More representations, controllability Lecture 10

Madhu N. Belur

Control & Computing group, Electrical Engineering Dept, IIT Bombay

12th May 2014

Lecture 10

Belur

1/10

- More on polynomial matrices
- Controllability
- Other representations
- Dissipative systems

・ロト ・四ト ・ヨト ・ヨト

æ

Recall
$$U(\xi)R(\xi)V(\xi) = \begin{bmatrix} D(\xi) & 0\\ 0 & 0 \end{bmatrix}$$

There is some inconsistency across literature about use of the 'invariant polynomials/ and 'elementary divisors'.

In any case: d_1 is gcd of all 1×1 minors of R. $d_1 \cdot d_2 \cdots d_k$ is gcd of all $k \times k$ minors of R. Using just **premultiplication** by unimodular matrice

•
$$UR = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$
, with R_1 having full row rank.

- Ignore zero rows: trivially-satisfied equations
- Assume full row rank: without loss of generality.
- $R(\frac{d}{dt})w = 0$ is called minimal kernel representation if $R(\xi)$ is full row rank.

 $\mathfrak{L}^{\mathsf{w}}$: the set of LTI behaviors described by differential equations in w number of variables. Equivalently, $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$ if \mathfrak{B} is the set of solutions to $R(\frac{d}{dt})w = 0$, for a polynomial matrix $R \in \mathbb{R}^{\bullet \times \mathsf{w}}[\xi]$.

$$ext{Recall } U(\xi)R(\xi)V(\xi) = egin{bmatrix} D(\xi) & 0 \ 0 & 0 \end{bmatrix}.$$

There is some inconsistency across literature about use of the 'invariant polynomials/ and 'elementary divisors'. In any case: d_1 is gcd of all 1×1 minors of R. $d_1 \cdot d_2 \cdots d_k$ is gcd of all $k \times k$ minors of R. Using just premultiplication by unimodular matrices,

•
$$UR = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$
, with R_1 having full row rank.

- Ignore zero rows: trivially-satisfied equations
- Assume full row rank: without loss of generality.
- $R(\frac{d}{dt})w = 0$ is called minimal kernel representation if $R(\xi)$ is full row rank.

 $\mathfrak{L}^{\mathfrak{v}}$: the set of LTI behaviors described by differential equations in \mathfrak{v} number of variables. Equivalently, $\mathfrak{B} \in \mathfrak{L}^{\mathfrak{v}}$ if \mathfrak{B} is the set of solutions to $R(\frac{d}{dt})w = 0$, for a polynomial matrix $R \in \mathbb{R}^{\mathfrak{o} \times \mathfrak{v}}[\boldsymbol{\xi}]$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

$$ext{Recall } U(\xi)R(\xi)V(\xi) = egin{bmatrix} D(\xi) & 0 \ 0 & 0 \end{bmatrix}.$$

There is some inconsistency across literature about use of the 'invariant polynomials/ and 'elementary divisors'. In any case: d_1 is gcd of all 1×1 minors of R. $d_1 \cdot d_2 \cdots d_k$ is gcd of all $k \times k$ minors of R. Using just premultiplication by unimodular matrices,

•
$$UR = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$
, with R_1 having full row rank.

- Ignore zero rows: trivially-satisfied equations
- Assume full row rank: without loss of generality.
- $R(\frac{d}{dt})w = 0$ is called minimal kernel representation if $R(\xi)$ is full row rank.

 $\mathfrak{L}^{\mathfrak{v}}$: the set of LTI behaviors described by differential equations in w number of variables. Equivalently, $\mathfrak{B} \in \mathfrak{L}^{\mathfrak{v}}$ if \mathfrak{B} is the set of solutions to $R(\frac{d}{dt})w = 0$, for a polynomial matrix $R \in \mathbb{R}^{\mathfrak{o} \times \mathfrak{v}}[\boldsymbol{\xi}]$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

$$ext{Recall } U(\xi)R(\xi)V(\xi) = egin{bmatrix} D(\xi) & 0 \ 0 & 0 \end{bmatrix}.$$

There is some inconsistency across literature about use of the 'invariant polynomials/ and 'elementary divisors'. In any case: d_1 is gcd of all 1×1 minors of R. $d_1 \cdot d_2 \cdots d_k$ is gcd of all $k \times k$ minors of R. Using just premultiplication by unimodular matrices,

•
$$UR = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$$
, with R_1 having full row rank.

- Ignore zero rows: trivially-satisfied equations
- Assume full row rank: without loss of generality.
- $R(\frac{d}{dt})w = 0$ is called minimal kernel representation if $R(\xi)$ is full row rank.

 $\mathfrak{L}^{\mathsf{w}}$: the set of LTI behaviors described by differential equations in w number of variables. Equivalently, $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$ if \mathfrak{B} is the set of solutions to $R(\frac{d}{dt})w = 0$, for a polynomial matrix $R \in \mathbb{R}^{\bullet \times \mathsf{w}}[\xi]$.

$URV = \begin{bmatrix} D & 0 \end{bmatrix}$

since $V(\frac{d}{d^4})$ is one-to-one and onto (and linear).

$\begin{array}{l} URV = \begin{bmatrix} D & 0 \end{bmatrix} \\ \text{Interpret } V(\frac{d}{dt}) \text{ as a 'coordinate transformation' from } \\ \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\texttt{w}}) \text{ to } \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\texttt{w}}) \\ \text{since } V(\frac{d}{dt}) \text{ is one-to-one and onto (and linear).} \end{array}$

Recall:
m: number of inputs,p: number of outputsw: number of 'manifest' variables:
n: (minimum) number of statestypically m + p

A system \equiv its behavior: set of 'allowed' trajectories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

 $\begin{array}{l} URV = \begin{bmatrix} D & 0 \end{bmatrix} \\ \text{Interpret } V(\frac{d}{dt}) \text{ as a 'coordinate transformation' from } \\ \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\texttt{w}}) \text{ to } \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\texttt{w}}) \\ \text{since } V(\frac{d}{dt}) \text{ is one-to-one and onto (and linear).} \end{array}$

Recall:

m: number of inputs,p: number of outputsw: number of 'manifest' variables:typically m + pn: (minimum) number of states(McMillan degree)

A system \equiv its behavior: set of 'allowed' trajectories

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

We also saw

- the Smith canonical form of a polynomial matrix
- (normal) rank of a polynomial matrix
- unimodular completion (of a wide, nonsquare matrix) and its special case: Bezout identity
- Input/output partitions

For a square constant matrix A, the Smith form of $\xi I - A$ is closely related to Jordan canonical form of A.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Controllability

A system $\mathfrak{B} \in \mathfrak{L}^{*}$ is called controllable if for any w_1 and $w_2 \in \mathfrak{B}$, there exist $w_3 \in \mathfrak{B}$ and $T \ge 0$ such that

$$w_3(t)=\left\{egin{array}{c} w_1(t) \,\, {
m for}\,\,t\leqslant 0 \ w_2(t) \,\, {
m for}\,\,t\geqslant T. \end{array}
ight.$$

Let $\mathfrak{B} \in \mathfrak{L}^{\mathbb{W}}$ and suppose $R(\frac{d}{dt})w = 0$ is a minimal kernel representation. Then, the following are equivalent.

- **9 B** is controllable,
- **2** $R(\xi)$ is left-prime, i.e. $R(\lambda)$ is full row rank for every complex number $\lambda \in \mathbb{C}$.
- 𝔅 has an image representation: there exists M(ξ) ∈ ℝ^{•ו}[ξ] such that

 $\mathfrak{B} = \{ w \in \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{*}) \mid ext{ there exists } \ell ext{ such that } w = M(rac{d}{dt})\ell \}.$

(Compare PBH rank test for state space systems.)

Belur	Lecture	10
JELUN	LECIURE	10

◆□▶ ◆圖▶ ★国▶ ★国▶ = ● ● ●

Consider again:

 $\mathfrak{B} = \{ w \in \mathfrak{C}^\infty(\mathbb{R}, \mathbb{R}^{*}) \mid ext{ there exists } \ell ext{ such that } w = M(rac{d}{dt})\ell \}.$

Often, additional variables (like ℓ) than the ones of interest (here: w).

Call all auxiliary variables: latent variables.

Sometimes latent variables inevitable when modeling systems from first principles.

In general,

 $\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee}) \mid \text{ there exists } \ell \text{ such that } \}$

$$R(\tfrac{d}{dt})w+M(\tfrac{d}{dt})\ell=0\}.$$

Project (w, ℓ) behavior to just *w*-variables. Does \mathfrak{B} have a <u>kernel representation</u>? Always possible for $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$, but not for all function-spaces.

Belur I

Elimination theorem

Consider $\mathfrak{B}_{\text{full}}$ described by $R(\frac{d}{dt})w + M(\frac{d}{dt})\ell = 0$ (for polynomial matrices R and M). Then, there exists a kernel representation $(R_2(\frac{d}{dt})w = 0)$ for \mathfrak{B} defined by

 $\mathfrak{B} = \{ w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathrm{v}}) \mid \text{ there exists } \ell \hspace{0.1 in } ext{such that}
ight.$

 $R(\tfrac{d}{dt})w + M(\tfrac{d}{dt})\ell = 0\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

Obtain R_2 as follows. Find a unimodular U such that $U(\xi)M(\xi) = \begin{bmatrix} M_1 \\ 0 \end{bmatrix}$. Partition U conformably into $\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$. Define $R_2(\xi) := U_2(\xi)R(\xi)$. Then, $\mathfrak{B} = \{w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \mid R_2(\frac{d}{dt})w = 0\}$. In general ker $R_2(\frac{d}{dt}) \supseteq \mathfrak{B}$: equality for \mathfrak{C}^{∞} . Equality not true for \mathfrak{D} : the set of compactly supported \mathfrak{C}^{∞} functions.

Note: U_2 is a so-called Maximal Left Annihilator (please see notes of Lecture 10) of M.

For the rest of the course, assume the system is controllable. $\mathfrak{B} \in \mathfrak{L}^{w}_{cont}$

Power $(w) := w^T \Sigma w$, with $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$: supply rate

 \mathfrak{B} is called dissipative with respect to supply rate $w^T \Sigma w$ if

$$\int_{-\infty}^{\infty} w^T \Sigma w dt \geqslant 0 ext{ for all } w \in \mathfrak{B} \cap \mathfrak{D}$$

Along any system trajectory (starting from rest and ending at rest), 'net energy' is absorbed.

Integral inequality insisted only on $\mathfrak{B} \cap \mathfrak{D}$: denseness issues related to controllability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへの

For the rest of the course, assume the system is controllable. $\mathfrak{B} \in \mathfrak{L}^{w}_{cont}$

Power $(w) := w^T \Sigma w$, with $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$: supply rate

 \mathfrak{B} is called dissipative with respect to supply rate $w^T \Sigma w$ if

$$\int_{-\infty}^\infty w^T \Sigma w dt \geqslant 0 ext{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

Along any system trajectory (starting from rest and ending at rest), 'net energy' is absorbed.

Integral inequality insisted only on $\mathfrak{B} \cap \mathfrak{D}$: denseness issues related to controllability.

Lecture 10

Belur

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 ●○○

9/10

Ignoring stability aspects (for this slide):

- G(s) is positive real $\Leftrightarrow \Sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $w^T \Sigma w = 2uy$
- G(s) has \mathfrak{L}_{∞} norm at most $\gamma \Leftrightarrow w^T \Sigma w = \gamma^2 u^2 y^2$.
- In LQ control, $w^T \Sigma w = x^T Q x + u^T R u$
- $y = \phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in$ sector (α, β) :

$$(y-lpha u)(u-rac{y}{eta})=egin{bmatrix} u\ y\end{bmatrix}egin{bmatrix} -lpha&rac{(lpha+eta)}{2eta}\ rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix} u\ y\end{bmatrix}\geqslant 0.$$

• Popov criteria, involving 'dynamic' notions of power Interconnection of Σ -dissipative and $-\Sigma$ -dissipative systems yields stability: Megretski & Rantzer: IQC paper

|--|

Ignoring stability aspects (for this slide):

- G(s) is positive real $\Leftrightarrow \Sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $w^T \Sigma w = 2uy$
- G(s) has \mathfrak{L}_{∞} norm at most $\gamma \Leftrightarrow w^T \Sigma w = \gamma^2 u^2 y^2$.
- In LQ control, $w^T \Sigma w = x^T Q x + u^T R u$
- $y = \phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in$ sector (α, β) :

$$(y-lpha u)(u-rac{y}{eta})=egin{bmatrix} u\ y\end{bmatrix}egin{bmatrix} -lpha&rac{(lpha+eta)}{2eta}\ rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix} u\ y\end{bmatrix}\geqslant 0.$$

• Popov criteria, involving 'dynamic' notions of power Interconnection of Σ -dissipative and $-\Sigma$ -dissipative systems yields stability: Megretski & Rantzer: IQC paper

|--|

Ignoring stability aspects (for this slide):

- G(s) is positive real $\Leftrightarrow \Sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $w^T \Sigma w = 2uy$
- G(s) has \mathfrak{L}_{∞} norm at most $\gamma \Leftrightarrow w^T \Sigma w = \gamma^2 u^2 y^2$.
- In LQ control, $w^T \Sigma w = x^T Q x + u^T R u$
- $y = \phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in$ sector (α, β) :

$$(y-lpha u)(u-rac{y}{eta})=egin{bmatrix} u\ y\end{bmatrix}egin{bmatrix} -lpha&rac{(lpha+eta)}{2eta}\ rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix} u\ y\end{bmatrix}\geqslant 0.$$

• Popov criteria, involving 'dynamic' notions of power Interconnection of Σ -dissipative and $-\Sigma$ -dissipative systems yields stability: Megretski & Rantzer: IQC paper

Belur	Lecture 10	10/10	
-------	------------	-------	--

Ignoring stability aspects (for this slide):

- G(s) is positive real $\Leftrightarrow \Sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $w^T \Sigma w = 2uy$
- G(s) has \mathfrak{L}_{∞} norm at most $\gamma \Leftrightarrow w^T \Sigma w = \gamma^2 u^2 y^2$.
- In LQ control, $w^T \Sigma w = x^T Q x + u^T R u$
- $y = \phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in$ sector (α, β) :

$$(y-lpha u)(u-rac{y}{eta})=egin{bmatrix} u\ y\end{bmatrix}egin{bmatrix} -lpha&rac{(lpha+eta)}{2eta}\ rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix} u\ y\end{bmatrix}\geqslant 0.$$

• Popov criteria, involving 'dynamic' notions of power Interconnection of Σ -dissipative and $-\Sigma$ -dissipative systems yields stability: Megretski & Rantzer: IQC paper

Belur	Lecture 10	10/10	
-------	------------	-------	--

Ignoring stability aspects (for this slide):

- G(s) is positive real $\Leftrightarrow \Sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $w^T \Sigma w = 2uy$
- G(s) has \mathfrak{L}_{∞} norm at most $\gamma \Leftrightarrow w^T \Sigma w = \gamma^2 u^2 y^2$.
- In LQ control, $w^T \Sigma w = x^T Q x + u^T R u$
- $y = \phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in$ sector (α, β) :

$$(y-lpha u)(u-rac{y}{eta})=egin{bmatrix} u\ y\end{bmatrix}egin{bmatrix} -lpha&rac{(lpha+eta)}{2eta}\ rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix} u\ y\end{bmatrix}\geqslant 0.$$

• Popov criteria, involving 'dynamic' notions of power

Interconnection of Σ -dissipative and $-\Sigma$ -dissipative systems yields stability: Megretski & Rantzer: IQC paper

Ignoring stability aspects (for this slide):

- G(s) is positive real $\Leftrightarrow \Sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and $w^T \Sigma w = 2uy$
- G(s) has \mathfrak{L}_{∞} norm at most $\gamma \Leftrightarrow w^T \Sigma w = \gamma^2 u^2 y^2$.
- In LQ control, $w^T \Sigma w = x^T Q x + u^T R u$
- $y = \phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in$ sector (α, β) :

$$(y-lpha u)(u-rac{y}{eta})=egin{bmatrix} u\y\end{bmatrix}egin{bmatrix} -lpha&rac{(lpha+eta)}{2eta}\rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix} u\y\end{bmatrix}\geqslant 0.$$

• Popov criteria, involving 'dynamic' notions of power Interconnection of Σ -dissipative and $-\Sigma$ -dissipative systems yields stability: Megretski & Rantzer: IQC paper

Belur	Lecture 10	10/10
-------	------------	-------