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Minimal kernel representations

Recall U(ξ)R(ξ)V (ξ) =

[
D(ξ) 0

0 0

]
.

There is some inconsistency across literature about use of
the ‘invariant polynomials/ and ‘elementary divisors’.
In any case: d1 is gcd of all 1× 1 minors of R.
d1 · d2 · · · dk is gcd of all k × k minors of R.
Using just premultiplication by unimodular matrices,

UR =

[
R1

0

]
, with R1 having full row rank.

Ignore zero rows: trivially-satisfied equations

Assume full row rank: without loss of generality.

R( d
dt

)w = 0 is called minimal kernel representation if
R(ξ) is full row rank.

Lw: the set of LTI behaviors described by differential
equations in w number of variables.
Equivalently, B ∈ Lw if B is the set of solutions to
R( d

dt
)w = 0, for a polynomial matrix R ∈ R•×w[ξ].
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Variables

URV = [D 0]
Interpret V ( d

dt
) as a ‘coordinate tranformation’ from

C∞(R,Rw) to C∞(R,Rw)
since V ( d

dt
) is one-to-one and onto (and linear).

Recall:
m: number of inputs, p: number of outputs
w: number of ‘manifest’ variables: typically m + p

n: (minimum) number of states (McMillan degree)

A system ≡ its behavior: set of ‘allowed’ trajectories
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Other topics covered in Lecture 9

We also saw

the Smith canonical form of a polynomial matrix

(normal) rank of a polynomial matrix

unimodular completion (of a wide, nonsquare matrix)
and its special case: Bezout identity

Input/output partitions

For a square constant matrix A, the Smith form of ξI −A is
closely related to Jordan canonical form of A.
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Controllability

A system B ∈ Lw is called controllable if for any w1 and
w2 ∈ B, there exist w3 ∈ B and T > 0 such that

w3(t) =

{
w1(t) for t 6 0 ,
w2(t) for t > T .

Let B ∈ Lw and suppose R( d
dt

)w = 0 is a minimal kernel
representation. Then, the following are equivalent.

1 B is controllable,

2 R(ξ) is left-prime, i.e. R(λ) is full row rank for every
complex number λ ∈ C.

3 B has an image representation: there exists
M(ξ) ∈ R•×•[ξ] such that

B = {w ∈ C∞(R,Rw) | there exists ` such that w = M(
d

dt
)`}.

(Compare PBH rank test for state space systems.)
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Latent variables

Consider again:

B = {w ∈ C∞(R,Rw) | there exists ` such that w = M(
d

dt
)`}.

Often, additional variables (like `) than the ones of interest
(here: w).
Call all auxiliary variables: latent variables.
Sometimes latent variables inevitable when modeling
systems from first principles.
In general,

B = {w ∈ C∞(R,Rw) | there exists ` such that

R( d
dt

)w +M( d
dt

)` = 0}.

Project (w, `) behavior to just w-variables.
Does B have a kernel representation?
Always possible for C∞(R,Rw), but not for all
function-spaces.
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Elimination theorem

Consider Bfull described by R( d
dt

)w +M( d
dt

)` = 0 (for
polynomial matrices R and M).
Then, there exists a kernel representation (R2( d

dt
)w = 0) for

B defined by

B = {w ∈ C∞(R,Rw) | there exists ` such that

R( d
dt

)w +M( d
dt

)` = 0}.

Obtain R2 as follows. Find a unimodular U such that

U(ξ)M(ξ) =

[
M1

0

]
. Partition U conformably into

[
U1

U2

]
.

Define R2(ξ) := U2(ξ)R(ξ).
Then, B = {w ∈ C∞(R,Rw) | R2( d

dt
)w = 0}.

In general kerR2( d
dt

) ⊇ B: equality for C∞.
Equality not true for D: the set of compactly supported C∞

functions.
Note: U2 is a so-called Maximal Left Annihilator (please see
notes of Lecture 10) of M .
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Dissipative systems

For the rest of the course, assume the system is controllable.
B ∈ Lw

cont

Power(w) := wTΣw, with Σ = ΣT ∈ Rw×w: supply rate

B is called dissipative with respect to supply rate wTΣw if∫ ∞
−∞

wTΣwdt > 0 for all w ∈ B ∩D.

Along any system trajectory (starting from rest and ending
at rest), ‘net energy’ is absorbed.

Integral inequality insisted only on B ∩D: denseness issues
related to controllability.
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Examples

Ignoring stability aspects (for this slide):

G(s) is positive real ⇔ Σ =

[
0 1
1 0

]
, and wTΣw = 2uy

G(s) has L∞ norm at most γ ⇔ wTΣw = γ2u2 − y2.

In LQ control, wTΣw = xTQx+ uTRu

y = φ(u), and φ is a ‘sector’ nonlinearity,
φ ∈ sector (α, β):

(y − αu)(u−
y

β
) =

[
u
y

] [ −α (α+β)
2β

(α+β)
2β

−1
β

] [
u
y

]
> 0.

Popov criteria, involving ‘dynamic’ notions of power

Interconnection of Σ-dissipative and −Σ-dissipative systems
yields stability: Megretski & Rantzer: IQC paper

Next lecture: dissipativity of LTI systems linked to
Algebraic Riccati Equation solutions
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