
Dissipative systems, storage functions
Notes for lecture 11 (May 14th, 2014)

This lecture contains more about dissipative systems, maximum/minimum storage func-

tions and Algebraic Riccati Equations (ARE). In this lecture, we also took a simple LQ

problem and obtained the optimum feedback law.

1 Dissipative systems

Consider Σ = ΣT ∈ Rw×w. A system B ∈ Lw
cont is called Σ-dissipative if∫ ∞

−∞
wTΣw dt > 0 for all w ∈ B ∩D.

(Recall that D is defined as the set of compactly supported C∞ trajectories.) Restricting

to trajectories in B ∩D ensures integral is well-defined. Secondly, it is like checking for all

trajectories ‘starting at rest’ and ‘ending at rest’. This removes ‘initially stored energy’ from

the calculations. Finally, for controllable systems, the compactly supported trajectories in

B are ‘dense’ in B: see [PS98] and [WT02, Page 55].

For this course, we restrict ourselves to just controllable behaviors (Lw
cont). Work on

uncontrollable dissipative systems can be found in the literature, and is outside the scope

of this course.

Theorem 1.1 Let B ∈ Lw
cont and suppose Σ = ΣT ∈ Rw×w. Suppose w = M( d

dt
)` is an

image representation for B. Then, the following are equivalent.

• B is Σ-dissipative.

• M(−ξ)TΣM(ξ) satisfies M(−jω)TΣM(jω) > 0 for all ω ∈ R.

• There exists a storage function1 QΨ(w) i.e.

d

dt
QΨ(w) 6 wTΣw for all w ∈ B. (1)

QΨ(w) is a Quadratic Differential Form (QDF) in w: this is nothing but a quadratic form

in w and (a finite number of) its derivatives.

Amongst many representations (kernel, image, the more-general latent-variable) that we

saw till now, the state space representation is special. There are three important state-

space representations with some structure, and a fourth one: a more general state space

1Equation (1) can be taken as the definition of a storage function.
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representation. In each case the manifest variable is w (partitioned sometimes into w =

(w1, w2)), and the matrices A,B,C and D are possibly different.

•
x = Ax+Bw1 and w2 = Cx+Dw1 (input/state/output), (2)
•
x = Ax+Bd and w = Cx+Dd (driving variable), (3)
•
x = Ax+Bw and 0 = Cx+Dw (output nulling), (4)

E
•
x +Fx+Gw = 0 (the most general state-space). (5)

(We will see these state representations in more detail in following lectures.)

The storage function might require derivatives of the manifest variables in order to

express it, but when expressed in the ‘state’, every storage function can be expressed in

terms of a static function of the state: xTKx for a constant matrix K.

Alternatively, the storage function can also be expressed in terms of the latent variable

` of the image representation w = M( d
dt

)`.

Depending on the requirement/convenience, we will express the storage function in terms

of either w (the manifest variable), or ` (of the image representation) or x, the state variable

(any one of the equations (2)-(4)). The ARI solutions are the ones when the storage function

is expressed as a state function.

The storage functions are not unique, in general: for controllable systems, they are a

bounded set, with a maximum QΨmax and minimum QΨmin
.

All storage functions QΨ satisfy

QΨmin
(w) 6 QΨ(w) 6 QΨmax(w).

The maximum and minimum storage functions satisfy a neat interpretation. Consider ex-

pressing the stored energy in terms of the state variable x. Accordingly, QΨ(w) = xTKx,

say. Let Ba denote all trajectories in B such that at t = 0, the trajectory w has state

x = a ∈ Rn. Then,

QΨmax(w)(0) = aTKmaxa = inf
w∈Ba∩D

∫ 0

−∞
wTΣw dt (6)

and

QΨmin
(w)(0) = aTKmina = sup

w∈Ba∩D

∫ ∞
0

−wTΣw dt (7)

When expressed in terms of `, the storage functions are easily calculated using the

spectral factorization result due to Ran and Rodman.

Theorem 1.2 Let P ∈ Rm×m[ξ] satisfy2 P (−ξ) = P (ξ)T . Further, suppose det P 6= 0.

Then, the following are equivalent.

2Such a P is said to be para-Hermitian.
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• P (jω) > 0 for each ω ∈ R.

• There exists an almost Hurwitz H(ξ) ∈ Rm×m[ξ] such that P (ξ) = H(−ξ)TH(ξ).

• There exists an almost anti-Hurwitz A(ξ) ∈ Rm×m[ξ] such that P (ξ) = A(−ξ)TA(ξ).

Before we go further into calculation procedures, we note two key behavioral notation

aspects.

Notation: Suppose Σ ∈ Rw×w and w = M( d
dt

)`, then we study Φ′(ζ, η) := M(ζ)TΣM(η). If

M(ξ) has w rows and m columns, then Φ′ has an m× m two-variable polynomial matrix. The

prime (’) indicates action on ` instead of w. The ζ (zeta) indicates differentiation of the `

the left, while η (eta) indicates differentiation of ` on the right. They are merely separate

place-holders, since we are dealing with quadratic forms in ` and its derivatives.

QDF ≡ Quadratic Differential Form.

Another notation: ∂: acts on two-variable polynomial matrices and gives a one-variable

polynomial matrix of the same size: ζ → −ξ, and η → ξ. More precisely, for Φ(ζ, η) ∈
Rm×m[z], ∂Φ(ξ) := Φ(−ξ, ξ). Loosely speaking, the minus sign on the left indicates the

negative sign when one switches the derivative from one dependent variable to another,

when integrating by parts. We will see this with an example in the next lecture.

The factorizations A and H above are, in general, not unique. Using this result and

the second condition in Theorem 1.1, we obtain (almost) Hurwitz and anti-Hurwitz factor-

izations of ∂Φ′(ξ) := M(−ξ)TΣM(ξ) and use this to obtain the maximum and minimum

storage functions are follows: for proof, please refer [WT98].

Ψ′min(ζ, η) =
Φ′(ζ, η)−H(ζ)TH(η)

ζ + η
and Ψ′max(ζ, η) =

Φ′(ζ, η)− A(ζ)TA(η)

ζ + η

(Recall that Φ′(ζ, η) := M(ζ)TΣM(η): the prime gives the QDF expressed in ` instead of

w.)

The roots of det ∂Φ(ξ) are called the spectral zeros. They play a key role in the dissi-

pativity (or passivity) preserving model order reduction. The LHP ones of these spectral

zeros come into H(ξ) and the RHP ones into A(ξ).

2 LQ problem

Using the fact that the storage function is a state function xTKx gives the ARE (through

the LMI and the Schur complement). For w = (x, u) and wTΣw = xTQx + uTRu, with Q

and R symmetric and Q > 0 and R > 0, we get the ARI

ATK +KA−Q+KTBR−1BT 6 0. (8)
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For the LQ problem, once Kmin is calculated, optimum cost is −x0Kminx0. Compare

with other Riccati equation and the solutions (www.egr.msu.edu/classes/me851/jchoi: Lec-

ture 14) (Available from: http://www.egr.msu.edu/classes/me851/jchoi/lecture/Lect 14.pdf )

The Riccati equation in the LQ problem in the literature

ATK +KA+Q−KBR−1BTK = 0

requires the largest solution to be taken: here the largest is the one that is stabilizing. Note

the switch in the signs: see also [TSH02, Chapter 10].

Verify that this K of equation (8) gives the closed loop AF as A−BR−1BTK (from the

Hamiltonian matrix and invariant subspace argument): see [TSH02, Section 13.4]. (This ref-

erence is available online in H.L. Trentelman’s homepage: http://www.math.rug.nl/∼trentelman.)

Exercise 2.1 Consider the system d
dt
x = 3x+2u and the performance cost

∫∞
0

(4x2+u2) dt.

Let the initial condition be x(0) = 4.

• Find a Hurwitz factorization of ∂Φ′(ξ) obtained from3 Φ′(ζ, η) := MT (ζ)ΣM(η), with

M(ξ) carefully chosen so that the state x equals `.

• Obtain the optimum cost for this initial condition.

• Check that the LQ optimal feedback law from the literature gives closed loop x satis-

fying the same differential equation as H( d
dt

)` = 0, with H obtained from the above

Hurwitz factorization.

(We will continue with this same exercise further in the next lecture.)
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