P (ξ) ∈ R•×w[ξ] if the

following is satisfied:

• P (ξ)M(ξ) = 0

• P (ξ) is full row rank

• If any polynomial matrix P̂ (ξ) satisfies P̂ (ξ)M(ξ) = 0, then there exists a polynomial

matrix F (ξ) such that4 P̂ (ξ) = F (ξ)P (ξ).

Following facts can be verified easily.

Fact 3.2 Let M ∈ Rw×m[ξ] be full column rank.

• In general, an MLA P of M is not unique. (Non-uniqueness can be characterized

using unimodular matrices.)

• Any MLA P is left-prime and P has w− m rows.

4This third property motivates the use of the word ‘maximal’.
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• Conversely, if P ∈ R(w−m)×w[ξ] is left-prime and satisfies P (ξ)M(ξ) = 0, then P is an

MLA of M(ξ).

• If M(ξ) is left-invertible, then any MLA P can be used to obtain all left-inverses of

M .

• For any nonsingular polynomial matrix F (ξ) ∈ Rm×m[ξ], both M(ξ) and M(ξ)F (ξ)

have the same set of MLAs.

4 Dissipative systems

Consider Σ = ΣT ∈ Rw×w. A system B ∈ Lw
cont is called dissipative if∫ ∞

−∞
wTΣw dt > 0 for all w ∈ B ∩D.

For this course, we restrict ourselves to just controllable behaviors. Work on uncon-

trollable dissipative systems can be found in the literature, and outside the scope of this

course.

Variety of Algebraic Riccati Equations: just different supply rates.

For example:

LQ control: ATP + PA−Q+ PBTR−1BP = 0

H∞ norm (strictly proper): ATPPA+ CTC + PBTBP = 0

Passivity: ATP + PA+ (KB − CT )(D +DT )−1(BTK − C) = 0

Dissipativity, storage functions will unify these. Of course, well-known that there is a

link with Linear Matrix Inequality (LMI). More precisely,

L(P ) :=

[
AT + PA−Q PBT

PBT R

]
6 0

Then, Schur complement with respect to R is exactly the ARE for the LQ control problem.
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