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@ More on polynomial matrices
o Controllability
o Other representations

o Dissipative systems
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Minimal kernel representations

Recall U(&)R(£)V (£) = [D ((f) g} .

There is some inconsistency across literature about use of
the ‘invariant polynomials/ and ‘elementary divisors’.
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Minimal kernel representations

Recall U(&)R(£)V (£) = [D ((f) g} .

There is some inconsistency across literature about use of
the ‘invariant polynomials/ and ‘elementary divisors’.

In any case: d; is gcd of all 1 X 1 minors of R.

dy -dy---dg is gcd of all k X k minors of R.

Using just premultiplication by unimodular matrices,

o UR = [131], with R; having full row rank.

o Ignore zero rows: trivially-satisfied equations

o Assume full row rank: without loss of generality.
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R(%)w = 0 is called minimal kernel representation if
R(¢) is full row rank.
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Minimal kernel representations

Recall U(&)R(£)V (£) = [D ((f) 8} .

There is some inconsistency across literature about use of
the ‘invariant polynomials/ and ‘elementary divisors’.

In any case: d; is gcd of all 1 X 1 minors of R.

dy -dy---dg is gcd of all k X k minors of R.

Using just premultiplication by unimodular matrices,

UR = [1:31], with R; having full row rank.

o Ignore zero rows: trivially-satisfied equations

Assume full row rank: without loss of generality.

(]

R(%)w = 0 is called minimal kernel representation if
R(¢) is full row rank.

£%: the set of LTI behaviors described by differential
equations in w number of variables.

Equivalently, 2 € £¥ if B is the set of solutions to
R(%)w = 0, for a polynomial matrix R € R®**¥[£].
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URV = [D 0]

Interpret V(%) as a ‘coordinate tranformation’ from
(R, R¥) to €= (R, R")

since V(%) is one-to-one and onto (and linear).

Recall:
m: number of inputs, p: number of outputs
w: number of ‘manifest’ variables: typically m + p
n: (minimum) number of states (McMillan degree)

A system = its behavior: set of ‘allowed’ trajectories
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Other topics covered in Lecture 9

We also saw
o the Smith canonical form of a polynomial matrix
o (normal) rank of a polynomial matrix

e unimodular completion (of a wide, nonsquare matrix)
and its special case: Bezout identity

o Input/output partitions

For a square constant matrix A, the Smith form of £ — A is
closely related to Jordan canonical form of A.
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Controllability

A system B € £ is called controllable if for any w; and
wo € B, there exist wz € B and T > 0 such that

_ | wi(t) fort <O,
ws(t) = { wa(t) for t > T.

Let B € £ and suppose R(%)w = 0 is a minimal kernel
representation. Then, the following are equivalent.

@ B is controllable,

Q R(&) is left-prime, i.e. R(A) is full row rank for every
complex number A\ € C.

@ B has an image representation: there exists
M(¢) € R**®[¢] such that
) d
B = {w € €°(R,R") | there exists £ such that w = M(a)f}

(Compare PBH rank test for state space systems.)
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Latent variables

Consider again:
) d
B = {w € €°(R,R") | there exists £ such that w = M(a)ﬂ}

Often, additional variables (like £) than the ones of interest
(here: w).

Call all auxiliary variables: latent variables.

Sometimes latent variables inevitable when modeling
systems from first principles.

In general,

B = {w € €°(R,R") | there exists £ such that
R(L)yw + M(L)¢ = 0}.

Project (w,£) behavior to just w-variables.
Does B have a kernel representation?
Always possible for €°°(R,R"), but not for all
function-spaces.
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Elimination theorem

Consider B¢, described by R( s w + M( ;)£ = 0 (for
polynomial matrices R and M).

Then, there exists a kernel representation (R2( ;)w = 0) for
B defined by

B = {w € €°(R,R¥) | there exists £ such that
R(g)w + M(g)t = 0}.

Obtain R, as follows. Find a unimodular U such that
UM = []\O/Il] . Partition U conformably into [gl} .

2
Define R3(§) := U2(§) R(§).
Then, B = {w € QZ°°(R RY) | Rz(dt)w = 0}.
In general ker Rg( ;) 2 B: equality for €.
Equality not true for ®: the set of compactly supported €*°
functions.

Note: Us is a so-called Maximal Left Annihilator (please see
notes of Lecture 10) of M.
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Dissipative systems

For the rest of the course, assume the system is controllable.
B c LY

cont

Power(w) := wTZw, with & = X7 € R"X": supply rate
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Dissipative systems

For the rest of the course, assume the system is controllable.
B c LY

cont
Power(w) := wTZw, with & = X7 € R"X": supply rate

B is called dissipative with respect to supply rate w? Sw if

/ wTSwdt > 0 for all w € BN D.

— o0

Along any system trajectory (starting from rest and ending
at rest), ‘net energy’ is absorbed.

Integral inequality insisted only on 8 N ®: denseness issues
related to controllability.
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Ignoring stability aspects (for this slide):

e G(s) is positive real & X = [(1) (1)] , and wTXw = 2uy
e G(s) has £, norm at most v & wlSw = v2u? — y2.
o In LQ control, wTSw = zTQx 4+ uTRu
o y = ¢(u), and ¢ is a ‘sector’ nonlinearity,
¢ € sector (o, 3):
(a+B)
Yy u —« : u
—owlu=g) = M o) M o
23 B

e Popov criteria, involving ‘dynamic’ notions of power

Interconnection of Y-dissipative and —3X-dissipative systems
yields stability: Megretski & Rantzer: IQC paper

Next lecture: dissipativity of LTI systems linked to

Algebraic Riccati Equation solutions N B B
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Ezxamples

Ignoring stability aspects (for this slide):
01
1 0

2

e G(s) has £, norm at most v & wlXw = v%u? — y2.

e G(s) is positive real < X = [ ], and wTXw = 2uy
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